Citation: Tian-Qin Zeng, Lang Chen, Bing-Hao Wang, Sheng Tian, Zhang-Jun Bai, Xiong Wang, Jun-Kang Guo, Shuang-Feng Yin. One-Pot Synthesis of Bismuth Basic Nitrate-Bi2MoO6 Photocatalyst for Selective Oxidation of Toluene[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221202. doi: 10.14102/j.cnki.0254-5861.2022-0149 shu

One-Pot Synthesis of Bismuth Basic Nitrate-Bi2MoO6 Photocatalyst for Selective Oxidation of Toluene

Figures(9)

  • The key issues to improve the performance of photocatalysts for selective oxidation of toluene are promoting the migration and separation of charge carrier, and enhancing the generation of active oxygen species. It is known that the construction of compact heterojunction is an efficient protocol to inhibit photogenerated electron-hole recombination. In this work, a 2D-2D [Bi6O6(OH)3](NO3)3·1.5H2O-Bi2MoO6 (denoted as BBN-BMO) composite heterojunction has been prepared by one-step hydrothermal method for the first time. The tetragonal phase BBN in the composite plays the role of transferring electrons from the visible light activated orthorhombic phase BMO and promoting the generation of active •O2-, the holes left in BMO are used to activate toluene and produce benzyl radical, thus greatly improving the photocatalytic performance for selective oxidation of toluene. The toluene conversion rate of BBN-BMO is 3466 μmol·g-1·h-1, which is three times that of pure BMO. The selectivity to benzaldehyde is 94.2%. In addition, reasonable mechanism has been speculated based on a series of control experiments.
  • 加载中
    1. [1]

      Shilov, A. E.; Shul'pin, G. B. Activation of C-H bonds by metal complexes. Chem. Rev. 1997, 97, 2879-2932.  doi: 10.1021/cr9411886

    2. [2]

      Bergman, R. G. C-H activation. Nature 2007, 446, 391-393.  doi: 10.1038/446391a

    3. [3]

      Tripathy, J.; Lee, K.; Schmuki, P. Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes. Angew. Chem. Int. Ed. 2014, 126, 12813-12816.  doi: 10.1002/ange.201406324

    4. [4]

      Chen, P.; Liu, F.; Ding, H. -Z.; Chen, S.; Chen, L.; Li, Y. J.; Au, C. T.; Yin, S. F. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B: Environ. 2019, 252, 33-40.  doi: 10.1016/j.apcatb.2019.04.006

    5. [5]

      Balcells, D.; Clot, E.; Eisenstein, O. C-H bond activation in transition metal species from a computational perspective. Chem. Rev. 2010, 110, 749-832.  doi: 10.1021/cr900315k

    6. [6]

      Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; Bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195-199.  doi: 10.1126/science.1198458

    7. [7]

      Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 1981, 293, 206-208.  doi: 10.1038/293206a0

    8. [8]

      Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704-710.  doi: 10.1038/s41929-018-0128-z

    9. [9]

      He, J.; Chen, L.; Ding, D.; Yang, Y. K.; Au, C. T.; Yin, S. F. Facile fabrication of novel Cd3(C3N3S3)2/CdS porous composites and their photocatalytic performance for toluene selective oxidation under visible light irradiation. Appl. Catal. B: Environ. 2018, 233, 243-249.  doi: 10.1016/j.apcatb.2018.04.008

    10. [10]

      Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem. Int. Ed. 2021, 60, 17404-17409.  doi: 10.1002/anie.202105587

    11. [11]

      Bai, Z. J.; Tan, X. P.; Chen, L.; Hu, B.; Tan, Y. X.; Mao, Y.; Shen, S.; Guo, J. K.; Au, C. T.; Liang, Z. W.; Yin, S. F. Efficient photocatalytic toluene selective oxidation over Cs3Bi1.8Sb0.2Br9 nanosheets: enhanced charge carriers generation and C-H bond dissociation. Chem. Eng. Sci. 2022, 247, 116983.  doi: 10.1016/j.ces.2021.116983

    12. [12]

      Zhao, Y. Z.; Dai, Y.; Wang, Q. H.; Dong, Y. Y.; Song, T. L.; Mudryi, A.; Chen, Q.; Li, Y. J. Anions-exchange-induced efficient carrier transport at CsPbBrxCl3-x/TiO2 interface for photocatalytic activation of C(sp3)-H bond in toluene oxidation. ChemCatChem 2021, 13, 2592-2598.  doi: 10.1002/cctc.202100223

    13. [13]

      Tan, Y. X.; Chai, Z. M.; Wang, B. H.; Tian, S.; Deng, X. X.; Bai, Z. J.; Chen, L.; Guo, J. K.; Shen, S.; Cai, M. Q.; Au, C. T.; Yin, S. F. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: synergetic effect of compact heterojunction and S-vacancy. ACS Catal. 2021, 11, 2492-2503.  doi: 10.1021/acscatal.0c05703

    14. [14]

      Dai, Y.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C-H bond activation. Angew. Chem. Int. Ed. 2020, 132, 5837-5845.  doi: 10.1002/ange.201915034

    15. [15]

      Yuan, R. S.; Fan, S. L.; Zhou, H. X.; Ding, Z. X.; Lin, S.; Li, Z. H.; Zhang, Z. Z.; Chao, X.; Wu, L.; Wang, X. X.; Fu, X. Z. Chlorine-radical-mediated photocatalytic activation of C-H bonds with visible light. Angew. Chem. Int. Ed. 2013, 125, 1069-1073.  doi: 10.1002/ange.201207904

    16. [16]

      Qiu, G. H.; Wang, T.; Li, X. L.; Tao, X. Q.; Li, B. X. Novel BiOCl/BiCl3Br-CTA heterostructure photocatalyst with abundant oxygen vacancies and a superoleophilic surface for promoting selective oxidation of toluene. Ind. Eng. Chem. Res. 2020, 59, 11517-11526.  doi: 10.1021/acs.iecr.0c01796

    17. [17]

      Deng, X. X.; Tian, S.; Chai, Z. M.; Bai, Z. J.; Tan, Y. X.; Chen, L.; Guo, J. K.; Shen, S.; Cai, M. Q.; Au, C. T.; Yin, S. F. Boosted activity for toluene selective photooxidation over Fe-doped Bi2WO6. Ind. Eng. Chem. Res. 2020, 59, 13528-13538.  doi: 10.1021/acs.iecr.0c02872

    18. [18]

      Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110-19117.  doi: 10.1021/jacs.9b09954

    19. [19]

      Chen, L.; Tang, J.; Song, L. N.; Chen, P.; He, J.; Au, C. T.; Yin, S. F. Heterogeneous photocatalysis for selective oxidation of alcohols and hydrocarbons. Appl. Catal. B: Environ. 2019, 242, 379-388.  doi: 10.1016/j.apcatb.2018.10.025

    20. [20]

      Li, X. L.; Wang, T.; Tao, X. Q.; Qiu, G. H.; Li, C.; Li, B. X. Interfacial synergy of Pd sites and defective BiOBr for promoting the solar-driven selective oxidation of toluene. J. Mater. Chem. A 2020, 8, 17657-17669.  doi: 10.1039/D0TA05733A

    21. [21]

      Huang, H. W.; Yuan, H. F.; Zhao, J. W.; Solis-Fernandez, G.; Zhou, C.; Seo, J. W.; Hendrix, J.; Debroye, E.; Steele, J. A.; Hofkens, J.; Long, J. J.; Roeffaers, M. B. C(sp3)-H bond activation by perovskite solar photocatalyst cell. ACS Energy Lett. 2018, 4, 203-208.

    22. [22]

      Li, Y. J.; Li, M.; Xu, P.; Tang, S. H.; Liu, C. Efficient photocatalytic degradation of acid orange 7 over N-doped ordered mesoporous titania on carbon fibers under visible-light irradiation based on three synergistic effects. Appl. Catal. A-Gen. 2016, 524, 163-172.  doi: 10.1016/j.apcata.2015.01.050

    23. [23]

      Liu, F.; Xiao, C. X.; Meng, L. H.; Chen, L.; Zhang, Q.; Liu, J. B.; Shen, S.; Guo, J. K.; Au, C. T.; Yin, S. F. Facile fabrication of octahedral CdS-ZnS by cation exchange for photocatalytic toluene selective oxidation. ACS Sustain. Chem. Eng. 2020, 8, 1302-1310.  doi: 10.1021/acssuschemeng.9b06802

    24. [24]

      Song, L. N.; Chen, L.; He, J.; Chen, P.; Zeng, H. K.; Au, C. T.; Yin, S. F. The first synthesis of Bi self-doped Bi2MoO6-Bi2Mo3O12 composites and their excellent photocatalytic performance for selective oxidation of aromatic alkanes under visible light irradiation. Chem. Commun. 2017, 53, 6480-6483.  doi: 10.1039/C7CC02890C

    25. [25]

      Cai, K.; Lv, S. Y.; Song, L. N.; Chen, L.; He, J.; Chen, P.; Au, C. T.; Yin, S. F. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation. J. Solid State Chem. 2019, 269, 145-150  doi: 10.1016/j.jssc.2018.09.027

    26. [26]

      Dai, Z.; Qin, F.; Zhao, H. P.; Ding, J.; Liu, Y. L.; Chen, R. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 2016, 6, 3180-3192.  doi: 10.1021/acscatal.6b00490

    27. [27]

      Zhang, B.; Yang, X.; Li, J.; Cheng, G. Selective aerobic oxidation of alkyl aromatics on Bi2MoO6 nanoplates decorated with Pt nanoparticles under visible light irradiation. Chem. Commun. 2018, 54, 12194-12197.  doi: 10.1039/C8CC06909C

    28. [28]

      Yang, M.; Wang, P.; Li, Y. J.; Tang, S. P.; Lin, X.; Zhang, H. Y.; Zhu, Z.; Chen, F. T. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl. Catal. B: Environ. 2022, 306, 121065.  doi: 10.1016/j.apcatb.2022.121065

    29. [29]

      Chen, C.; Qiu, G. H.; Wang, T.; Zheng, Z. Q.; Huang, M. T.; Li, B. X. Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J. Colloid Interf. Sci. 2021, 592, 1-12.  doi: 10.1016/j.jcis.2021.02.036

    30. [30]

      Li, S. J.; Wang, C. C.; Liu, Y. P.; Cai, M. J.; Wang, Y. N.; Guo, Y.; Zhao, W.; Wang, Z. H.; Chen, X. B. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: performance, mechanism insight, and toxicity assessment. Chem. Eng. J. 2022, 429, 132519.  doi: 10.1016/j.cej.2021.132519

    31. [31]

      Wu, Y. L.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. NiAl-LDH in-situ derived Ni2P and ZnCdS nanoparticles ingeniously constructed S-scheme heterojunction for photocatalytic hydrogen evolution. ChemCatChem 2021, 14, e202101656.

    32. [32]

      Wang, C. C.; Li, S. J.; Cai, M. J.; Yan, R. Y.; Dong, K. X.; Zhang, J. L.; Liu, Y. P. Rationally designed tetra (4-carboxyphenyl) porphyrin/graphene quantum dots/bismuth molybdate Z-scheme heterojunction for tetracycline degradation and Cr(VI) reduction: performance, mechanism, intermediate toxicity appraisement. J. Colloid Interf. Sci. 2022, 619, 307-321.  doi: 10.1016/j.jcis.2022.03.075

    33. [33]

      Song, L. N.; Ding, F.; Yang, Y. K.; Ding, D.; Chen, L.; Au, C. T.; Yin, S. F. Synthesis of TiO2/Bi2MoO6 composite for partial oxidation of aromatic alkanes under visible-light illumination. ACS Sustain. Chem. Eng. 2018, 6, 17044-17050.  doi: 10.1021/acssuschemeng.8b04403

    34. [34]

      Kan, L.; Yang, L. P.; Mu, W. N.; Wang, Q.; Wang, X. Y.; Chang, C. Facile one-step strategy for the formation of BiOIO3/[Bi6O6(OH)3]-(NO3)3·1.5H2O heterojunction to enhancing photocatalytic activity. J. Colloid Interf. Sci. 2022, 612, 401-412.  doi: 10.1016/j.jcis.2021.12.153

    35. [35]

      Pang, J. W.; Han, Q. F.; Liu, W. Q.; Shen, Z. C.; Wang, X.; Zhu, J. W. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4·2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5·3H2O with ultrahigh adsorption capacity for methyl orange. Appl. Surf. Sci. 2017, 422, 283-294.  doi: 10.1016/j.apsusc.2017.06.022

    36. [36]

      Wu, X. L.; Ng, Y. H.; Wen, X. M.; Chung, H. Y.; Wong, R. J.; Du, Y.; Dou, S. X.; Amal, R. Scott, J. Construction of a Bi2MoO6: Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636-644.  doi: 10.1016/j.cej.2018.07.149

    37. [37]

      Ma, Y. Y.; Han, Q. F.; Wang, X.; Zhu, J. W. An in situ annealing route to [Bi6O6(OH)2](NO3)4·2H2O/g-C3N4 heterojunction and its visible-light-driven photocatalytic performance. Mater. Res. Bull. 2018, 101, 272-279.  doi: 10.1016/j.materresbull.2018.01.046

    38. [38]

      Sun, S. C.; Zhou, W. M.; Wang, L. Y.; Zhang, M. X.; Lawan, I.; Wang, L. W.; Zhang F.; Lin, M.; Yuan, Z. H. Oxygen-vacancy engineering approach to bismuth basic nitrate/g-C3N4 heterostructure for efficiently photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 25832-25842.  doi: 10.1016/j.ijhydene.2021.05.098

    39. [39]

      Li, Q. L.; Song, T.; Zhang, Y. P.; Wang, Q.; Yang, Y. Boosting photocatalytic activity and stability of lead-free Cs3Bi2Br9 perovskite nanocrystals via in situ growth on monolayer 2D Ti3C2Tx MXene for C-H bond oxidation. ACS Appl. Mater. Interfaces 2021, 13, 27323-27333.  doi: 10.1021/acsami.1c06367

    40. [40]

      Li, S. J.; Wang, C. C.; Cai, M. J.; Yang, F.; Liu, Y. P.; Chen, J. L.; Zhang, P.; Li, X.; Chen, X. B. Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr (VI) reduction. Chem. Eng. J. 2022, 428, 131158.  doi: 10.1016/j.cej.2021.131158

    41. [41]

      Guo, J. H.; Shi, L.; Zhao, J. Y.; Wang, Y.; Tang, K. B.; Zhang, W. Q.; Xie, C. Z.; Yuan, X. Y. Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@Bi2MoO6 core-shell structure. Appl. Catal. B: Environ. 2018, 224, 692-704.  doi: 10.1016/j.apcatb.2017.11.030

    42. [42]

      Li, S. J.; Wang, C. C.; Cai, M. J.; Liu, Y. P.; Wang, Y. N.; Dong, K. E.; Zhang, J. L. Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr (VI): intermediate toxicity and mechanism insight. J. Colloid Interf. Sci. 2022, 624, 219-232.  doi: 10.1016/j.jcis.2022.05.151

    43. [43]

      Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958-963.  doi: 10.1021/acs.jpclett.5b00149

    44. [44]

      Chai, Z. M.; Wang, B. H.; Tan, Y. X.; Bai, Z. J.; Pan, J. B.; Chen, L.; Shen, S.; Cai, M. Q.; Au, C. T.; Yin, S. F. Enhanced photocatalytic activity for selective oxidation of toluene over cubic-hexagonal CdS phase junctions. Ind. Eng. Chem. Res. 2021, 60, 11106-11116.  doi: 10.1021/acs.iecr.1c01505

    45. [45]

      Sun, X.; Luo, X.; Zhang, X.; Xie, J.; Jin, S.; Wang, H.; Zheng, X.; Wu, X.; Xie, Y. Enhanced superoxide generation on defective surfaces for selective photocatalytic oxidation. J. Am. Chem. Soc. 2019, 141, 3797-3801.  doi: 10.1021/jacs.8b13051

    46. [46]

      Tamai, K.; Murakami, K.; Hosokawa, S.; Asakura, H.; Teramura, K.; Tanaka, T. Visible-light selective photooxidation of aromatic hydrocarbons via ligand-to-metal charge transfer transition on Nb2O5. J. Phys. Chem. C 2017, 121, 22854-22861.  doi: 10.1021/acs.jpcc.7b07339

    47. [47]

      Su, K. Y.; Liu, H. F.; Zeng, B.; Zhang, Z. X.; Luo, N. C.; Huang, Z. P.; Gao, Z. Y.; Wang, F. Visible-light-driven selective oxidation of toluene into benzaldehyde over nitrogen-modified Nb2O5 nanomeshes. ACS Catal. 2020, 10, 1324-1333.  doi: 10.1021/acscatal.9b04215

    48. [48]

      Dai, Y.; Tüysüz, H. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation. Sol. RRL 2021, 5, 2100265.  doi: 10.1002/solr.202100265

    49. [49]

      Zhang, Z. Z.; Yang, Y. Y.; Wang, Y. Y.; Yang, L. L.; Li, Q.; Chen, L. X.; Xu, D. S. Revealing the A-site effect of lead-free A3Sb2Br9 perovskite in photocatalytic C(sp3)-H bond activation. Angew. Chem. Int. Ed. 2020, 132, 18293-18296.  doi: 10.1002/ange.202005495

    50. [50]

      Nadimicherla, R.; Zha, R. H.; Wei, L.; Guo, X. Single crystalline flowerlike α-MoO3 nanorods and their application as anode material for lithium-ion batteries. J. Alloys Compd. 2016, 687, 79-86.  doi: 10.1016/j.jallcom.2016.06.099

    51. [51]

      Li, Y. J.; Chen, W.; Li, L. Y.; Ma, M. Y. Photoactivity of titanium dioxide/carbon felt composites prepared with the assistance of supercritical carbon dioxide: effects of calcination temperature and supercritical conditions. Sci. China Chem. 2011, 54, 497-505.  doi: 10.1007/s11426-010-4215-5

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    9. [9]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    17. [17]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

Metrics
  • PDF Downloads(14)
  • Abstract views(1228)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return