Citation: Tian Liu, Yunfeng Li, Hejia Sun, Min Zhang, Zhiling Xia, Qing Yang. Asymmetric Structure Awakened n-π* Electron Transition in Sulfur and Selenium Co-doped g-C3N4 with Efficient Photocatalytic Performance[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220605. doi: 10.14102/j.cnki.0254-5861.2022-0152 shu

Asymmetric Structure Awakened n-π* Electron Transition in Sulfur and Selenium Co-doped g-C3N4 with Efficient Photocatalytic Performance

  • Corresponding author: Yunfeng Li, liyf377@nenu.edu.cn
  • Received Date: 9 June 2022
    Accepted Date: 18 June 2022

Figures(8)

  • Sulfur and selenium co-doped graphitic carbon nitride (SSCN) with efficient photocatalytic activity was synthesized by synchronously introducing sulfur and selenium atoms into the melon structure of g-C3N4 (GCN) via a facile solid-phase thermal reaction of GCN and SeS2. The as-prepared SSCN possesses a larger specific surface area with a richer pore structure that provides more active centers for catalytic reaction. More importantly, the asymmetric structure of SSCN due to introducing sulfur and selenium not only maintains an easier activation of π-π* electron transition but also awakens the n-π* electron transition in g-C3N4. Moreover, the n-π* electron transition of SSCN can be controlled through changing the amount of SeS2, which can greatly extend the photo-response range to 600 nm. As a result, the SSCN samples show an excellent photo-degradation performance for typical antibiotic of tetracycline hydrochloride (TC). The specific degradation route and main intermediates of TC based on liquid chromatograph mass spectrometer (LC-MS) analysis are also investigated and discussed.
  • 加载中
    1. [1]

      Liu, Q.; Li, Z.; Li, J.; Zhan, F.; Zhai, D.; Sun, Q.; Xiao, Z.; Luo, H.; Zhang, D. Three dimensional BaTiO3 piezoelectric ceramics coated with TiO2 nanoarray for high performance of piezo-photoelectric catalysis. Nano Energy 2022, 98, 107267.

    2. [2]

      Huang, J.; Li, C.; Hu, X.; Fan, J.; Zhao, B.; Liu, E. K2HPO4-mediated photocatalytic H2 production over NiCoP/RP heterojunction. Chin. J. Struct. Chem. 2022, 41, 2022062-2022068.

    3. [3]

      Li, S.; Wang, C.; Cai, M.; Yang, F.; Liu, Y.; Chen, J.; Zhang, P.; Li, X.; Chen, X. Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction. Chem. Eng. J. 2022, 428, 131158.  doi: 10.1016/j.cej.2021.131158

    4. [4]

      Li, Z.; Huang, D.; Zhou, C.; Xue, W.; Lei, L.; Deng, R.; Yang, Y.; Chen, S.; Wang, W.; Wang, Z. Metal-free carbon nitride with boosting photo-redox ability realized by the controlled carbon dopants. Chem. Eng. J. 2020, 382, 122657.

    5. [5]

      Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521.

    6. [6]

      Wang, Z.; Hong, J.; Ng, S.; Liu, W.; Huang, J.; Chen, P.; Ong, W. Recent progress of perovskite oxide in emerging photocatalysis landscape: water splitting, CO2 reduction, and N2 fixation. Acta Phys. -Chim. Sin. 2021, 37, 2011033.

    7. [7]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. An inorganic/organic S-scheme heterojunction H2 production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.  doi: 10.1002/adma.202100317

    8. [8]

      Candish, L.; Collins, K.; Cook, G.; Douglas, J.; Suarez, A.; Jolit, A.; Keess, S. Photocatalysis in the life science industry. Chem. Rev. 2022, 122, 2907-2980.

    9. [9]

      Wang, H.; Lin, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chin. J. Catal. 2022, 43, 178-214.

    10. [10]

      Ling, Z.; Ng, S.; Ong, W. Tailor-engineered 2D cocatalysts: harnessing electron-hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv. Funct. Mater. 2022, 2111875.

    11. [11]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2021, 37, 2010059.

    12. [12]

      He, Y.; Li, J.; Sun, M.; Yuan, C.; Chen, R.; Sheng, J.; Leng, G.; Dong, F. Bi quantum dots implanted 2D C-doped BiOCl nanosheets: enhanced visible light photocatalysis efficiency and reaction pathway. Chin. J. Catal. 2020, 41, 1430-1438.

    13. [13]

      Li, S.; Wang, C.; Liu, Y.; Cai, M.; Wang, Y.; Zhang, H.; Guo, Y.; Zhao, W.; Wang, Z.; Chen, X. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 429, 132519.

    14. [14]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M.; Cheng, B.; Yu, J.; Zhang, L. ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance. Chem. Eng. J. 2022, 444, 136584.

    15. [15]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Negative inductive effect enhances charge transfer driving in sulfonic acid functionalized graphitic carbon nitride with efficient visible-light photocatalytic performance. Chin. J. Catal. 2022, 43, 526-535.

    16. [16]

      Yu, J.; Zhang, T.; Wu, N. Solar photocatalysis. Sol. RRL 2021, 5, 2100037.

    17. [17]

      Wang, Y.; Zhu, B.; Cheng, B.; Macyk, W.; Kuang, P.; Yu, J. Hollow carbon sphere-supported Pt/CoOx hybrid with excellent hydrogen evolution activity and stability in acidic environment. Appl. Catal. B 2022, 314, 121503.

    18. [18]

      Oh, S.; Kim, J.; Hwang, H.; Kim, D.; Kim, J.; Park, G.; Kim, J.; Lee, Y.; Lee, H. Band restructuring of ordered/disordered blue TiO2 for visible light photocatalysis. J. Mater. Chem. A 2021, 9, 4822.

    19. [19]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484-10537.

    20. [20]

      Zhou, J.; Li, X.; Ma, X.; Sheng, W.; Lang, X. Cooperative photocatalysis of dye-TiO2 nanotubes with TEMPO+ BF4- for selective aerobic oxidation of amines driven by green light. Appl. Catal. B 2021, 296, 120368.

    21. [21]

      Wu, S.; Li. X.; Tian, Y.; Lin, Y.; Hu, Y. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem. Eng. J. 2021, 406, 126747.

    22. [22]

      Sheng, W.; Shi, J.; Hao, H.; Li, X.; Lang, X. Polyimide-TiO2 hybrid photocatalysis: visible light-promoted selective aerobic oxidation of amines. Chem. Eng. J. 2020, 379, 122399.

    23. [23]

      Xu, C.; Lv, P. Photo-assisted deposited titanium dioxide film and the enhancement of its photocatalytic water splitting activity. Chin. J. Struct. Chem. 2021, 40, 1223-1230.

    24. [24]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.

    25. [25]

      Wan, Y.; Li, J.; Ni, J.; Wang, C.; Ni, C.; Chen, H. Crystal-facet and microstructure engineering in ZnO for photocatalytic NO oxidation. J. Hazard. Mater. 2022, 435, 129073.

    26. [26]

      Sun, Y.; Zhu, Q.; Bai, B.; Li, Y.; He, C. Novel all-solid-state Z-scheme SnO2/Pt/In2O3 photocatalyst with boosted photocatalytic performance on water splitting and 2, 4-dichlorophenol degradation under visible light. Chem. Eng. J. 2020, 390, 124518.

    27. [27]

      Xu, J.; Zhong, W.; Gao, D.; Wang, X.; Wang, P.; Yu, H. Phosphorus-enriched platinum diphosphide nanodots as a highly efficient cocatalyst for photocatalytic H2 evolution of CdS. Chem. Eng. J. 2022, 439, 135758.

    28. [28]

      Zhang, Q.; Liu, M.; Zhou, W.; Zhang, Y.; Hao, W.; Kuang, Y.; Liu, H.; Wang D.; Liu L.; Ye, J. A novel Cl-modification approach to develop highly efficient photocatalytic oxygen evolution over BiVO4 with AQE of 34.6%. Nano Energy 2021, 81, 105651.

    29. [29]

      Yang, Q.; Li, Y.; Xia, Z.; Chang, W.; Xing, Y. Preparation of two- dimensional mesoporous Ta3N5 by utilizing a biological template for enhanced photocatalytic hydrogen production. Ceram. Int. Doi: 10.1016/j.ceramint.2022.04.234.

    30. [30]

      Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr (VI): performance, toxicity evaluation and mechanism insight. J. Mater. Sci. Technol. 2022, 123, 177-190.

    31. [31]

      He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity. Chin. J. Catal. 2022, 43, 370-378.

    32. [32]

      Zhou, L.; Li, Y.; Zhang, Y.; Qiu, L.; Xing, Y. A 0D/2D Bi4V2O11/g-C3N4 S-scheme heterojunction with rapid interfacial charges migration for photocatalytic antibiotic degradation. Acta Phys. -Chim. Sin. 2022, 38, 2112027.

    33. [33]

      Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69-88.

    34. [34]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. -Chim. Sin. 2021, 37, 2009030.

    35. [35]

      Bi, S.; Yang, C.; Zhang, W.; Xu, J.; Liu, L.; Wu, D.; Wang, X.; Han, Y.; Liang, Q.; Zhang, F. Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 2019, 10, 2467.

    36. [36]

      Che, H.; Li, C.; Li, C.; Liu, C.; Dong, H.; Song, X. Benzoyl isothiocyanate as a precursor to design of ultrathin and high-crystalline g-C3N4-based donor-acceptor conjugated copolymers for superior photocatalytic H2 production. Chem. Eng. J. 2021, 410, 127791.

    37. [37]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, C.; Zhang, L. 2D/2D black phosphorus g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. -Chim. Sin. 2021, 37, 2010027.

    38. [38]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1-17.

    39. [39]

      Li, Y.; Xia, Z.; Yang, Q.; Wang, L.; Xing, Y. Review on g-C3N4-based S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 2022, 125, 128-144.

    40. [40]

      Liu, C.; Dai, H.; Tan, C.; Pan, Q.; Hu, F.; Peng, X. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation. Appl. Catal. B 2022, 310, 121326.

    41. [41]

      Liu, M.; He, N.; Guo, H.; Ying, S.; Chen, Z. Microwave pyrolysis and electrochemical supercapacitor of S-doped g-C3N4 nanoparticles. Chin. J. Struct. Chem. 2021, 40, 806-810.

    42. [42]

      Nasir, M.; Yang, G.; Ayub, I.; Wang, S.; Wang, L.; Wang, X.; Yan, W.; Peng, S.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B 2019, 257, 117855.

    43. [43]

      Wang, Y.; Shen, S. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys. -Chim. Sin. 2020, 36, 1905080.

    44. [44]

      Liu, L.; Chen, F.; Wu, J.; Ke, M.; Cui, C.; Chen, J. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Appl. Catal. B 2022, 302, 120845.

    45. [45]

      Yuan, A.; Lei, H.; Xi, F.; Liu, J.; Qin, L.; Chen, Z.; Dong, X. Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics. J. Colloid Interface Sci. 2019, 548, 56-65.

    46. [46]

      Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. A graphitic-C3N4 "Seaweed" architecture for enhanced hydrogen evolution. Angew. Chem. Int. Ed. 2015, 54, 11433-11437.

    47. [47]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

    48. [48]

      Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2021, 2, 2100086.

    49. [49]

      Jiang, J.; Xiong, Z.; Wang, H.; Liao, G.; Bai, S.; Zou, J.; Wu, P.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15-24.

    50. [50]

      He, F.; Wang, Z.; Li, Y.; Peng, S.; Liu, B. The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl. Catal. B 2020, 269, 118828.

    51. [51]

      Lv, H.; Huang, Y.; Koodali, R.; Liu, G.; Zeng, Y.; Meng, Q.; Yuan, M. Synthesis of sulfur-doped 2D graphitic carbon nitride nanosheets for efficient photocatalytic degradation of phenol and hydrogen evolution. ACS Appl. Mater. Inter. 2020, 12, 12656-12667.

    52. [52]

      Kumar, A.; Yadav, R.; Park, N.; Baeg, J. Facile one-pot two-step synthesis of novel in situ selenium-doped carbon nitride nanosheet photocatalysts for highly enhanced solar fuel production from CO2. ACS Appl. Nano Mater. 2018, 1, 47-54.

    53. [53]

      Chu, Y.; Lin, T.; Lin, Y.; Chiu, W.; Nguyen, B.; Hu, C. Influence of P, S, O-doping on g-C3N4 for hydrogel formation and photocatalysis: an experimental and theoretical study. Carbon 2020, 169, 338-348.

    54. [54]

      Chuaicham, C.; Karthikeyan, S.; Pawar, R.; Xiong, Y.; Dabo, I.; Ohtani, B.; Kim, Y.; Song, J.; Ishihara, T.; Sasaki, K. Energy-resolved distribution of electron traps for O/S-doped carbon nitrides by reversed double-beam photoacoustic spectroscopy and the photocatalytic reduction of Cr (VI). Chem. Commun. 2020, 56, 3793-3796.

    55. [55]

      Yang, C.; Teng, W.; Song, Y.; Cui, Y. C‐I codoped porous g‐C3N4 for superior photocatalytic hydrogen evolution. Chin. J. Catal. 2018, 39, 1615-1624.

    56. [56]

      Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; Xu, J. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets. Appl. Catal. B 2019, 248, 84-94.

    57. [57]

      Tian, Y.; Tian, X.; Zeng, W.; Nie, Y.; Yang, C.; Dai, C.; Li, Y.; Lu, L. Enhanced peroxymonosulfate decomposition into OH and 1O2 for sulfamethoxazole degradation over Se doped g-C3N4 due to induced exfoliation and N vacancies formation. Sep. Purif. Technol. 2021, 267, 118664.

    58. [58]

      Huang, X.; Song, J.; Hua, M.; Chen, B.; Xie, Z.; Liu, H.; Zhang, Z.; Meng, Q.; Han, B. Robust selenium-doped carbon nitride nanotubes for selective electrocatalytic oxidation of furan compounds to maleic acid. Chem. Sci. 2021, 12, 6342-6349.

    59. [59]

      An, S.; Zhang, G.; Li, K.; Huang, Z.; Wang, X.; Guo, Y.; Hou, J.; Song, C.; Guo, X. Self-supporting 3D carbon nitride with tunable n→π* electronic transition for enhanced solar hydrogen production. Adv. Mater. 2021, 33, 2104361.

    60. [60]

      Gao, B.; Wang, J.; Dou, M.; Huang, X.; Yu, X. Novel nitrogen-rich g-C3N4 with adjustable energy band by introducing triazole ring for cefotaxime removal. Sep. Purif. Technol. 2020, 241, 116576.

    61. [61]

      Zhang, J.; Liao, H.; Sun, S. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.

    62. [62]

      Liao, Y.; Yang, J.; Wang, G.; Wang, J.; Wang, K.; Yan, S. Hierarchical porous NiO as a noble-metal-free cocatalyst for enhanced photocatalytic H2 production of nitrogen-deficient g-C3N4. Rare Met. 2022, 41, 396-405.

    63. [63]

      Liang, Z.; Shen, R.; Ng, Y.; Zhang, P.; Xiang, Q.; Li, X. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. J. Mater. Sci. Technol. 2020, 56, 89-121.

    64. [64]

      Li, G.; Wang, B.; Wang, R. g-C3N4/Ag/GO composite photocatalyst with efficient photocatalytic performance: synthesis, characterization, kinetic studies, toxicity assessment and degradation mechanism. Chin. J. Struct. Chem. 2020, 39, 1675-1688.

    65. [65]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wang, L.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys. -Chim. Sin. 2021, 37, 2010030.

    66. [66]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Hierarchically porous ZnO/g-C3N4 S-scheme heterojunction photocatalyst for efficient H2O2 production. Langmuir 2021, 37, 14114-14124.

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    12. [12]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    13. [13]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    16. [16]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    17. [17]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    18. [18]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    19. [19]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    20. [20]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

Metrics
  • PDF Downloads(6)
  • Abstract views(328)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return