Citation: Xingwang Yan, Bin Wang, Mengxia Ji, Qi Jiang, Gaopeng Liu, Pengjun Liu, Sheng Yin, Huaming Li, Jiexiang Xia. In-Situ Synthesis of CQDs/BiOBr Material via Mechanical Ball Milling with Enhanced Photocatalytic Performances[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220804. doi: 10.14102/j.cnki.0254-5861.2022-0141 shu

In-Situ Synthesis of CQDs/BiOBr Material via Mechanical Ball Milling with Enhanced Photocatalytic Performances

  • Corresponding author: Pengjun Liu, Liupj12@126.com Jiexiang Xia, xjx@ujs.edu.cn
  • Received Date: 27 May 2022
    Accepted Date: 1 July 2022
    Available Online: 14 July 2022

Figures(5)

  • Designing simple, efficient, and environmentally friendly methods to construct high-efficient photocatalysts is an important strategy to promote the further development of the field of photocatalysis. Herein, flower-like carbon quantum dots (CQDs)/BiOBr composite photocatalysts have been prepared via in-situ synthesis by mechanical ball milling in the existence of ionic liquid. The CQDs/BiOBr composites exhibit higher photo-degradation performance for tetracycline (TC) than BiOBr monomer and the commercial Bi2O3 under visible light irradiation. For comparison, the different Br sources and synthetic methods are chosen to prepare BiOBr and CQDs/BiOBr composites. Photocatalysts prepared by ball milling and ionic liquid present significantly enhanced photocatalytic performance for removing TC. In addition, the introduction of CQDs could distinctly enhance the photocatalytic performances of pure BiOBr. The reason is that CQDs as electron acceptor effectively separate electrons and holes and inhibit their recombination. The intermediates during photocatalytic degradation were tested using liquid chromatography-mass spectrometry (LC-MS) and possible degradation pathways were given. During degradation, •OH, O2•- and h+ were identified to be the main active species based on electron spin resonance (ESR) spectra and free radical trapping experiments. A possible mechanism of CQDs/BiOBr with enhanced photocatalytic performances was further proposed.
  • 加载中
    1. [1]

      Wang, Z.; Chen, M.; Huang, D.; Zeng, G.; Xu, P.; Zhou, C.; Lai, C.; Wang, H.; Cheng, M.; Wang, W. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem. Eng. J. 2019, 374, 1025-1045.

    2. [2]

      Jin, X.; Ye, L.; Xie, H.; Chen, G. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord. Chem. Rev. 2017, 349, 84-101.  doi: 10.1016/j.ccr.2017.08.010

    3. [3]

      Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv. Colloid Interface Sci. 2018, 254, 76-93.  doi: 10.1016/j.cis.2018.03.004

    4. [4]

      Meng, L.; Qu, Y.; Jing, L. Recent advances in BiOBr-based photocatalysts for environmental remediation. Chin. Chem. Lett. 2021, 32, 3265-3276.  doi: 10.1016/j.cclet.2021.03.083

    5. [5]

      Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6, 2009-2026.  doi: 10.1039/c3nr05529a

    6. [6]

      Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 2019, 12, 955-972.

    7. [7]

      Yao, L.; Yang, H.; Chen, Z.; Qiu, M.; Hu, B.; Wang, X. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 2021, 273, 128576.

    8. [8]

      Su, X.; Fan, D.; Sun, H.; Yang, J.; Yu, Z.; Zhang, D.; Pu, X.; Li, H.; Cai, P. One-dimensional rod-shaped Ag2Mo2O7/BiOI n-n junctions for efficient photodegradation of tetracycline and rhodamine B under visible light. J. Alloys Compd. 2022, 912, 165184.  doi: 10.1016/j.jallcom.2022.165184

    9. [9]

      Jiang, X.; Kong, D.; Luo, B.; Wang, M.; Zhang, D.; Pu, X. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity. Colloids Surf., A 2022, 633, 127880.  doi: 10.1016/j.colsurfa.2021.127880

    10. [10]

      Sharma, K.; Dutta, V.; Sharma, S.; Raizada, P.; Hosseini-Bandegharaei, A.; Thakur, P.; Singh, P. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. J. Ind. Eng. Chem. 2019, 78, 1-20.  doi: 10.1016/j.jiec.2019.06.022

    11. [11]

      Wang, C.; Du, P.; Duan, X.; Luo, L.; Li, W. Tailoring of visible light driven photocatalytic activities of flower-like BiOBr microparticles towards wastewater purification application. Adv. Mater. Interfaces 2022, 9, 2101671.

    12. [12]

      Ji, M.; Zhang, Z.; Xia, J.; Di, J.; Liu, Y.; Chen, R.; Yin, S.; Zhang, S.; Li, H. Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation. Chin. Chem. Lett. 2018, 29, 805-810.

    13. [13]

      Meng, J.; Duan, Y.; Jing, S.; Ma, J.; Wang, K.; Zhou, K.; Ban, C.; Wang, Y.; Hu, B.; Yu, D.; Gan, L. Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 2022, 92, 106671.

    14. [14]

      Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E. A.; Li, R.; Li, C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6590-6595.

    15. [15]

      Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; Wang, C.; Xie, Y. Efficient visible-light-driven CO2 reduction realized by defect-mediated BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719-8723.

    16. [16]

      Zhang, H.; Zhao, L.; Wang, L.; Hao, J.; Meng, X. Fabrication of oxygen-vacancy-rich black-BiOBr/BiOBr heterojunction with enhanced photocatalytic activity. J. Mater. Sci. 2020, 55, 10785-10795.

    17. [17]

      Wang, B.; Yang, S.; Chen, H.; Gao, Q.; Weng, Y.; Zhu, W.; Liu, G.; Zhang, Y.; Ye, Y.; Zhu, H.; Li, H.; Xia, J. Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion. Appl. Catal. B 2020, 277, 119170.

    18. [18]

      Zhang, W.; Peng, Y.; Yang, Y.; Zhang, L.; Bian, Z.; Wang, H. Bismuthrich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 430, 132963.

    19. [19]

      Jin, X.; Lv, C.; Zhou, X.; Xie, H.; Sun, S.; Liu, Y.; Meng, Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955.

    20. [20]

      Wilczewska, P.; Bielicka-Giełdoń, A.; Szczodrowski, K.; Malankowska, A.; Ryl, J.; Tabaka, K.; Siedlecka, E. M. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts 2021, 11, 312.

    21. [21]

      Shi, M.; Li, G.; Li, J.; Jin, X.; Tao, X.; Zeng, B.; Pidko, E. A.; Li, R.; Li, C. Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6590-6595.

    22. [22]

      Zhao, Y.; Li, Z.; Wei, J.; Li, X.; Shi, H.; Cao, B.; Fan, J. Efficient photo-degradation of cefixime catalyzed by a direct Z-scheme CQDs-BiOBr/CN composite: performance, toxicity evaluation and photocatalytic mechanism. Chemosphere 2022, 292, 133430.

    23. [23]

      Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y.; Li H.; Chu, P.; Xia, J. Excited electron-rich Bi(3-x)+ sites: a quantum well-like structure for highly-promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 2022, 202202885.

    24. [24]

      Lv, X.; Yan, D. Y. S.; Lam, F. L. Y.; Ng, Y. H.; Yin, S.; An, A. K. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin. Chem. Eng. J. 2020, 401, 126012.

    25. [25]

      Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X. Photocatalytic reduction of CO2 on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl. Catal. B 2020, 274, 119063.

    26. [26]

      Chen, X.; Zhang, X.; Li, Y.; Qi, M.; Li, J.; Tang, Z.; Zhou, Z.; Xu, Y. Transition metal doping BiOBr nanosheets with oxygen vacancy and exposed {102} facets for visible light nitrogen fixation. Appl. Catal. B 2021, 281, 119516.

    27. [27]

      Mao, S.; Zou, Y.; Sun, G.; Zeng, L.; Wang, Z.; Ma, D.; Guo, Y.; Cheng, Y.; Wang, C.; Shi, J. Thio linkage between CdS quantum dots and UiO-66-type MOFs as an effective transfer bridge of charge carriers boosting visible-light-driven photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 581, 1-10.

    28. [28]

      Shi, J.; Sun, D.; Zou, Y.; Ma, D.; He, C.; Jia, X; Niu, C. Trap-level-tunable Se doped CdS quantum dots with excellent hydrogen evolution performance without co-catalyst. Chem. Eng. J. 2019, 364, 11-19.

    29. [29]

      Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445-1514.

    30. [30]

      Syed, N.; Huang, J.; Feng, Y. CQDs as emerging trends for future prospect in enhancement of photocatalytic activity. Carbon Lett 2022, 32, 81-97.

    31. [31]

      Zhang, Y.; Zhao, Y.; Xu, Z.; Su, H.; Bian, X.; Zhang, S.; Dong, X.; Zeng, L.; Zeng, T.; Feng, M.; Li, L.; Sharma, V. K. Carbon quantum dots implanted CdS nanosheets: efficient visible-light driven photocatalytic reduction of Cr(VI) under saline conditions. Appl. Catal. B 2020, 262, 118306.

    32. [32]

      Preeyanghaa, M.; Vinesh, V.; Sabarikirishwaran, P.; Rajkamal, A.; Ashokkumar, M.; Neppolian, B. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon 2022, 192, 405-417.

    33. [33]

      Lin, Y.; Peng, C.; Lim, S.; Chen, C.; Nguyễn, T.; Wang, T.; Lin, M.; Hsu, Y.; Chen, S.; Lin, Y. Tailoring the surface oxygen engineering of a carbon-quantum-dot-sensitized ZnO@H-ZnO1-x multijunction toward efficient charge dynamics and photoactivity enhancement. Appl. Catal. B 2021, 285, 119846.

    34. [34]

      Zhou, Q.; Huang, W.; Xu, C.; Liu, X.; Yang, K.; Li, D.; Hou, Y.; Dionysiou, D. D. Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis. Chem. Eng. J. 2021, 420, 129582.

    35. [35]

      Zhao, C.; Liang, Y.; Li, W.; Tian, Y.; Chen, X.; Yin, D.; Zhang, Q. BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis. RSC Adv. 2017, 7, 52614-52620.

    36. [36]

      Sun, J.; Li, X.; Zhao, Q.; Liu, B. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Appl. Catal. B 2021, 281, 119478.

    37. [37]

      Kahoush, M.; Behary, N.; Cayla, A.; Mutel, B.; Guan, J.; Nierstrasz, V. Surface modification of carbon felt by cold remote plasma for glucose oxidase enzyme immobilization. Appl. Surf. Sci. 2019, 476, 1016-1024.

    38. [38]

      Wang, B.; Di, J.; Lu, L.; Yan, S.; Liu, G.; Ye, Y.; Li, H.; Zhu, W.; Li, H.; Xia, J. Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction. Appl. Catal. B 2019, 254, 551-559.

    39. [39]

      Tang, L.; Lv, Z.; Xue, Y.; Xu, L.; Qiu, W.; Zheng, C.; Chen, W.; Wu, M. MIL-53 (Fe) incorporated in the lamellar BiOBr: promoting the visible-light catalytic capability on the degradation of rhodamine B and carbama-zepine. Chem. Eng. J. 2019, 374, 975-982.

    40. [40]

      Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nano-sheets with enhanced performance for photoreducing CO2 to CH3OH. Chem. Eng. J. 2021, 418, 129286.

    41. [41]

      Wang, B.; Zhao, J.; Chen, H.; Weng, Y.; Tang, H.; Chen, Z.; Zhu, W.; She, Y.; Xia, J.; Li, H. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction. Appl. Catal. B 2021, 293, 120182.

    42. [42]

      Dong, J.; Chen, F.; Xu, L.; Yan, P.; Qian, J.; Chen, Y.; Yang, M.; Li, H. Fabrication of sensitive photoelectrochemical aptasensor using Ag nanoparticles sensitized bismuth oxyiodide for determination of chloramphenicol. Microchem. J. 2022, 178, 107317.

    43. [43]

      Fu, X.; Wang, J.; Hu, X.; He, K.; Tu, Q.; Yue, Q.; Kang, Y. Scalable chemical interface confinement reduction BiOBr to bismuth porous nano-sheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 2022, 32, 2107182.

    44. [44]

      Zhang, Z.; Li, L.; Jiang, Y.; Xu, J. Step-scheme photocatalyst of CsPbBr3 quantum Dots/BiOBr nanosheets for efficient CO2 photoreduction. Inorg. Chem. 2022, 61, 3351-3360.

    45. [45]

      Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953-3957.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    7. [7]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    8. [8]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    12. [12]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    13. [13]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    14. [14]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    15. [15]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    19. [19]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    20. [20]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

Metrics
  • PDF Downloads(6)
  • Abstract views(170)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return