Citation: Shi Cheng, Qianqian Xiong, Chengxiao Zhao, Xiaofei Yang. Synergism of 1D CdS/2D Modified Ti3C2Tx MXene Heterojunctions for Boosted Photocatalytic Hydrogen Production[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220805. doi: 10.14102/j.cnki.0254-5861.2022-0151 shu

Synergism of 1D CdS/2D Modified Ti3C2Tx MXene Heterojunctions for Boosted Photocatalytic Hydrogen Production

Figures(6)

  • Rational design and controllable synthesis of visible-light-responsive photocatalysts that exhibit both good hydrogen-producing efficiency and stability in the water splitting reaction are undoubtedly a challenge. Here we report an integrated CdS nanorod/oxygen-terminated Ti3C2Tx MXene nanosheet heterojunction with a high catalytic hydrogen evolution reaction (HER) activity. By incorporating one-dimensional (1D) CdS nanorods onto annealed ultrathin two-dimensional (2D) MXene nanosheets, the mixed-dimensional 1D/2D heterojunction achieved a hydrogen-evolving rate of 8.87 mmol⋅g-1⋅h-1, much higher than that of bulk CdS and CdS/unmodified MXene hybrid catalysts. The enhanced HER activity and stability of the designed heterojunction catalyst are attributed to the presence of oxygen-containing terminal groups on the surface of thermally treated Ti3C2Tx MXene, extended light absorption spectra as well as the precisely constructed intimate Schottky contact, implying an accelerated interfacial charge transfer and efficient, long-term photocatalytic hydrogen production performance. The results demonstrate that oxygen-terminated 2D MXene can be well utilized as a functional platform for the development of novel heterojunction photocatalysts.
  • The purine (imidazo-[4, 5-d]pyrimidine) skeleton is an important structural motif which plays an important role in different life related processes[1, 2]. During the wide range of biological activities, purine structure is considered as a privileged scaffold in medicinal chemistry. Many drugs containing purine fragment have been developed for the treatment of asthma, inflammation, cancer and gastrointe stinal diseases[3-9]. In addition, some compounds with purine fragment, such as aureonuclemycin, are fungicides for plant disease control[10]. As active substructures, heterocyclic ring structures with both S and N atoms[11], especially 3, 4-dichlo roisothiazole[12], showed good systemic acquired resistance and fungicidal activities in pesticide lead discovery.

    The discovery of lead compounds is an important basis for novel pesticide development. Our group focused on agrichemical lead discovery, different pyrazole-thiazoles[13], pyrazole-aromatics[14], and thiadiazole derivatives[15] were found to show various degrees of fungicidal activity. YZK-C22 is a highly active fungicidal lead[16]. The research has shown that YZK-C22 does not act at traditional pesticide targets, but has a new potent target: pyruvate kinase (PK)[17]. Based on the structure of the lead molecule YZK-C22 and its potent new target PK, 3, 4-dichloro-5-(6-chloro-9-(4-fluoro benzyl)-9H-purin-8-yl)isothiazole was rationally designed (Fig. 1) and synthesized (Scheme 1) by the combination of bioactive substructures of purine and isothiazole, and its crystal chemical structure and fungicidal activity were evaluated here.

    Figure 1

    Figure 1.  Design of the target compound

    Melting point was measured on an X-4 Digital Type Melting Point Tester (Gongyi, China) and uncorrected. 1H NMR spectra were recorded on a Bruker AV400 spectro meter (400 MHz) (Wisconsin, United States of America) and chemical shifts were reported in ppm. 13C NMR spectra were recorded on a Bruker AV400 spectrometer (101 MHz) (Wisconsin, United States of America) with complete proton decoupling. 19F NMR spectra were recorded on a Bruker AV400 spectrometer (101 MHz) (Wisconsin, United States of America) with complete proton decoupling. High-resolution mass spectra (HRMS) were recorded with an Agilent 6520 Q-TOF LC/MS instrument (Agilent Technologies Inc. State of California, United States of America). Crystal structure was determined on a Rigaku Xtalab P200 diffractometer. All of the solvents and materials were of reagent grade and purified as required.

    The procedure for the synthesis of compound 3 is shown in Scheme 1. As a key intermediate, pyrimidine amine 2 was synthesized according to the revision of the reported method[5]. Triethylamine (1.00 mL, 7.37 mmol) was added to a suspension of compound 1 (98% content) (1.00 g, 6.14 mmol) in ethanol (10 mL), followed by the addition of 4-fluorobenzylamine (0.75 mL, 6.45 mmol). Then the reaction mixture was stirred for 18 h at 80 ℃. After the reactant was consumed, the reaction mixture was concentrated under reduced pressure to remove the solvent, and the intermediate 2 was obtained by purifying the crude residue using silica gel column chromatography with a mixture eluent of petroleum ether (60~90 ℃ fraction): ethyl acetate (2:1, v/v).

    Scheme 1

    Scheme 1.  Synthesis of the target compound 3

    Reagents and conditions: (i) 4-fluorobenzylamine, EtOH, Et3N, 80 ℃, 12 h (ii) 3, 4-dichloroisothiazole-5-carbonyl chloride, NH4Cl, toluene, 100 ℃, 2 h; POCl3, 100 ℃, 12 h

    Analytical data for intermediate 2. Yellow solid; yield, 25%; m.p.: 221~223 ℃. 1H NMR (400 MHz, DMSO-d6) δ 7.73 (s, 1H), 7.39~7.30 (m, 3H), 7.19~7.09 (m, 2H), 5.09 (s, 2H), 4.60 (d, J = 5.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 161.2 (d, 1JF-C = 242.2 Hz), 151.7, 145.5, 136.9, 135.6 (d, 4JF-C = 3.0 Hz), 129.3 (d, 3JF-C = 8.2 Hz), 123.6, 115.0 (d, 2JF-C = 21.2 Hz), 43.4. 19F NMR (101 MHz, CDCl3) δ –114.59. HRMS (ESI) m/z calcd. for C11H11ClFN4+ (M+H)+: 253.0651; found: 253.0649. Document[18] reported its yield of 84% with the m.p. of 240~242 ℃.

    Compound 3 was synthesized according to the revision of the reported method[19]. To a suspension of compound 2 (0.20 g, 0.79 mmol) in toluene, ammonium chloride (0.25 g, 4.74 mmol) and 3, 4-dichloroisothiazole-5-carbonyl chloride (0.10 mL, 0.79 mmol) were added successively. The reaction mixture was heated at 100 ℃ for 2 h. After cooling the mixture to room temperature, phosphorus oxychloride (8.0 mL) was added. Then, the mixture was slowly heated to 100 ℃ again and kept for 12 h. After the reaction completed, the reaction mixture was slowly dropwise added to ice water. Then, the pH of the mixture was adjusted to 7~8 using ammonia water (25%~28%) carefully, and compound 3 in the mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with saturated sodium chloride solution (20 mL) for 3 times and dried over anhydrous sodium sulfate. After the solvent evaporation under reduced pressure, the residue of the target compound 3 was purified by silica gel column chromatography with a mixture of petroleum ether: ethyl acetate (5:1, v/v) as eluent.

    Analytical data for compound 3. Yellow solid; yield, 81%; m.p.: 133~134 ℃. 1H NMR (400 MHz, CDCl3) δ 8.82 (s, 1H), 6.99~6.92 (m, 2H), 6.92~6.85 (m, 2H), 5.53 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 162.7 (d, 1JF-C = 248.9 Hz), 153.1, 152.9, 152.0, 149.4, 148.8, 143.7, 131.5, 130.0 (d, 4JF-C = 3.2 Hz), 129.3 (d, 3JF-C = 8.2 Hz), 124.2, 116.2 (d, 2JF-C = 21.8 Hz), 47.2. 19F NMR (101 MHz, CDCl3) δ –111.9. HRMS (ESI) m/z calcd. for C15H8Cl3FN5S+ (M+H)+: 413.9545; found: 413.9549.

    The colorless crystal of the title compound 3 with dimensions of 0.18mm × 0.16mm × 0.13mm was cultured from n-hexane/dichloromethane and selected for X-ray diffraction analysis. The data were collected on a Rigaku Xtalab P200 Single Crystal diffractometer equipped with mirror-monochromatic Cu radiation (λ = 1.54184 Å) with an ω scan mode at 294.15 K. In the range of 4.22≤θ≤79.05°, a total of 22315 reflections were collected with 3532 unique ones (Rint = 0.0311), of which 3238 were observed with I > 2σ(I) for refinements. Using Olex2[20], the structure was solved by the ShelXT[21] structure solution program using Intrinsic Phasing and refined with the ShelXL[22] refinement package using Least Squares minimization. All of the non-hydrogen atoms were located with successive difference Fourier syntheses. The hydrogen atoms were added according to theoretical models. The final full-matrix least-squares refinement converged at R = 0.0310, wR = 0.0842 (w = 1/[σ2(Fo)2 + (0.0393P)2 + 0.5096P], where P = (Fo2 + 2Fc2)/3), S = 1.075, (Δρ)max = 0.24, (Δρ)min = –0.25 e/Å3 and (Δ/σ)max = 0.001.

    The fungicidal activities of intermediate 2 and target compound 3 were evaluated at 50 mg/L according to the previously reported procedures[23-25]. Seven representative fungi, A. s: Alternaria solani; B. c: Botrytis cinerea; C. a: Cercospora arachidicola; G. z: Gibberella zeae; P. p: Physalospora piricola; R. s: Rhizoctonia solani and S. s: Sclerotinia sclerotiorum, were tested. The commercially available pyrimidinamine fungicide diflumetorim and lead molecule YZK-C22 were selected as positive controls. Inhibitory rates (%) = (Dcontrol – Dtest)/(Dcontrol – 4) × 100, where Dcontrol was the average diameter (mm) of mycelia in the absence of any compounds and Dtest was the average diameter (mm) of mycelia treated with the test compound. All experiments were tested in triplicates. Data were presented as the mean ± standard deviation. EC50 of the target compound 3 and corresponding positive controls against R. solani were evaluated, too[16].

    As shown in Scheme 1, the target compound 3 was synthesized in good yield by cyclization of pyrimidine amine 2 with 3, 4-dichloroisothiazole-5-carbonyl chloride. Its structure was characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The crystal structure of compound 3, crystallizing from a mixed solvent of dichloromethane and n-hexane (1:2, v/v), is shown in Fig. 2.

    Figure 2

    Figure 2.  X-ray crystal structure of compound 3

    The selected bond lengths, bond angels and torsional angels of compound 3 are shown in Tables 1 and 2. The bond lengths and angles of the isothiazole ring agreed well with the values reported[26]. Meanwhile, bond lengths and angles of the purine substructure appeared to be normal relative to the closely related compounds in literature[27]. The sum of C(4)–N(5)–C(9), C(8)–N(5)–H(9) and C(8)–N(5)–H(5) angles was 359.96°, indicating the sp2 hybridization state of N(5) atom. The torsion angle of N(2)–C(5)–C(8)–N(4) is –178.75°, indicating that the whole purine was coplanar. The torsion angles of C(2)–C(3)–C(4)–N(2) and C(8)–N(5)–C(9)– C(10) are –67.7° and 121.03°, which means that both the isothiazole and benzene rings were nonplanar with the purine ring. As shown in Table 3, the intermolecular hydrogen bonds C(9)–HA(9)⋅⋅⋅F(1)i, C(9)–HA(9)⋅⋅⋅Cl(2)ii and C(9)– HB(9)⋅⋅⋅N(2)iii were found in compound 3, which lead to the position of benzene ring close to the isothiazole ring rather than the purine ring. These intermolecular hydrogen bonds stabilize the crystal packing (Fig. 3). In addition, the intermolecular C–H···π interaction of C(12)–H(12)···C(15)iv (H(12)⋅⋅⋅C(15)iv 2.676 Å) was also observed in the crystal packing of compound 3, which is two-dimensional. No π-π interaction was observed due to the large distance between adjacent benzene ring and isothiazole ring or purine ring.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for Compound 3
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    Cl(1)–C(1) 1.7125(17) N(3)–C(7) 1.347(3) C(5)–C(6) 1.391(2)
    Cl(2)–C(2) 1.7046(17) N(4)–C(7) 1.334(2) C(5)–C(8) 1.392(2)
    Cl(3)–C(6) 1.7244(19) N(4)–C(8) 1.333(2) C(9)–C(10) 1.509(2)
    S(1)–N(1) 1.6466(15) N(5)–C(4) 1.3753(19) C(10)–C(11) 1.382(2)
    S(1)–C(3) 1.7064(16) N(5)–C(8) 1.3720(19) C(10)–C(15) 1.385(2)
    F(1)–C(13) 1.3618(19) N(5)–C(9) 1.4697(19) C(11)–C(12) 1.381(2)
    N(1)–C(1) 1.301(2) C(1)–C(2) 1.414(2) C(12)–C(13) 1.362(3)
    N(2)–C(4) 1.3164(19) C(2)–C(3) 1.362(2) C(13)–C(14) 1.360(3)
    N(2)–C(5) 1.378(2) C(3)–C(4) 1.466(2) C(14)–C(15) 1.390(3)
    N(3)–C(6) 1.314(2)
    Angles (°) Angles (°) Angles (°)
    N(1)–S(1)–C(3) 95.25(8) C(2)–C(3)–S(1) 108.45(11) N(4)–C(8)–C(5) 126.88(15)
    C(1)–N(1)–S(1) 109.11(12) C(2)–C(3)–C(4) 124.94(15) N(5)–C(8)–C(5) 105.65(13)
    C(4)–N(2)–C(5) 103.45(13) C(4)–C(3)–S(1) 126.29(12) N(5)–C(9)–C(10) 112.86(12)
    C(6)–N(3)–C(7) 117.55(15) N(2)–C(4)–N(5) 114.21(13) C(11)–C(10)–C(9) 120.87(14)
    C(8)–N(4)–C(7) 111.53(16) N(2)–C(4)–C(3) 124.18(14) C(11)–C(10)–C(15) 118.91(14)
    C(4)–N(5)–C(9) 128.24(13) N(5)–C(4)–C(3) 121.24(13) C(15)–C(10)–C(9) 120.21(14)
    C(8)–N(5)–C(4) 105.51(12) N(2)–C(4)–C(6) 134.17(16) C(12)–C(11)–C(10) 120.81(15)
    C(8)–N(5)–C(9) 126.21(13) N(2)–C(4)–C(8) 111.16(13) C(13)–C(12)–C(11) 118.53(17)
    N(1)–C(1)–Cl(1) 120.31(13) C(6)–C(5)–C(8) 114.63(15) F(1)–C(13)–C(12) 118.51(18)
    N(1)–C(1)–C(2) 116.91(15) N(3)–C(6)–Cl(3) 118.19(13) C(14)–C(13)–F(1) 118.62(17)
    C(2)–C(1)–Cl(1) 122.77(14) N(3)–C(6)–C(5) 121.36(17) C(14)–C(13)–C(12) 122.87(16)
    C(1)–C(2)–Cl(2) 124.57(13) C(5)–C(6)–Cl(3) 120.45(15) C(13)–C(14)–C(15) 118.27(16)
    C(3)–C(2)–Cl(2) 125.10(13) N(4)–C(7)–N(3) 128.05(17) C(10)–C(15)–C(14) 120.61(16)
    C(3)–C(2)–C(1) 110.26(15) N(4)–C(8)–N(5) 127.46(15)

    Table 2

    Table 2.  Selected Torsional Angles (°) for Compound 3
    DownLoad: CSV
    Angle (°) Angle (°)
    Cl(1)–C(1)–C(2)–Cl(2) –0.2(2) C(4)–N(5)–C(9)–C(10) –56.3(2)
    Cl(2)–C(2)–C(3)–C(4) 4.5(2) C(5)–N(2)–C(4)–C(3) 172.27(15)
    S(1)–N(1)–C(1)–Cl(1) –177.56(10) C(6)–C(5)–C(8)–N(4) –0.7(2)
    S(1)–C(3)–C(4)–N(5) –67.76(19) C(6)–C(5)–C(8)–N(5) 178.55(14)
    F(1)–C(13)–C(14)–C(15) –179.32(18) C(7)–N(3)–C(6)–Cl(3) 179.48(15)
    N(1)–S(1)–C(3)–C(4) 172.91(14) C(8)–N(5)–C(4)–C(3) –172.18(14)
    N(1)–C(1)–C(2)–Cl(2) –178.53(13) C(8)–N(5)–C(9)–C(10) 121.03(16)
    N(2)–C(5)–C(6)–Cl(3) –1.5(3) C(9)–N(5)–C(4)–N(2) 178.92(14)
    N(2)–C(5)–C(8)–N(4) –178.75(15) C(9)–N(5)–C(4)–C(3) 5.6(2)
    N(2)–C(5)–C(8)–N(5) 0.48(18) C(9)–N(5)–C(8)–N(4) 0.5(3)
    N(5)–C(9)–C(10)–C(11) –49.3(2) C(9)–C(10)–C(11)–C(12) –178.15(16)
    N(5)–C(9)–C(10)–C(15) 131.96(16) C(9)–C(10)–C(15)–C(14) 177.84(17)
    C(2)–C(3)–C(4)–N(2) –67.7(2) C(11)–C(12)–C(13)–F(1) 179.01(18)
    C(2)–C(3)–C(4)–N(5) 104.98(18) C(13)–C(14)–C(15)–C(10) 0.6(3)
    C(4)–N(5)–C(8)–N(4) 178.30(15) C(15)–C(10)–C(11)–C(12) 0.6(3)

    Table 3

    Table 3.  Hydrogen Bond Lengths (Å) and Bond Angles (°) for Compound 3
    DownLoad: CSV
    D–H···A d(D–H) d(H···A) d(D···A) ∠(DHA)
    C(9)–H(9A)···F(1)i 0.97 2.59 3.422(2) 144
    C(9)–H(9A)···Cl(2)ii 0.97 2.94 3.555(2) 123
    C(9)–H(9B)···N(2)iii 0.97 2.68 3.612(2) 162
    Symmetry codes: i: –1/2 + x, 1/2 – y, –1/2 + z; ii: –x, 1 – y, – z; iii: –1.5 + x, 1/2 – y, –1/2 + z

    Figure 3

    Figure 3.  Crystal packing of compound 3

    Symmetry codes: i: –1/2 + x, 1/2 – y, –1/2 + z; ii: –x, 1 – y, –z; iii: –3/2 + x, 1/2 – y, –1/2 + z; iv: 1/2 – x, –1/2 + y, 1/2 –z

    Fungicidal bioassay of intermediate 2 and the target compound 3 against seven phytopathogenic fungi at a concentration of 50 mg/L was compared with commercially pyrimidinamine fungicide diflumetorim and lead compound YZK-C22 as positive controls. As shown in Table 4, the intermediate 2 showed weak effects at 50 mg/L, the target compound 3 showed over 50% of inhibitory activities against B. cinerea, C. arachidicola, G. zeae, R. solani, S. sclerotiorum at 50 mg/L with inhibition of 58%, 53%, 55%, 67% and 59%. Most of them were better than diflumetorim but less than YZK-C22. To further assess the fungicidal potency, the EC50 values of target compound and positive controls with inhibition over 60% at 50 mg/L were measured. The results shown in Table 5 indicated that compound 3 exhibited good fungicidal activities with EC50 value of 25.06 mg/L or 60.44 µmol/L against R. solani. It was active at the same level of that of the positive control diflumetorim (19.76 mg/L or 60.29 µmol/L) and less active than the positive control YZK-C22 (4.21 mg/L or 12.32 µmol/L)[16]. Docking studies showed that the target compound had larger binding energy with pyruvate kinase than the positive control YZK-C22 because of the effecting of absorption, transduction and metabolism. Our studies indicated that isothiazolopurin derivative could be a fungicidal lead deserving for further study.

    Table 4

    Table 4.  Fungicidal Activities of Compounds Synthesized (Inhibition Rate/%)a
    DownLoad: CSV
    Compd. A.s b B.c C.a G.z P.p R.s S.s
    2 27 ± 0 14 ± 1 43 ± 1 25 ± 2 18 ± 1 24 ± 0 24 ± 1
    3 38 ± 1 58 ± 0 53 ± 2 55 ± 1 34 ± 0 67 ± 1 59 ± 2
    Diflumetorim 55 ± 1 44 ± 1 67 ± 1 48 ± 1 39 ± 1 74 ± 0 44 ± 2
    YZK-C22 60 ± 2 71 ± 3 77 ± 2 77 ± 1 55 ± 2 82 ± 2 63 ± 1
    a Values are the average of three replicates, tested at a concentration of 50 mg/L.bA.s: Alternariasolani; B.c: Botrytis cinerea; C.a: Cercosporaarachidicola; G.z: Gibberellazeae; P.p: Physalosporapiricola; R.s: Rhizoctoniasolani; S.s: Sclerotinia sclerotiorum.

    Table 5

    Table 5.  EC50 of the Target Compounds with Inhibition over 60% at 50 mg/L in Vitro
    DownLoad: CSV
    Fungi Compd. Regression equation R2 95% confidence interval(mg/L) EC50(mg/L) EC50(µmol/L)
    R. solani 3 y = 3.0674 + 1.3814x 0.9543 17.70~35.47 25.06 60.44
    Diflumetorim y = 3.0814 + 1.4806x 0.9969 18.07~21.61 19.76 60.29
    YZK-C22[16] y = 4.2367 + 1.2237x 0.9766 2.97~5.95 4.21 12.32

    1. [1]

      Bai, X. J.; Hou, S. S.; Wang, X. Y.; Hao, D.; Sun, B. X.; Jia, T. Q.; Shi, R.; Ni, B. J. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal. Sci. Technol. 2021, 11, 5028-5049.  doi: 10.1039/D1CY00803J

    2. [2]

      Tang, M. L.; Ao, Y. H.; Wang, P. F.; Wang, C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degra-dation of nitenpyram under visible light irradiation. J. Hazard. Mater. 2020, 387, 121713.  doi: 10.1016/j.jhazmat.2019.121713

    3. [3]

      Li, K. Y.; Chen, J.; Ao, Y. H.; Wang, P. F. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 2021, 259, 118177.  doi: 10.1016/j.seppur.2020.118177

    4. [4]

      Duan, C. X.; Yu, Y.; Xiao, J.; Li, Y. Y.; Yang, P. F.; Hu, F.; Xi, H. X. Recent advancements in metal-organic frameworks for green applications. Green Energy Environ. 2021, 6, 33-49.  doi: 10.1016/j.gee.2020.04.006

    5. [5]

      He, B.; Feng, M.; Chen, X. Y.; Sun, J. Multidimensional (0D-3D) functional nanocarbon: promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy Environ. 2021, 6, 823-845.  doi: 10.1016/j.gee.2020.07.011

    6. [6]

      Yang, X. F.; Liu, W.; Han, C. H.; Zhao, C. X.; Tang, H.; Liu, Q. Q.; Xu, J. S. Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Mater. Today Phys. 2020, 15, 110261.

    7. [7]

      Lu, Y.; Cui, X. K.; Zhao, C. X.; Yang, X. F. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction. Water Sci. Eng. 2020, 13, 299-306.

    8. [8]

      Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255-264.  doi: 10.1016/S1872-2067(20)63784-6

    9. [9]

      Di, T.; Cheng, B.; Ho, W.; Yu, J.; Tang, H. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 2019, 470, 196-204.

    10. [10]

      Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. MXene-based photo-catalysts. J. Mater. Sci. & Tech. 2020, 56, 18-44.

    11. [11]

      Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.  doi: 10.1038/ncomms13907

    12. [12]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

    13. [13]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photo-catalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

    14. [14]

      Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nano-architectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

    15. [15]

      Zhang, J. F.; Fu, J. W.; Dai, K. Graphitic carbon nitride/antimonene van der waals heterostructure with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192-198.

    16. [16]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Edit. 2021, 60, 25546-25550.

    17. [17]

      Li, J. H.; Ren, J.; Hao, Y. J.; Zhou, E. P.; Wang, Y.; Wang, X. J.; Su, R.; Liu, Y.; Qi, X. H.; Li, F. T. Construction of β-Bi2O3/Bi2O2CO3 hetero-junction photocatalyst for deep understanding the importance of sepa-ration efficiency and valence band position. J. Hazard. Mater. 2021, 401, 123262.

    18. [18]

      Tang, M. L.; Ao, Y. H.; Wang, C.; Wang, P. F. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B-Environ. 2020, 270, 118918.

    19. [19]

      Guo, Y.; Ao, Y. H.; Wang, P. F.; Wang, C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl. Catal. B-Environ. 2019, 254, 479-490.

    20. [20]

      Li, J. N.; Chen, J.; Ao, Y. H.; Gao, X.; Che, H. N.; Wang, P. F. Prominent dual Z-scheme mechanism on phase junction WO3/CdS for enhanced visible-light-responsive photocatalytic performance on imidacloprid degra-dation. Sep. Purif. Technol. 2022, 281, 119863.

    21. [21]

      Mao, L.; Cai, X. Y.; Zhu, M. S. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Metals 2021, 40, 1067-1076.

    22. [22]

      Fan, Y. S.; Xi, X. L.; Liu, Y. S.; Nie, Z. R.; Zhao, L. Y.; Zhang, Q. H. Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Metals 2021, 40, 1738-1745.

    23. [23]

      Zhao, Z. W.; Li, X. F.; Dai, K.; Zhang, J. F.; Dawson, G. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme hetero-structure with effective interface charge separation and CO2 reduction performance. J. Mater. Sci. Technol. 2022, 117, 109-119.

    24. [24]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2022, 38, 2108028.

    25. [25]

      Liu, Y.; Guo, J. G.; Wang, Y.; Hao, Y. J.; Liu, R. H.; Li, F. T. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy Environ. 2021, 6, 244-252.

    26. [26]

      Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362-1391.

    27. [27]

      Ding, C.; Zhao, C.; Cheng, S.; Yang, X. Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surf. Interfaces 2021, 25, 101192.

    28. [28]

      Wang, T.; Chai, Y.; Ma, D.; Chen, W.; Zheng, W.; Huang, S. Multi-dimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photo-catalytic and photoelectrochemical applications. J. Nano Res. 2017, 10, 2699-2711.

    29. [29]

      Liu, X.; Sayed, M.; Bie, C.; Cheng, B.; Hu, B.; Yu, J.; Zhang, L. Hollow CdS-based photocatalysts. J. Materiomics 2021, 7, 419-439.

    30. [30]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of cds hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743-752.

    31. [31]

      Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; Liu, G.; Wang, H.; Zheng, L.; Liu, M. Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today 2021, 37, 101080.

    32. [32]

      Ding, M. Y.; Xiao, R.; Zhao, C. X.; Bukhvalov, D.; Chen, Z. P.; Xu, H. T.; Tang, H.; Xu, J. S.; Yang, X. F. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photo-catalytic hydrogen production. Sol. RRL 2021, 5, 2000414.

    33. [33]

      Li, Y. L.; Wang, X. J.; Hao, Y. J.; Zhao, J.; Liu, Y.; Mu, H. Y.; Li, F. T. Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. Chin. J. Catal. 2021, 42, 1040-1050.

    34. [34]

      Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nano-rod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2020, 268, 118382.

    35. [35]

      Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.

    36. [36]

      Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Metals 2021, 40, 2381-2391.

    37. [37]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    38. [38]

      Zhao, C. X.; Yang, X. F.; Han, C. H.; Xu, J. S. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Sol. RRL 2020, 4, 1900434.

    39. [39]

      Tan, Z. L.; Wei, J. X.; Liu, Y.; Zaman, F. U.; Rehman, W.; Hou, L. R.; Yuan, C. Z. V2CTx Mxene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Metals 2022, 41, 775-797.

    40. [40]

      Lu, M.; Li, H.; Han, W.; Chen, J.; Shi, W.; Wang, J.; Meng, X. -M.; Qi, J.; Li, H.; Zhang, B.; Zhang, W.; Zheng, W. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 2019, 31, 148-153.

    41. [41]

      Huang, X.; Wu, P. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.

    42. [42]

      Amiri, A.; Chen, Y.; Bee Teng, C.; Naraghi, M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor. Mater. 2020, 25, 731-739.

    43. [43]

      Xi, Q.; Yue, X.; Feng, J.; Liu, J.; Zhang, X.; Zhang, C.; Wang, Y.; Wang, Y.; Lv, Z.; Li, R.; Fan, C. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. J. Solid State. Chem. 2020, 289, 121470.

    44. [44]

      Pang, S. Y.; Wong, Y. T.; Yuan, S.; Liu, Y.; Tsang, M. K.; Yang, Z.; Huang, H.; Wong, W. T.; Hao, J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610-9616.

    45. [45]

      Kuang, P.; He, M.; Zhu, B.; Yu, J.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 2019, 375, 8-20.

    46. [46]

      Oschinski, H.; Morales-García, Á.; Illas, F. Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: a quest for single-atom catalysts. J. Phys. Chem. C. 2021, 125, 2477-2484.

    47. [47]

      Li, J. -Y.; Li, Y. -H.; Zhang, F.; Tang, Z. -R.; Xu, Y. -J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl. Catal. B-Environ. 2020, 269, 118783.

    48. [48]

      Zhao, X.; Wang, Z.; Dong, J.; Huang, T.; Zhang, Q.; Zhang, L. Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources 2020, 470, 228356.

    49. [49]

      Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with modified surface for high-performance electro-magnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011-21019.

    50. [50]

      VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, 1581.

    51. [51]

      Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

    52. [52]

      Zhang, Q.; Teng, J.; Zou, G.; Peng, Q.; Du, Q.; Jiao, T.; Xiang, J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085-7093.

    53. [53]

      Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. C 2015, 191, 33-40.

    54. [54]

      Feng, X. Y.; Wang, P. F.; Hou, J.; Qian, J.; Ao, Y. H.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phos-phorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: synergistic effect and intermediates analysis. J. Hazard. Mater. 2018, 351, 196-205.

    55. [55]

      Feng, C.; Chen, Z.; Hou, J.; Li, J.; Li, X.; Xu, L.; Sun, M.; Zeng, R. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 2018, 345, 404-413.

    56. [56]

      Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.; Tang, H.; Xu, J.; Yang, X. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol. RRL 2020, 5, 2000414.

    57. [57]

      Han, B.; Liu, S.; Zhang, N.; Xu, Y. -J.; Tang, Z. -R. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B-Environ. 2017, 202, 298-304.

    58. [58]

      Zhao, C.; Chen, Z.; Xu, J.; Liu, Q.; Xu, H.; Tang, H.; Li, G.; Jiang, Y.; Qu, F.; Lin, Z.; Yang, X. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B-Environ. 2019, 256, 117867.

    59. [59]

      Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Loffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M.; Zahn, D. R. T.; Zheng, Z. K.; Zschech, E.; Jordan, R.; Feng, X. L. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.

    1. [1]

      Bai, X. J.; Hou, S. S.; Wang, X. Y.; Hao, D.; Sun, B. X.; Jia, T. Q.; Shi, R.; Ni, B. J. Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catal. Sci. Technol. 2021, 11, 5028-5049.  doi: 10.1039/D1CY00803J

    2. [2]

      Tang, M. L.; Ao, Y. H.; Wang, P. F.; Wang, C. All-solid-state Z-scheme WO3 nanorod/ZnIn2S4 composite photocatalysts for the effective degra-dation of nitenpyram under visible light irradiation. J. Hazard. Mater. 2020, 387, 121713.  doi: 10.1016/j.jhazmat.2019.121713

    3. [3]

      Li, K. Y.; Chen, J.; Ao, Y. H.; Wang, P. F. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep. Purif. Technol. 2021, 259, 118177.  doi: 10.1016/j.seppur.2020.118177

    4. [4]

      Duan, C. X.; Yu, Y.; Xiao, J.; Li, Y. Y.; Yang, P. F.; Hu, F.; Xi, H. X. Recent advancements in metal-organic frameworks for green applications. Green Energy Environ. 2021, 6, 33-49.  doi: 10.1016/j.gee.2020.04.006

    5. [5]

      He, B.; Feng, M.; Chen, X. Y.; Sun, J. Multidimensional (0D-3D) functional nanocarbon: promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy Environ. 2021, 6, 823-845.  doi: 10.1016/j.gee.2020.07.011

    6. [6]

      Yang, X. F.; Liu, W.; Han, C. H.; Zhao, C. X.; Tang, H.; Liu, Q. Q.; Xu, J. S. Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Mater. Today Phys. 2020, 15, 110261.

    7. [7]

      Lu, Y.; Cui, X. K.; Zhao, C. X.; Yang, X. F. Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction. Water Sci. Eng. 2020, 13, 299-306.

    8. [8]

      Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255-264.  doi: 10.1016/S1872-2067(20)63784-6

    9. [9]

      Di, T.; Cheng, B.; Ho, W.; Yu, J.; Tang, H. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 2019, 470, 196-204.

    10. [10]

      Kuang, P.; Low, J.; Cheng, B.; Yu, J.; Fan, J. MXene-based photo-catalysts. J. Mater. Sci. & Tech. 2020, 56, 18-44.

    11. [11]

      Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.  doi: 10.1038/ncomms13907

    12. [12]

      Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

    13. [13]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photo-catalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

    14. [14]

      Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nano-architectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

    15. [15]

      Zhang, J. F.; Fu, J. W.; Dai, K. Graphitic carbon nitride/antimonene van der waals heterostructure with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192-198.

    16. [16]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Edit. 2021, 60, 25546-25550.

    17. [17]

      Li, J. H.; Ren, J.; Hao, Y. J.; Zhou, E. P.; Wang, Y.; Wang, X. J.; Su, R.; Liu, Y.; Qi, X. H.; Li, F. T. Construction of β-Bi2O3/Bi2O2CO3 hetero-junction photocatalyst for deep understanding the importance of sepa-ration efficiency and valence band position. J. Hazard. Mater. 2021, 401, 123262.

    18. [18]

      Tang, M. L.; Ao, Y. H.; Wang, C.; Wang, P. F. Rationally constructing of a novel dual Z-scheme composite photocatalyst with significantly enhanced performance for neonicotinoid degradation under visible light irradiation. Appl. Catal. B-Environ. 2020, 270, 118918.

    19. [19]

      Guo, Y.; Ao, Y. H.; Wang, P. F.; Wang, C. Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation. Appl. Catal. B-Environ. 2019, 254, 479-490.

    20. [20]

      Li, J. N.; Chen, J.; Ao, Y. H.; Gao, X.; Che, H. N.; Wang, P. F. Prominent dual Z-scheme mechanism on phase junction WO3/CdS for enhanced visible-light-responsive photocatalytic performance on imidacloprid degra-dation. Sep. Purif. Technol. 2022, 281, 119863.

    21. [21]

      Mao, L.; Cai, X. Y.; Zhu, M. S. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Metals 2021, 40, 1067-1076.

    22. [22]

      Fan, Y. S.; Xi, X. L.; Liu, Y. S.; Nie, Z. R.; Zhao, L. Y.; Zhang, Q. H. Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Metals 2021, 40, 1738-1745.

    23. [23]

      Zhao, Z. W.; Li, X. F.; Dai, K.; Zhang, J. F.; Dawson, G. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme hetero-structure with effective interface charge separation and CO2 reduction performance. J. Mater. Sci. Technol. 2022, 117, 109-119.

    24. [24]

      Huang, Y.; Mei, F. F.; Zhang, J. F.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2022, 38, 2108028.

    25. [25]

      Liu, Y.; Guo, J. G.; Wang, Y.; Hao, Y. J.; Liu, R. H.; Li, F. T. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy Environ. 2021, 6, 244-252.

    26. [26]

      Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362-1391.

    27. [27]

      Ding, C.; Zhao, C.; Cheng, S.; Yang, X. Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surf. Interfaces 2021, 25, 101192.

    28. [28]

      Wang, T.; Chai, Y.; Ma, D.; Chen, W.; Zheng, W.; Huang, S. Multi-dimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photo-catalytic and photoelectrochemical applications. J. Nano Res. 2017, 10, 2699-2711.

    29. [29]

      Liu, X.; Sayed, M.; Bie, C.; Cheng, B.; Hu, B.; Yu, J.; Zhang, L. Hollow CdS-based photocatalysts. J. Materiomics 2021, 7, 419-439.

    30. [30]

      Tang, S.; Xia, Y.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Enhanced photocatalytic H2 production performance of cds hollow spheres using C and Pt as bi-cocatalysts. Chin. J. Catal. 2021, 42, 743-752.

    31. [31]

      Feng, R.; Wan, K.; Sui, X.; Zhao, N.; Li, H.; Lei, W.; Yu, J.; Liu, X.; Shi, X.; Zhai, M.; Liu, G.; Wang, H.; Zheng, L.; Liu, M. Anchoring single Pt atoms and black phosphorene dual co-catalysts on CdS nanospheres to boost visible-light photocatalytic H2 evolution. Nano Today 2021, 37, 101080.

    32. [32]

      Ding, M. Y.; Xiao, R.; Zhao, C. X.; Bukhvalov, D.; Chen, Z. P.; Xu, H. T.; Tang, H.; Xu, J. S.; Yang, X. F. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photo-catalytic hydrogen production. Sol. RRL 2021, 5, 2000414.

    33. [33]

      Li, Y. L.; Wang, X. J.; Hao, Y. J.; Zhao, J.; Liu, Y.; Mu, H. Y.; Li, F. T. Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. Chin. J. Catal. 2021, 42, 1040-1050.

    34. [34]

      Xiao, R.; Zhao, C. X.; Zou, Z. Y.; Chen, Z. P.; Tian, L.; Xu, H. T.; Tang, H.; Liu, Q. Q.; Lin, Z. X.; Yang, X. F. In situ fabrication of 1D CdS nano-rod/2D Ti3C2 MXene nanosheet schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B-Environ. 2020, 268, 118382.

    35. [35]

      Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.

    36. [36]

      Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Metals 2021, 40, 2381-2391.

    37. [37]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    38. [38]

      Zhao, C. X.; Yang, X. F.; Han, C. H.; Xu, J. S. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Sol. RRL 2020, 4, 1900434.

    39. [39]

      Tan, Z. L.; Wei, J. X.; Liu, Y.; Zaman, F. U.; Rehman, W.; Hou, L. R.; Yuan, C. Z. V2CTx Mxene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Metals 2022, 41, 775-797.

    40. [40]

      Lu, M.; Li, H.; Han, W.; Chen, J.; Shi, W.; Wang, J.; Meng, X. -M.; Qi, J.; Li, H.; Zhang, B.; Zhang, W.; Zheng, W. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries. J. Energy Chem. 2019, 31, 148-153.

    41. [41]

      Huang, X.; Wu, P. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors. Adv. Funct. Mater. 2020, 30, 1910048.

    42. [42]

      Amiri, A.; Chen, Y.; Bee Teng, C.; Naraghi, M. Porous nitrogen-doped MXene-based electrodes for capacitive deionization. Energy Stor. Mater. 2020, 25, 731-739.

    43. [43]

      Xi, Q.; Yue, X.; Feng, J.; Liu, J.; Zhang, X.; Zhang, C.; Wang, Y.; Wang, Y.; Lv, Z.; Li, R.; Fan, C. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. J. Solid State. Chem. 2020, 289, 121470.

    44. [44]

      Pang, S. Y.; Wong, Y. T.; Yuan, S.; Liu, Y.; Tsang, M. K.; Yang, Z.; Huang, H.; Wong, W. T.; Hao, J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610-9616.

    45. [45]

      Kuang, P.; He, M.; Zhu, B.; Yu, J.; Fan, K.; Jaroniec, M. 0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. J. Catal. 2019, 375, 8-20.

    46. [46]

      Oschinski, H.; Morales-García, Á.; Illas, F. Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: a quest for single-atom catalysts. J. Phys. Chem. C. 2021, 125, 2477-2484.

    47. [47]

      Li, J. -Y.; Li, Y. -H.; Zhang, F.; Tang, Z. -R.; Xu, Y. -J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl. Catal. B-Environ. 2020, 269, 118783.

    48. [48]

      Zhao, X.; Wang, Z.; Dong, J.; Huang, T.; Zhang, Q.; Zhang, L. Annealing modification of MXene films with mechanically strong structures and high electrochemical performance for supercapacitor applications. J. Power Sources 2020, 470, 228356.

    49. [49]

      Han, M.; Yin, X.; Wu, H.; Hou, Z.; Song, C.; Li, X.; Zhang, L.; Cheng, L. Ti3C2 MXenes with modified surface for high-performance electro-magnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011-21019.

    50. [50]

      VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, 1581.

    51. [51]

      Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

    52. [52]

      Zhang, Q.; Teng, J.; Zou, G.; Peng, Q.; Du, Q.; Jiao, T.; Xiang, J. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 2016, 8, 7085-7093.

    53. [53]

      Li, Z.; Wang, L.; Sun, D.; Zhang, Y.; Liu, B.; Hu, Q.; Zhou, A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. C 2015, 191, 33-40.

    54. [54]

      Feng, X. Y.; Wang, P. F.; Hou, J.; Qian, J.; Ao, Y. H.; Wang, C. Significantly enhanced visible light photocatalytic efficiency of phos-phorus doped TiO2 with surface oxygen vacancies for ciprofloxacin degradation: synergistic effect and intermediates analysis. J. Hazard. Mater. 2018, 351, 196-205.

    55. [55]

      Feng, C.; Chen, Z.; Hou, J.; Li, J.; Li, X.; Xu, L.; Sun, M.; Zeng, R. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 2018, 345, 404-413.

    56. [56]

      Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.; Tang, H.; Xu, J.; Yang, X. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol. RRL 2020, 5, 2000414.

    57. [57]

      Han, B.; Liu, S.; Zhang, N.; Xu, Y. -J.; Tang, Z. -R. One-dimensional CdS@MoS2 core-shell nanowires for boosted photocatalytic hydrogen evolution under visible light. Appl. Catal. B-Environ. 2017, 202, 298-304.

    58. [58]

      Zhao, C.; Chen, Z.; Xu, J.; Liu, Q.; Xu, H.; Tang, H.; Li, G.; Jiang, Y.; Qu, F.; Lin, Z.; Yang, X. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B-Environ. 2019, 256, 117867.

    59. [59]

      Zhang, T.; Hou, Y.; Dzhagan, V.; Liao, Z. Q.; Chai, G. L.; Loffler, M.; Olianas, D.; Milani, A.; Xu, S. Q.; Tommasini, M.; Zahn, D. R. T.; Zheng, Z. K.; Zschech, E.; Jordan, R.; Feng, X. L. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. Nat. Commun. 2018, 9, 1140.

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    5. [5]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    6. [6]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    7. [7]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    8. [8]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    9. [9]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    10. [10]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    11. [11]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    12. [12]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    13. [13]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(6)
  • Abstract views(414)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return