Citation: Xianbiao Hou, Tianyuan Jiang, Xiujuan Xu, Xingkun Wang, Jian Zhou, Huimin Xie, Zhicheng Liu, Lei Chu, Minghua Huang. Coupling of NiFe-Based Metal-Organic Framework Nanosheet Arrays with Embedded Fe-Ni3S2 Clusters as Efficient Bifunctional Electrocatalysts for Overall Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220707. doi: 10.14102/j.cnki.0254-5861.2022-0145 shu

Coupling of NiFe-Based Metal-Organic Framework Nanosheet Arrays with Embedded Fe-Ni3S2 Clusters as Efficient Bifunctional Electrocatalysts for Overall Water Splitting

  • Corresponding author: Lei Chu, chulei@ouc.edu.cn Minghua Huang, huangminghua@ouc.edu.cn
  • # These authors contributed equally to this work.
  • Received Date: 31 May 2022
    Accepted Date: 1 July 2022
    Available Online: 8 July 2022

Figures(5)

  • Developing highly efficient, easy-to-make and cost-effective bifunctional electrocatalysts for water splitting with lower cell voltages is crucial to producing massive hydrogen fuel. In response, the coupled hierarchical Ni/Fe-based MOF nanosheet arrays with embedded metal sulfide nanoclusters onto nickel foam skeleton (denoted as Fe-Ni3S2 @NiFe-MOF/NF) are fabricated, in which the Fe-Ni3S2 clusters could effectively restrain the aggregation of the layer metal-organic frameworks (MOF) nanosheets and adjust the local electronic structures of MOFs nanosheets. Benefiting from the rapid charge transfer and the exposure of abundant active sites, the well-designed Fe-Ni3S2@NiFe-MOF/NF displays excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance. More importantly, when equipped in the alkaline water electrolyzer, the Fe-Ni3S2@NiFe-MOF/NF enables the system with a mere 1.6 V for achieving the current density of 10 mA cm-2. This work offers a paradigm for designing efficient bifunctional HER/OER electrocatalysts based on the hybrid materials of nanostructured metal sulfide and MOF.
  • 加载中
    1. [1]

      Li, H.; Di, S.; Niu, P.; Wang, S.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601-1610.  doi: 10.1039/D1EE03194E

    2. [2]

      Wang, H.; Liu, X.; Niu, P.; Wang, S.; Shi, J.; Li, L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020, 2, 1377-1413.  doi: 10.1016/j.matt.2020.04.002

    3. [3]

      Wu, Y.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X.; Wang, R. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098-2105.  doi: 10.1007/s12274-020-2816-7

    4. [4]

      Ding, W.-L.; Cao, Y.-H.; Liu, H.; Wang, A.-X.; Zhang, C.-J.; Zheng, X.-R. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2020, 40, 1373-1382.

    5. [5]

      Wang, C.-Y.; Yang, C.-H.; Zhang, Z.-C. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Met. 2020, 39, 1353-1355.  doi: 10.1007/s12598-020-01568-1

    6. [6]

      Zhou, J.; Han, Z.; Wang, X.; Gai, H.; Chen, Z.; Guo, T.; Hou, X.; Xu, L.; Hu, X.; Huang, M.; Levchenko, S. V.; Jiang, H. Discovery of quantitative electronic structure‐OER activity relationship in metal‐organic framework electrocatalysts using an integrated theoretical‐experimental approach. Adv. Funct. Mater. 2021, 31, 2102066.  doi: 10.1002/adfm.202102066

    7. [7]

      He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J. R. Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 41595-41601.  doi: 10.1021/acsami.9b16224

    8. [8]

      Zhou, W.; Xue, Z.; Liu, Q.; Li, Y.; Hu, J.; Li, G. Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting. ChemSusChem 2020, 13, 5647-5653.  doi: 10.1002/cssc.202001230

    9. [9]

      Hai, G.; Jia, X.; Zhang, K.; Liu, X.; Wu, Z.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345-352.  doi: 10.1016/j.nanoen.2017.11.071

    10. [10]

      Ma, X.; Chang, C.; Zhang, Y.; Niu, P.; Liu, X.; Wang, S.; Li, L. Synthesis of Co-based Prussian blue analogues/dual-doped hollow carbon microsphere hybrids as high-performance bifunctional electrocatalysts for oxygen evolution and overall water splitting. ACS Sustain. Chem. Eng. 2020, 8, 8318-8326.  doi: 10.1021/acssuschemeng.0c01974

    11. [11]

      Sun, H.; Lian, Y.; Yang, C.; Xiong, L.; Qi, P.; Mu, Q.; Zhao, X.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy & Environ. Sci. 2018, 11, 2363-2371.

    12. [12]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, e1703663.  doi: 10.1002/adma.201703663

    13. [13]

      Lyu, F.; Bai, Y.; Li, Z.; Xu, W.; Wang, Q.; Mao, J.; Wang, L.; Zhang, X.; Yin, Y. Self-templated fabrication of CoO-MoO2 nanocages for enhanced oxygen evolution. Adv. Funct. Mater. 2017, 27, 1702324.  doi: 10.1002/adfm.201702324

    14. [14]

      Duan, J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.  doi: 10.1038/ncomms15341

    15. [15]

      Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience 2022, https://doi.org/10.1016/j.esci.2022.04.004.  doi: 10.1016/j.esci.2022.04.004

    16. [16]

      Cho, K.; Han, S. H.; Suh, M. P. Copper-organic framework fabricated with CuS nanoparticles: synthesis, electrical conductivity, and electrocatalytic activities for oxygen reduction reaction. Angew. Chem. Int. Ed. 2016, 55, 15301-15305.  doi: 10.1002/anie.201607271

    17. [17]

      Yuan, B.; Li, C.; Guan, L.; Li, K.; Lin, Y. Prussian blue analog nanocubes tuning synthesis of coral-like Ni3S2@MIL-53(NiFeCo) core-shell nanowires array and boosting oxygen evolution reaction. J. Power Sources 2020, 451, 227295.  doi: 10.1016/j.jpowsour.2019.227295

    18. [18]

      Wu, Z.; Guo, J.; Wang, J.; Liu, R.; Xiao, W.; Xuan, C.; Xia, K.; Wang, D. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl. Mater. Interfaces 2017, 9, 5288-5294.  doi: 10.1021/acsami.6b15244

    19. [19]

      Wang, Q.; Tian, Z.-Y.; Cui, W.-J.; Hu, N.; Zhang, S.-M.; Ma, Y.-Y.; Han, Z.-G. Hierarchical flower-like CoS2-MoS2 heterostructure spheres as efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrog. Energy 2022, 47, 12629-12641.  doi: 10.1016/j.ijhydene.2022.02.024

    20. [20]

      Liu, T.; Li, P.; Yao, N.; Kong, T.; Cheng, G.; Chen, S.; Luo, W. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 2019, 31, e1806672.  doi: 10.1002/adma.201806672

    21. [21]

      Xu, X.; Du, P.; Guo, T.; Zhao, B.; Wang, H.; Huang, M. In situ grown Ni phosphate@Ni12P5 nanorod arrays as a unique core-shell architecture: competitive bifunctional electrocatalysts for urea electrolysis at large current densities. ACS Sustain. Chem. Eng. 2020, 8, 7463-7471.  doi: 10.1021/acssuschemeng.0c01814

    22. [22]

      Zhao, M.; Li, W.; Li, J.; Hu, W.; Li, C. M. Strong electronic interaction enhanced electrocatalysis of metal sulfide clusters embedded metal-organic framework ultrathin nanosheets toward highly efficient overall water splitting. Adv. Sci. 2020, 7, 2001965.  doi: 10.1002/advs.202001965

    23. [23]

      Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-6.  doi: 10.1021/jacs.5b08186

    24. [24]

      Senthil Raja, D.; Lin, H.-W.; Lu, S.-Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 2019, 57, 1-13.  doi: 10.1016/j.nanoen.2018.12.018

    25. [25]

      Hou, X.; Han, Z.; Xu, X.; Sarker, D.; Zhou, J.; Wu, M.; Liu, Z.; Huang, M.; Jiang, H. Controllable amorphization engineering on bimetallic metal-organic frameworks for ultrafast oxygen evolution reaction. Chem. Eng. J. 2021, 418, 129330.  doi: 10.1016/j.cej.2021.129330

    26. [26]

      Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.  doi: 10.1002/aenm.201800584

    27. [27]

      Hou, X.; Zhou, J.; Xu, X.; Wang, X.; Zhang, S.; Wang, H.; Huang, M. Morphological modulation of CoFe-based metal organic frameworks for oxygen evolution reaction. Catal. Commun. 2022, 165, 106445.  doi: 10.1016/j.catcom.2022.106445

    28. [28]

      Zhu, X.; Dai, J.; Li, L.; Zhao, D.; Wu, Z.; Tang, Z.; Ma, L.-J.; Chen, S. Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: an efficient electrocatalyst for water splitting. Carbon 2020, 160, 133-144.  doi: 10.1016/j.carbon.2019.12.072

    29. [29]

      Chen, Y.; Zhang, X.; Qin, J.; Liu, R. Transition metal atom doped Ni3S2 as efficient bifunctional electrocatalysts for overall water splitting: design strategy from DFT studies. Mol. Catal. 2021, 516, 111955.  doi: 10.1016/j.mcat.2021.111955

    30. [30]

      Zhang, W.; Jia, Q.; Liang, H.; Cui, L.; Wei, D.; Liu, J. Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2020, 396, 125315.  doi: 10.1016/j.cej.2020.125315

    31. [31]

      Xu, Y.; Li, B.; Zheng, S.; Wu, P.; Zhan, J.; Xue, H.; Xu, Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 22070-22076.  doi: 10.1039/C8TA03128B

    32. [32]

      Zhao, Z.; Shao, Q.; Xue, J.; Huang, B.; Niu, Z.; Gu, H.; Huang, X.; Lang, J. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2021, 15, 310-316.

    33. [33]

      Zhou, C.; Chen, X.; Liu, S.; Han, Y.; Meng, H.; Jiang, Q.; Zhao, S.; Wei, F.; Sun, J.; Tan, T.; Zhang, R. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries. J. Am. Chem. Soc. 2022, 144, 2694-2704.  doi: 10.1021/jacs.1c11675

    34. [34]

      Wu, J.; Yu, Z.; Zhang, Y.; Niu, S.; Zhao, J.; Li, S.; Xu, P. Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction. Small 2021, 17, e2105150.  doi: 10.1002/smll.202105150

    35. [35]

      Wen, Q.; Yang, K.; Huang, D.; Cheng, G.; Ai, X.; Liu, Y.; Fang, J.; Li, H.; Yu, L.; Zhai, T. Schottky heterojunction nanosheet array achieving high‐current‐density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.  doi: 10.1002/aenm.202102353

    36. [36]

      Xu, H.; Fei, B.; Cai, G.; Ha, Y.; Liu, J.; Jia, H.; Zhang, J.; Liu, M.; Wu, R. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2019, 10, 1902714.

    37. [37]

      Hu, N.; Du, J.; Ma, Y.-Y.; Cui, W.-J.; Yu, B.-R.; Han, Z.-G.; Li, Y.-G. Unravelling the role of polyoxovanadates in electrocatalytic water oxidation reaction: active species or precursors. Appl. Surf. Sci. 2021, 540, 148306.  doi: 10.1016/j.apsusc.2020.148306

    38. [38]

      Cheng, C.-C.; Cheng, P.-Y.; Huang, C.-L.; Raja, D.-S.; Wu, Y.-J.; Lu, S.-Y. Gold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction. Appl. Catal. B: Environ. 2021, 286, 119916.  doi: 10.1016/j.apcatb.2021.119916

    39. [39]

      Kumar, A.; Bui, V. Q.; Lee, J.; Jadhav, A. R.; Hwang, Y.; Kim, M. G.; Kawazoe, Y.; Lee, H. Modulating interfacial charge density of NiP2-FeP2 via coupling with metallic Cu for accelerating alkaline hydrogen evolution. ACS Energy Lett. 2021, 6, 354-363.  doi: 10.1021/acsenergylett.0c02498

    40. [40]

      Qi, L.; Su, Y.-Q.; Xu, Z.; Zhang, G.; Liu, K.; Liu, M.; Hensen, E. J. M.; Lin, R. Y.-Y. Hierarchical 2D yarn-ball like metal-organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electro-catalytic water splitting. J. Mater. Chem. A 2020, 8, 22974-22982.  doi: 10.1039/D0TA08094B

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    4. [4]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    5. [5]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    6. [6]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    9. [9]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    10. [10]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    11. [11]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    12. [12]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    18. [18]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    19. [19]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    20. [20]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

Metrics
  • PDF Downloads(7)
  • Abstract views(318)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return