Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis
- Corresponding author: Hongming Sun, hxxyshm@tjnu.edun.cn Cheng-Peng Li, hxxylcp@tjnu.edu.cn
Citation: Cha Li, Zining Qiu, Hongming Sun, Yijie Yang, Cheng-Peng Li. Recent Progress in Covalent Organic Frameworks (COFs) for Electrocatalysis[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221108. doi: 10.14102/j.cnki.0254-5861.2022-0162
Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. Energy-Chem. 2021, 3, 100046.
doi: 10.1016/j.enchem.2020.100046
Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295-303.
doi: 10.1016/j.esci.2022.03.007
Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102-109.
doi: 10.1016/j.esci.2021.12.007
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017, 355, 6321.
Li, N.; Si, D. H.; Wu, Q. J.; Wu, Q.; Huang, Y. B.; Cao, R. Boosting electrocatalytic CO2 reduction with conjugated bimetallic Co/Zn polyphthalocyanine frameworks. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201943.
doi: 10.31635/ccschem.022.202201943
McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.
doi: 10.1021/ja510442p
Liu, M.; Wei, C.; Zhuzhang, H.; Zhou, J.; Pan, Z.; Lin, W.; Yu, Z.; Zhang, G.; Wang, X. Fully condensed poly(triazine imide) crystals: extended pi-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 2022, 61, e202113389.
Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Engineering single-atomic ruthenium catalytic sites on defective nickeliron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.
doi: 10.1038/s41467-021-24828-9
Oh, N. K.; Seo, J.; Lee, S.; Kim, H. J.; Kim, U.; Lee, J.; Han, Y. K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606.
doi: 10.1038/s41467-021-24829-8
Dai, L.; Chen, Z. N.; Li, L.; Yin, P.; Liu, Z.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.
doi: 10.1002/adma.201906915
Yu, Y.; Zhou, J.; Sun, Z. Novel 2D transition-metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.
doi: 10.1002/adfm.202000570
Kim, S.; Koratkar, N.; Karabacak, T.; Lu, T. -M. Water electrolysis activated by Ru nanorod array electrodes. Appl. Phys. Lett. 2006, 88, 263106.
doi: 10.1063/1.2218042
Wang, T.; Cao, X; Jiao, L. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience. 2021, 1, 69-74.
doi: 10.1016/j.esci.2021.09.002
Zhang, Q.; Wang, Y.; Wang, Y.; Yang, S.; Wu, X.; Lv, B.; Wang, N.; Gao, Y.; Xu, X.; Lei, H.; Cao, R. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 3807-3810.
doi: 10.1016/j.cclet.2021.04.048
Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience. 2022, Doi: doi.org/10.1016/j.esci.2022.04.004.
doi: 10.1016/j.esci.2022.04.004
Guo, X.; Wan, X.; Liu, Q.; Liu, Y.; Li, W.; Shui, J. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience. 2022, doi. org/10.1016/j. esci. 2022.04.002.
doi: 10.1016/j.esci.2022.04.002
Long, X.; Meng, J.; Gu, J.; Ling, L.; Li, Q.; Liu, N.; Wang, K.; Li, Z. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.
He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metalorganic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2022, 9, nwab157.
doi: 10.1093/nsr/nwab157
Niu, J.; Shao, R.; Liu, M.; Zan, Y.; Dou, M.; Liu, J.; Zhang, Z.; Huang, Y.; Wang, F. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv. Funct. Mater. 2019, 29, 1905095.
doi: 10.1002/adfm.201905095
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-8933.
doi: 10.1021/acs.chemrev.9b00550
Xu, S.; Zhang, Q. Recent progress in covalent organic frameworks as light-emitting materials. Mater. Today Energy 2021, 20, 100635.
doi: 10.1016/j.mtener.2020.100635
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.
doi: 10.1126/science.1120411
Wang, P. L.; Ding, S. Y.; Zhang, Z. C.; Wang, Z. P.; Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 2019, 141, 18004-18008.
doi: 10.1021/jacs.9b10625
Huang, X.; Sun, C.; Feng, X. Crystallinity and stability of covalent organic frameworks. Sci. China Chem. 2020, 63, 1367-1390.
doi: 10.1007/s11426-020-9836-x
Tan, K. T.; Tao, S.; Huang, N.; Jiang, D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat. Commun. 2021, 12, 6747.
doi: 10.1038/s41467-021-27128-4
Li, D.; Li, C.; Zhang, L.; Li, H.; Zhu, L.; Yang, D.; Fang, Q.; Qiu, S.; Yao, X. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 8104-8108.
doi: 10.1021/jacs.0c02225
Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623-6630.
doi: 10.1021/jacs.9b01226
Zhong, H.; Wang, M.; Ghorbani-Asl, M.; Zhang, J.; Ly, K. H.; Liao, Z.; Chen, G.; Wei, Y.; Biswal, B. P.; Zschech, E.; Weidinger, I. M.; Krasheninnikov, A. V.; Dong, R.; Feng, X. Boosting the electrocatalytic conversion of nitrogen to ammonia on metal-phthalocyanine-based two-dimensional conjugated covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19992-20000.
doi: 10.1021/jacs.1c11158
Kamai, R.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Oxygentolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew. Chem. Int. Ed. 2016, 55, 13184-13188.
doi: 10.1002/anie.201607741
Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843-23851.
doi: 10.1021/acsami.7b06968
Lin, C. Y.; Zhang, D. T.; Zhao, Z. H.; Xia, Z. H. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30, 1801726.
doi: 10.1002/adma.201801726
Bleier, G. C.; Watt, J.; Simocko, C. K.; Lavin, J. M.; Huber, D. L. Reversible magnetic agglomeration: a mechanism for thermodynamic control over nanoparticle size. Angew. Chem. Int. Ed. 2018, 57, 7678-7681.
doi: 10.1002/anie.201800959
Lee, H.; Nedrygailov, II; Lee, C.; Somorjai, G. A.; Park, J. Y. Chemical-reaction-induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size. Angew. Chem. Int. Ed. 2015, 54, 2340-2344.
doi: 10.1002/anie.201410951
Fox, E. K.; El Haddassi, F.; Hierrezuelo, J.; Ninjbadgar, T.; Stolarczyk, J. K.; Merlin, J.; Brougham, D. F. Size-controlled nanoparticle clusters of narrow size-polydispersity formed using multiple particle types through competitive stabilizer desorption to a liquid-liquid Interface. Small 2018, 14, 1802278.
doi: 10.1002/smll.201802278
Yang, H.; Liu, Y.; Liu, X.; Wang, X.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227-234.
doi: 10.1016/j.esci.2022.02.005
Cao, Y.; Peng, W.; Li, Y.; Zhang, F.; Zhu, Y.; Fan, X. Atomically dispersed metal sites in COF-based nanomaterials for electrochemical energy conversion. Green Energy & Environment. 2021. doi. org/10.1016/j. gee. 2021.11.005.
doi: 10.1016/j.gee.2021.11.005
Gunasekar, G. H.; Park, K.; Ganesan, V.; Lee, K.; Kim, N. -K.; Jung, K. -D.; Yoon, S. A covalent triazine framework, functionalized with Ir/Nheterocyclic carbene sites, for the efficient hydrogenation of CO2 to formate. Chem. Mater. 2017, 29, 6740-6748.
doi: 10.1021/acs.chemmater.7b01539
Hosokawa, T.; Tsuji, M.; Tsuchida, K.; Iwase, K.; Harada, T.; Nakanishi, S.; Kamiya, K. Metal-doped bipyridine linked covalent organic framework films as a platform for photoelectrocatalysts. J. Mater. Chem. A 2021, 9, 11073-11080.
doi: 10.1039/D1TA00396H
Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.
doi: 10.1126/science.aac8343
Yusran, Y.; Li, H.; Guan, X.; Li, D.; Tang, L.; Xue, M.; Zhuang, Z.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.
doi: 10.1002/adma.201907289
Ruidas, S.; Mohanty, B.; Bhanja, P.; Erakulan, E. S.; Thapa, R.; Das, P.; Chowdhury, A.; Mandal, S. K.; Jena, B. K.; Bhaumik, A. Metalfree triazine-based 2D covalent organic framework for efficient H2 evolution by electrochemical water splitting. Chemsuschem. 2021, 14, 5057-5064.
doi: 10.1002/cssc.202101663
Jin, E.; Fu, S.; Hanayama, H.; Addicoat, M. A.; Wei, W.; Chen, Q.; Graf, R.; Landfester, K.; Bonn, M.; Zhang, K. A. I.; Wang, H. I.; Mullen, K.; Narita, A. A nanographene-based two-dimensional covalent organic framework as a stable and efficient photocatalyst. Angew. Chem. Int. Ed. 2022, 61, e202114059.
Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chem. Commun. 2014, 50, 4788-4790.
doi: 10.1039/C4CC01002G
Guo, J.; Lin, C. Y.; Xia, Z.; Xiang, Z. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. 2018, 57, 12567-12572.
doi: 10.1002/anie.201808226
Hijazi, I.; Bourgeteau, T.; Cornut, R.; Morozan, A.; Filoramo, A.; Leroy, J.; Derycke, V.; Jousselme, B.; Campidelli, S. Carbon nanotubetemplated synthesis of covalent porphyrin network for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 6348-6354.
doi: 10.1021/ja500984k
Li, C.; Xi, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.
doi: 10.1002/smll.201701986
Liu, M.; Xu, Q.; Miao, Q.; Yang, S.; Wu, P.; Liu, G.; He, J.; Yu, C.; Zeng, G. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A 2022, 10, 228-233.
doi: 10.1039/D1TA08325B
Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J. Mater. Chem. A 2022, 10, 475-507.
doi: 10.1039/D1TA06006F
Zhao, W.; Jin, B.; Wang, L.; Ding, C.; Jiang, M.; Chen, T.; Bi, S.; Liu, S.; Zhao, Q. Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chin. Chem. Lett. 2022, 33, 557-561.
doi: 10.1016/j.cclet.2021.07.035
Li, D.; Park, E. J.; Zhu, W.; Shi, Q.; Zhou, Y.; Tian, H.; Lin, Y.; Serov, A.; Zulevi, B.; Baca, E. D.; Fujimoto, C.; Chung, H. T.; Kim, Y. S. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 2020, 5, 378-385.
doi: 10.1038/s41560-020-0577-x
Wang, L.; Bellini, M.; Miller, H. A.; Varcoe, J. R. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W cm-2 at 80 ℃. J. Mater. Chem. A 2018, 6, 15404-15412.
doi: 10.1039/C8TA04783A
Yang, F.; Han, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W. Interregulated d-band centers of the Ni3B/Ni heterostructure for boosting hydrogen electrooxidation in alkaline media. Chem. Sci. 2020, 11, 12118-12123.
doi: 10.1039/D0SC03917A
Sun, H.; Tian, C.; Fan, G.; Qi, J.; Liu, Z.; Yan, Z.; Cheng, F.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.
doi: 10.1002/adfm.201910596
Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 2015, 54, 52-65.
doi: 10.1002/anie.201407031
Patra, B. C.; Khilari, S.; Manna, R. N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120-6127.
doi: 10.1021/acscatal.7b01067
Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton. Polym. Chem. 2016, 7, 4176-4181.
doi: 10.1039/C6PY00561F
Zhao, Y. X.; Liang, Y.; Wu, D. X.; Tian, H.; Xia, T.; Wang, W. X.; Xie, W. Y.; Hu, X. M.; Tian, X. L.; Chen, Q. Ruthenium complex of sp2 carbonconjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022, 18, 2107750.
doi: 10.1002/smll.202107750
Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255-2260.
doi: 10.1039/C4EE00440J
Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300-306.
Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; Shao, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.
Jia, H.; Yao, Y.; Gao, Y.; Lu, D.; Du, P. Pyrolyzed cobalt porphyrinbased conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water. Chem. Commun. 2016, 52, 13483-13486.
Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. 2019, 58, 1376-1381.
Maiti, S.; Chowdhury, A. R.; Das, A. K. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat. 2019, 6, 99-106.
Kong, F.; Fan, X.; Kong, A.; Zhou, Z.; Zhang, X.; Shan, Y. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-Co doped carbons as highly efficient trifunctional electrocatalysts. Adv. Funct. Mater. 2018, 28, 1803973.
Ranjeesh, K. C.; Illathvalappil, R.; Wakchaure, V. C.; Goudappagouda; Kurungot, S.; Babu, S. S. Metalloporphyrin two-dimensional polymers via metal-catalyst-free C-C bond formation for efficient catalytic hydrogen evolution. ACS Appl. Energy Mater. 2018, 1, 6442-6450.
Yang, C.; Tao, S. S.; Huang, N.; Zhang, X. B.; Duan, J.; Makiura, R.; Maenosono, S. Heteroatom-doped carbon electrocatalysts derived from nanoporous two-dimensional covalent organic frameworks for oxygen reduction and hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 5481-5488.
Rao, P.; Wu, D.; Wang, T. -J.; Li, J.; Deng, P.; Chen, Q.; Shen, Y.; Chen, Y.; Tian, X. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, doi. org/10.1016/j. esci. 2022.05.004.
doi: 10.1016/j.esci.2022.05.004
Han, L.; Dong, S.; Wang, E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.
Fu, C. L.; Wang, Y.; Huang, J. H. Hybrid of quaternary layered double hydroxides and carbon nanotubes for oxygen evolution reaction. Chin. J. Struct. Chem. 2020, 39, 1807-1816.
Mou, Q.; Wang, X.; Xu, Z.; Zul, P.; Li, E.; Zhao, P.; Liu, X.; Li, H.; Cheng, G. A synergy establishment by metal-organic framework and carbon quantum dots to enhance electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 562-566.
Deng, B.; Liang, J.; Yue, L.; Li, T.; Liu, Q.; Liu, Y.; Gao, S.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y.; Sun, X. CoFe-LDH nanowire arrays on graphite felt: a high-performance oxygen evolution electrocatalyst in alkaline media. Chin. Chem. Lett. 2022, 33, 890-892.
Chen, K.; Mao, K.; Bai, Y.; Duan, D.; Chen, S.; Wang, C.; Zhang, N.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Phosphate-induced interfacial electronic engineering in VPO4-Ni2P heterostructure for improved electrochemical water oxidation. Chin. Chem. Lett. 2022, 33, 452-456.
Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336-8339.
Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: a metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623-5630.
Yang, C.; Yang, Z. -D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. -M.; Zhang, G. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251-2258.
Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396-2405.
Jia, H.; Sun, Z.; Jiang, D.; Du, P. Covalent cobalt porphyrin framework on multi-walled carbon nanotubes for efficient water oxidation at low overpotential. Chem. Mater. 2015, 27, 4586-4593.
Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375-4379.
Mullangi, D.; Dhavale, V.; Shalini, S.; Nandi, S.; Collins, S.; Woo, T.; Kurungot, S.; Vaidhyanathan, R. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3 N-rich flexible COF. Adv. Energy Mater. 2016, 6, 1600110.
Nandi, S.; Singh, S. K.; Mullangi, D.; Illathvalappil, R.; George, L.; Vinod, C. P.; Kurungot, S.; Vaidhyanathan, R. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst. Adv. Energy Mater. 2016, 6, 1601189.
Fan, X.; Kong, F.; Kong, A.; Chen, A.; Zhou, Z.; Shan, Y. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 32840-32850.
Singh, A.; Roy, S.; Das, C.; Samanta, D.; Maji, T. K. Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis. Chem. Commun. 2018, 54, 4465-4468.
Zhuang, G. -l.; Gao, Y. -F.; Zhou, X.; Tao, X. -Y.; Luo, J. -M.; Gao, Y. -J.; Yan, Y. -l.; Gao, P. -Y.; Zhong, X.; Wang, J. -G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255-1264.
Yang, W. G.; Gong, Z. W.; Chen, Y. N.; Chen, R. R.; Meng, D. L.; Cao, M. N. Nitrogen doped carbon as efficient catalyst toward oxygen reduction reaction. Chin. J. Struct. Chem. 2020, 39, 287-293.
Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.
Wang, K.; Pang, Y. Y.; Xie, H.; Sun, Y.; Chai, G. L. Synergistic effect of Ta2O5/F-C composites for effective electrosynthesis of hydrogen peroxide from O2 reduction. Chin. J. Struct. Chem. 2021, 40, 225-232.
Song, Y.; Peng, Y.; Yao, S.; Zhang, P.; Wang, Y.; Gu, J.; Lu, T.; Zhang, Z. Co-POM@MOF-derivatives with trace cobalt content for highly efficient oxygen reduction. Chin. Chem. Lett. 2022, 33, 1047-1050.
Royuela, S.; Martinez-Perinan, E.; Arrieta, M. P.; Martinez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267-1270.
Xiang, Z.; Cao, D.; Huang, L.; Shui, J.; Wang, M.; Dai, L. Nitrogendoped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Adv. Mater. 2014, 26, 3315-3320.
Zuo, Q.; Cheng, G.; Luo, W. A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Trans. 2017, 46, 9344-9348.
Xu, Q.; Tang, Y.; Zhang, X.; Oshima, Y.; Chen, Q.; Jiang, D. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv. Mater. 2018, 30, 1706330.
Liu, W.; Wang, C.; Zhang, L.; Pan, H.; Liu, W.; Chen, J.; Yang, D.; Xiang, Y.; Wang, K.; Jiang, J.; Yao, X. Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. J. Mater. Chem. A 2019, 7, 3112-3119.
Chai, D.; Min, X.; Harada, T.; Nakanishi, S.; Zhang, X. Covalent triazine framework anchored with atomically dispersed iron as an efficient catalyst for advanced oxygen reduction. Colloids Surf. A 2021, 628, 127240.
Wang, Y.; Batmunkh, M.; Mao, H.; Li, H.; Jia, B.; Wu, S.; Liu, D.; Song, X.; Sun, Y.; Ma, T. Low-overpotential electrochemical ammonia synthesis using BiOCl-modified 2D titanium carbide MXene. Chin. Chem. Lett. 2022, 33, 394-398.
Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. ITO@TiO2 nanoarray: an efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, doi. org/10.1016/j. esci. 2022.04.008.
doi: 10.1016/j.esci.2022.04.008
Hong, Q. S.; Li, T. Y.; Zheng, S. S.; Chen, H. B.; Chu, H. H.; Xu, K. D.; Li, S. N.; Mei, Z. W.; Zhao, Q. H.; Ren, W. J.; Zhao, W. G.; Pan, P. Tuning double layer structure of WO3 nanobelt for promoting the electrochemical nitrogen reduction reaction in water. Chin. J. Struct. Chem. 2021, 40, 519-526.
Liu, S.; Wang, M.; Qian, T.; Ji, H.; Liu, J.; Yan, C. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.
Jiang, M.; Han, L.; Peng, P.; Hu, Y.; Xiong, Y.; Mi, C.; Tie, Z.; Xiang, Z.; Jin, Z. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022, 22, 372-379.
Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.
Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G. L.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005-1012.
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Jun Zhang , Zhiyao Zheng , Can Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301