-
[1]
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv. Mater. 2021, 33, e2007100.
doi: 10.1002/adma.202007100
-
[2]
Yang, H.; Driess, M.; Menezes, P. W. Self-supported electrocatalysts for practical water electrolysis. Adv. Energy Mater. 2021, 11, 2102074.
doi: 10.1002/aenm.202102074
-
[3]
Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 2002, 27, 991-1022.
-
[4]
Wu, Y. L.; Xie, N.; Li, X. F.; Fu, Z. M.; Wu, X. T.; Zhu, Q. L. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.
-
[5]
Zhang, Y. Y.; Zhang, N.; Peng, P.; Wang, R.; Jin, Y.; Lv, Y. K.; Wang, X.; Wei, W.; Zang, S. Q. Uniformly dispersed Ru nanoparticles constructed by in situ confined polymerization of ionic liquids for the electrocatalytic hydrogen evolution reaction. Small Methods 2021, 5, 2100505.
doi: 10.1002/smtd.202100505
-
[6]
Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881-889.
doi: 10.1021/acs.accounts.7b00616
-
[7]
Shang, X.; Tang, J. H.; Dong, B.; Sun, Y. Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustain. Energy Fuels 2020, 4, 3211-3228.
doi: 10.1039/D0SE00466A
-
[8]
Qin, R.; Wang, P.; Lin, C.; Cao, F.; Zhang, J.; Chen, L.; Mu, S. Transition metal nitrides: activity origin, synthesis and electrocatalytic applications. Acta Phys. Chim. Sin. 2020, 37, 2009099.
-
[9]
Yan, D. Q.; Zhang, L.; Chen, Z. P.; Xiao, W. P.; Yang, X. F. Nickel-based metal-organic framework-derived bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. Acta Phys. Chim. Sin. 2021, 37, 2009054.
-
[10]
Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods 2021, 5, 2000988.
doi: 10.1002/smtd.202000988
-
[11]
Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.
-
[12]
Theerthagiri, J.; Lee, S. J.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mat. Sci. 2020, 24, 100805.
doi: 10.1016/j.cossms.2020.100805
-
[13]
Chen, P.; Xu, K.; Fang, Z.; Tong, Y.; Wu, J.; Lu, X.; Peng, X.; Ding, H.; Wu, C.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2015, 54, 14710-14714.
doi: 10.1002/anie.201506480
-
[14]
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060-2086.
-
[15]
Feng, J. X.; Xu, H.; Dong, Y. T.; Lu, X. F.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angew. Chem. Int. Ed 2017, 56, 2960-2964.
-
[16]
Kasian, O.; Grote, J. P.; Geiger, S.; Cherevko, S.; Mayrhofer, K. J. J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew. Chem. Int. Ed. 2018, 57, 2488-2491.
-
[17]
Ma, H.; Chen, Z.; Wang, Z.; Singh, C. V.; Jiang, Q. Interface engineering of Co/CoMoN/NF heterostructures for high-performance electrochemical overall water splitting. Adv. Sci. 2022, 9, e2105313.
-
[18]
Ma, Y.; Lu, S.; Han, G.; Liu, Y.; Chen, Z. Chemical vapor deposition of two-dimensional molybdenum nitride/graphene van der Waals heterostructure with enhanced electrocatalytic hydrogen evolution performance. Appl. Catal. B-Environ. 2022, 589, 152934.
-
[19]
Chen, Y.; Wang, Y.; Yu, J.; Xiong, G.; Niu, H.; Li, Y.; Sun, D.; Zhang, X.; Liu, H.; Zhou, W. Underfocus laser induced Ni nanoparticles embedded metallic MoN microrods as patterned electrode for efficient overall water splitting. Adv. Sci. 2022, 9, e2105869.
-
[20]
Chen, Y.; Yu, J.; Jia, J.; Liu, F.; Zhang, Y.; Xiong, G.; Zhang, R.; Yang, R.; Sun, D.; Liu, H.; Zhou, W. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting. Appl. Catal. B-Environ. 2020, 272, 118956.
-
[21]
Wang, Y.; Sun, Y.; Yan, F.; Zhu, C.; Gao, P.; Zhang, X.; Chen, Y. Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2018, 6, 8479-8487.
-
[22]
Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, e1806326.
-
[23]
Wu, A.; Xie, Y.; Ma, H.; Tian, C.; Gu, Y.; Yan, H.; Zhang, X.; Yang, G.; Fu, H. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353-363.
-
[24]
Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
-
[25]
Sun, J.; Xu, W.; Lv, C.; Zhang, L.; Shakouri, M.; Peng, Y.; Wang, Q.; Yang, X.; Yuan, D.; Huang, M.; Hu, Y.; Yang, D.; Zhang, L. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl. Catal. B-Environ. 2021, 286, 119882.
-
[26]
Du, Y.; Pan, G.; Wang, L.; Song, Y. CoxNiyP embedded in nitrogen-doped porous carbon on Ni foam for efficient hydrogen evolution. Appl. Surf. Sci. 2019, 469, 61-67.
-
[27]
Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.
-
[28]
Peng, X.; Pi, C.; Zhang, X.; Li, S.; Huo, K.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366-381.
-
[29]
Schwarz, K. Band structure and chemical bonding in transition metal carbides and nitrides. Crit. Rev. Solid State 1987, 13, 211-257.
-
[30]
Shah, S. A.; Shen, X.; Xie, M.; Zhu, G.; Ji, Z.; Zhou, H.; Xu, K.; Yue, X.; Yuan, A.; Zhu, J.; Chen, Y. Nickel@nitrogen-doped carbon@MoS2 nanosheets: an efficient electrocatalyst for hydrogen evolution reaction. Small 2019, 15, e1804545.
-
[31]
Gu, Y.; Wu, A.; Jiao, Y.; Zheng, H.; Wang, X.; Xie, Y.; Wang, L.; Tian, C.; Fu, H. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 6673-6681.
-
[32]
Lin, Y.; Sun, K.; Liu, S.; Chen, X.; Cheng, Y.; Cheong, W. C.; Chen, Z.; Zheng, L.; Zhang, J.; Li, X.; Pan, Y.; Chen, C. Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 2019, 9, 1901213.
-
[33]
Zhang, J.; Liu, Y.; Li, J.; Jin, X.; Li, Y.; Qian, Q.; Wang, Y.; El-Harairy, A.; Li, Z.; Zhu, Y.; Zhang, H.; Cheng, M.; Zeng, S.; Zhang, G. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydra zine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881-3890.
-
[34]
Zhang, L.; Cao, X.; Feng, C.; Zhang, W.; Wang, Z.; Feng, S.; Huang, Z.; Lu, X.; Dai, F. Interfacial Mo-N-C bond endowed hydrogen evolution reaction on MoSe2@N-doped carbon hollow nanoflowers. Inorg. Chem. 2021, 60, 12377-12385.
-
[35]
Xing, Z.; Li, Q.; Wang, D.; Yang, X.; Sun, X. Self-supported nickel nitride as an efficient high-performance three-dimensional cathode for the alkaline hydrogen evolution reaction. Electrochim. Acta 2016, 191, 841-845.
-
[36]
Wu, Y.; Li, G. D.; Liu, Y.; Yang, L.; Lian, X.; Asefa, T.; Zou, X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839-4847.
-
[37]
Jiang, W. J.; Tang, T.; Zhang, Y.; Hu, J. S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111-1123.