A Review on Crystalline Porous MOFs Materials in Photocatalytic Transformations of Organic Compounds in Recent Three Years
- Corresponding author: Jian-Min Dou, jmdou@lcu.edu.cn † Hao Zhang and Ru Sun contributed equally to this work.
Citation: Hao Zhang, Ru Sun, Da-Cheng Li, Jian-Min Dou. A Review on Crystalline Porous MOFs Materials in Photocatalytic Transformations of Organic Compounds in Recent Three Years[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221107. doi: 10.14102/j.cnki.0254-5861.2022-0140
Somnath, C.; Oomman, K.; Maggie, P.; Craig, A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259-1278.
doi: 10.1021/nn9015423
Lisa, C.; Karl, D.; Gemma, C.; James, J.; Adrián, G.; Anais, J.; Sebastian, K. Photocatalysis in the life science industry. Chem. Rev. 2022, 122, 2907-2980.
doi: 10.1021/acs.chemrev.1c00416
Chen, Z.; Zhou, X.; Yi, J.; Diao, H.; Chen, Q.; Lu, G.; Weng, J. Catalytic decarboxylative fluorosulfonylation enabled by energy-transfer-mediated photocatalysis. Org. Lett. 2022, 24, 2474-2478.
doi: 10.1021/acs.orglett.2c00459
Xing, P.; Wu, S.; Chen, Y.; Chen, P.; Hu, X.; Lin, H.; Zhao, L.; He, Y. New application and excellent performance of Ag/KNbO3 nanocomposite in photocatalytic NH3 synthesis. ACS Sustain. Chem. Eng. 2019, 7, 12408-12418.
Martyna, C.; Jędrzej, P.; Stefano, C.; Joanna, S.; Maciej, G. Photocatalysis in aqueous micellar media enables divergent C-H arylation and N-dealkylation of benzamides. ACS Catal. 2022, 12, 3543-3549.
doi: 10.1021/acscatal.2c00468
Luo, L.; Xiao, X.; Li, Q.; Wang, S.; Li, Y.; Hou, J.; Jiang, B. Engineering of single atomic Cu-N3 active sites for efficient singlet oxygen production in photocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 58596-58604.
doi: 10.1021/acsami.1c17782
Zhu, S.; Liu, Y.; Chen, X.; Qu, L.; Yu, B. Polymerization-enhanced photocatalysis for the functionalization of C(sp3)-H bonds. ACS Catal. 2022, 12, 126-134.
doi: 10.1021/acscatal.1c03765
He, X.; Yao, X.; Cai, S.; Li, H.; He, L. Visible light-driven carbamoyloxylation of the α-C(sp3)-H bond of arylacetones via radicalinitiated hydrogen atom transfer. Chem. Commun. 2022, 58, 5845-5848.
doi: 10.1039/D2CC01761J
Lin, H.; Xu, Y.; Wang, B.; Li, D.; Zhou, T.; Zhang, J. Postsynthetic modification of metal-organic frameworks for photocatalytic applications. Small Struct. 2022, 2100176.
Yoshio, N.; Atsuko, Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
doi: 10.1021/acs.chemrev.7b00161
Megan, H.; Jack, T.; David, W. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898-6926.
doi: 10.1021/acs.joc.6b01449
Sun, K.; Shi, A.; Liu, Y.; Chen, X.; Xiang, P.; Wang, X.; Qu, L.; Yu, B. A general electron donor-acceptor complex for photoactivation of arenes via thianthrenation. Chem. Sci. 2022, 13, 5659-5666.
doi: 10.1039/D2SC01241C
Wang, C.; Yi, X.; Wang, P. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 247, 24-48.
doi: 10.1016/j.apcatb.2019.01.091
Yang, Z.; Xiao, W.; Zhang, X.; Liao, S. Organocatalytic cationic degenerate chain transfer polymerization of vinyl ethers with excellent temporal control. Polym. Chem. 2022, 13, 2776-2781.
doi: 10.1039/D2PY00134A
Zou, S.; Luo, X.; Chen, C.; Xi, C. Photoredox-catalyzed fluorodifluoroacetylation of alkenes with FSO2CF2CO2Me and Et3N·3HF. Org. Biomol. Chem. 2022, 20, 3726-3730.
doi: 10.1039/D2OB00488G
Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.
Cai, R.; Zhang, B.; Shi, J.; Li, M.; He, Z. Rapid photocatalytic decolorization of methyl orange under visible light using VS4/carbon powder nanocomposites. ACS Sustainable Chem. Eng. 2017, 5, 7690-7699.
doi: 10.1021/acssuschemeng.7b01137
Li, X.; Dai, K.; Pan, C.; Zhang, J. Diethylenetriamine-functionalized CdS nanoparticles decorated on Cu2S snowflake microparticles for photocatalytic hydrogen production. ACS Appl. Nano Mater. 2020, 3, 11517-11526.
doi: 10.1021/acsanm.0c02616
Indrani, M.; Vatsala, C.; Raj, K. Sunlight-driven photocatalytic degradation of ciprofloxacin by carbon dots embedded in ZnO nanostructures. ACS Appl. Nano Mater. 2021, 4, 7686-7697.
doi: 10.1021/acsanm.1c00883
Marco, P.; Fabrizio, S.; Simone, B.; Marco, Z.; Francesco, P.; Alessandra, B.; Valter, M. Assessing a photocatalytic activity index for TiO2 colloids by controlled periodic illumination. ACS Catal. 2020, 10, 9612-9623.
doi: 10.1021/acscatal.0c02518
Wang, J.; Wang, J.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; Tang, J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale 2022, 14, 6709-6734.
doi: 10.1039/D1NR08349J
Reshma, B.; Srashti, J.; Chathakudath, P.; Santosh, K.; Satishchandra, O. Direct Z-Scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 2019, 11, 6174-6183.
doi: 10.1021/acsami.8b22434
Gao, M.; Feng, J.; Zhang, Z.; Gu, M.; Wang, J.; Zeng, W.; Lv, Y.; Ren, Y.; Wei, T.; Fan, Z. Wrinkled ultrathin graphitic C3N4 nanosheets for photocatalytic degradation of organic wastewater. ACS Appl. Nano Mater. 2018, 1, 6733-6741.
doi: 10.1021/acsanm.8b01528
Martin, R.; Huo, P.; Marcel, Š.; Nela, A.; Ivana, T.; Lenka, M.; Jaroslav, L.; Ladislav, S.; Piotr, K.; Michal, R.; Petr, P.; Kamila, K. Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 2016, 120, 8564-8573.
doi: 10.1021/acs.jpca.6b07236
Zhang, Q.; Deng, J.; Xu, Z.; Mohamed, C.; Ma, D. High-efficiency broadband C3N4 photocatalysts: synergistic effects from upconversion and plasmons. ACS Catal. 2017, 7, 6225-6234.
doi: 10.1021/acscatal.7b02013
Maryam, B.; Ferial, G.; Amirhassan, A.; Masoud, M. Metal-organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 2021, 445, 214107.
doi: 10.1016/j.ccr.2021.214107
Li, H.; Wang, K.; Sun, Y.; Christina, T.; Li, J.; Zhou, H. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108-121.
doi: 10.1016/j.mattod.2017.07.006
Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116.
doi: 10.1039/C4CS00159A
Song, Q.; Yang, Y.; Yuan, F.; Zhu, S.; Wang, J.; Xiang, S.; Zhang, Z. Electrostatic force-driven lattice water bridging to stabilize a partially charged indium MOF for efficient separation of C2H2/CO2 mixtures. J. Mater. Chem. A 2022, 10, 9363-9369.
doi: 10.1039/D1TA10569H
Zhou, H.; Susumu, K. Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
doi: 10.1039/C4CS90059F
Archisman, D.; Amita, S.; Wang, X.; Abhinav, K.; Liu, J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020, 22, 7736.
doi: 10.1039/D0CE01087A
Li, H.; Zhao, S.; Zang, S.; Liu, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364.
doi: 10.1039/C9CS00778D
Li, H.; Zhao, S.; Zang, S.; Liu, J. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242.
doi: 10.1039/C6CS00930A
William, P.; Soumya, M.; Nathan, D.; Aamod, V.; Li, J.; Sujit, K. MOF-253-supported Ru complex for photocatalytic CO2 reduction by coupling with semidehydrogenation of 1, 2, 3, 4-tetrahydroisoquinoline (THIQ). Inorg. Chem. 2019, 58, 16574-16580.
doi: 10.1021/acs.inorgchem.9b02593
Gong, Y.; Mei, J.; Liu, J.; Huang, H.; Zhang, J.; Li, X.; Zhong, D.; Lu, T. Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Appl. Catal. B Environ. 2021, 292, 120156.
doi: 10.1016/j.apcatb.2021.120156
Sanchita, K.; Soumitra, B.; Faruk, A.; Tapas, K. Covalent grafting of molecular photosensitizer and catalyst on MOF-808: effect of pore confinement toward visible light-driven CO2 reduction in water. Energy Environ. Sci. 2021, 14, 2429-2440.
doi: 10.1039/D0EE03643A
Liao, W.; Zhang, J.; Wang, Z.; Lu, Y.; Yin, S.; Wang, H.; Fan, Y.; Pan, M.; Su, C. Semiconductive amine-functionalized Co(Ⅱ)-MOF for visible-light-driven hydrogen evolution and CO2 reduction. Inorg. Chem. 2018, 57, 11436-11442.
doi: 10.1021/acs.inorgchem.8b01265
Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011.
doi: 10.1039/C4CS00094C
Tang, Y.; Zhao, L.; Ji, G.; Zhang, Y.; He, C.; Wang, Y.; Wei, J.; Duan, C. Ligand-regulated metal-organic frameworks for synergistic photoredox and nickel catalysis. Inorg. Chem. Front. 2022, DOI: 10.1039/d2qi00173j.
doi: 10.1039/d2qi00173j
Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P.; Yang, H. Electrochemical conversion of CO2 to syngas with a stable H2/CO ratio in a wide potential range over ligand-engineered metal-organic frameworks. J. Mater. Chem. A 2022, 10, 9954-9959.
doi: 10.1039/D1TA09482C
Huo, M.; Sun, T.; Wang, Y.; Sun, P.; Dang, J.; Wang, B.; Dharanipragada, N.; Inge, A.; Zhang, W.; Cao, R.; Ma, Y.; Zheng, H. A heteroepitaxially grown two-dimensional metal-organic framework and its derivative for the electrocatalytic oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 10408-10416.
doi: 10.1039/D2TA02313J
Li, Z.; Guo, X.; Qiu, J.; Lu, H.; Wang, J.; Lin, J. Recent advances in the applications of thoriumbased metal-organic frameworks and molecular clusters. Dalton Trans. 2022, 51, 7376-7389.
doi: 10.1039/D2DT00265E
Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.; Liu, Z.; Zhang, S.; Zhang, G. Host-guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal-organic framework. Energy Environ. Sci. 2022, 15, 2084-2095.
doi: 10.1039/D1EE03918K
Zhao, H.; Pang, X.; Huang, Y.; Bai, Y.; Ding, J.; Bai, H.; Fan, W. Electrocatalytic reduction of 4-nitrophenol over Ni-MOF/NF: understanding the self-enrichment effect of H-bonds. Chem. Commun. 2022, 58, 4897.
doi: 10.1039/D2CC00111J
Li, M.; Ye, C.; Li, Z.; Lin, Q.; Cao, J.; Liu, F.; Song, G.; Sibudjing, K. 1D confined materials synthesized via a coating method for thermal catalysis and energy storage applications. J. Mater. Chem. A 2022, 10, 6330.
doi: 10.1039/D1TA10540J
Shi, J.; Teng, W.; Deng, Z.; Bruce, E.; Zhang, W. Pollutants transformation by metal nanoparticles in confined nanospaces. Environ. Sci.: Nano 2021, 8, 3435.
doi: 10.1039/D1EN00538C
Lui, R.; Stephane, R.; Tian, M.; Ivan, D.; Simon, J.; Valeska, P. Manipulation of the crystalline phase diagram of hydrogen through nanoscale confinement effects in porous carbons. Nanoscale 2022, 14, 7250.
doi: 10.1039/D2NR00587E
Xiong, M.; Wang, G.; Zhao, S.; Lv, Z.; Xing, S.; Zhang, J.; Zhang, B.; Qin, Y.; Gao, Z. Engineering of platinum-oxygen vacancy interfacial sites in confined catalysts for enhanced hydrogenation selectivity. Catal. Sci. Technol. 2022, 12, 2411.
doi: 10.1039/D2CY00131D
Xu, Z.; Sarawoot, I.; Jia, X.; Wang, F.; Shen, Y.; Wang, P.; Zhang, D. SO2-Tolerant catalytic reduction of NOx by confining active species in TiO2 nanotubes. Environ. Sci.: Nano 2022, DOI: 10.1039/d2en00144f.
doi: 10.1039/d2en00144f
Li, J.; He, L.; Liu, Q.; Ren, Y.; Jiang, H. Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nat. Commun. 2022, 13, 928.
doi: 10.1038/s41467-022-28474-7
Cui, P.; Wang, P.; Zhao, Y.; Sun, W. Fabrication of desired metal-organic frameworks via postsynthetic exchange and sequential linker installation. Cryst. Growth Des. 2019, 19, 1454-1470.
doi: 10.1021/acs.cgd.8b01628
Christina, T.; Qin, J.; Pang, J.; Yuan, S.; Benjamin, B.; Zhou, H. Interior decoration of stable Metal-Organic Frameworks. Langmuir 2018, 34, 13795-13807.
doi: 10.1021/acs.langmuir.8b00823
Pang, J.; Yuan, S.; Qin, J.; Wu, M.; Christina, T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary Metal-Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 12328-12332.
doi: 10.1021/jacs.8b07411
Pang, J.; Yuan, S.; Qin, J.; Christina, T.; Huang, N.; Li, J.; Wang, Q.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. Tuning the ionicity of stable Metal-Organic Frameworks through ionic linker installation. J. Am. Chem. Soc. 2019, 141, 3129-3136.
doi: 10.1021/jacs.8b12530
Yuan, S.; Chen, Y.; Qin, J.; Lu, W.; Zou, L.; Zhang, Q.; Wang, X.; Sun, X.; Zhou, H. Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs. J. Am. Chem. Soc. 2016, 138, 8912-8919.
doi: 10.1021/jacs.6b04501
Pang, J.; Di, Z.; Qin, J.; Yuan, S.; Christina, T.; Li, j.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.
doi: 10.1021/jacs.0c05758
Qiao, G.; Yuan, S.; Pang, J.; Rao, H.; Christina, T.; Dang, D.; Qin, J.; Zhou, H.; Yu, J. Functionalization of zirconium-based metal-organic layers with tailored pore environments for heterogeneous catalysis. Angew. Chem. Int. Ed. 2020, 59, 18224-18228.
doi: 10.1002/anie.202007781
Carlos, M.; André, D.; Susana, R.; Isabel, C.; Baltazar, D.; Luís, C.; Salete, S. Oxidative catalytic versatility of a trivacant polyoxotungstate incorporated into MIL-101(Cr). Catal. Sci. Technol. 2014, 4, 1416.
doi: 10.1039/c3cy00853c
Li, Y.; Gao, Q.; Zhang, L.; Zhou, Y.; Zhong, Y.; Ying, Y.; Zhang, M.; Huang, C.; Wang, Y. H5PV2Mo10O40 encapsulated in MIL-101(Cr): facile synthesis and characterization of rationally designed composite materials for efficient decontamination of sulfur mustard. Dalton Trans. 2018, 47, 6394.
doi: 10.1039/C8DT00572A
Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: from synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152.
doi: 10.1039/D0CS00323A
Sun, J.; Sara, A.; Pascal, V.; Liu, Y.; Karen, L. POM@MOF hybrids: synthesis and applications. Catalysts 2020, 10, 578.
doi: 10.3390/catal10050578
Yuan, M.; Sun, C.; Liu, Y.; Lu, Y.; Zhang, Z.; Li, X.; Tian, H.; Zhang, S.; Liu, S. Synthesis, characterization, and property investigation of a Metal-Organic Framework encapsulated polyoxometalate guests: an advanced inorganic chemistry experiment. J. Chem. Educ. 2020, 97, 4152-4157.
doi: 10.1021/acs.jchemed.0c00905
Zhang, S.; Ou, F.; Ning, S.; Cheng, P. Polyoxometalate-based metal-organic frameworks for heterogeneous catalysis. Inorg. Chem. Front. 2021, 8, 1865.
doi: 10.1039/D0QI01407A
Youven, B.; Alex, L.; Mathis, D.; Pierre, M.; Maria, G.; Catherine, R.; Thomas, P.; Minh-Huong, H.; Mohamed, H.; Marc, F.; Anne, D.; Capucine, S.; Caroline, M. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based Metal-Organic Framework: in depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428-9438.
doi: 10.1021/jacs.0c02425
Cui, B.; Fu, G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 2022, 14, 1679.
doi: 10.1039/D1NR07614K
Guo, C.; Duan, F.; Zhang, S.; He, L.; Wang, M.; Chen, J.; Zhang, J.; Jia, Q.; Zhang, Z.; Du, M. Heterostructured hybrids of metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). J. Mater. Chem. A 2022, 10, 475.
doi: 10.1039/D1TA06006F
Sun, D.; Dong-Pyo, K. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Interfaces 2020, 12, 20589-20595.
doi: 10.1021/acsami.0c04537
Tang, H.; Sun, X.; Zhang, F. Development of MOF-based heterostructures for photocatalytic hydrogen evolution. Dalton Trans. 2020, 49, 12136.
doi: 10.1039/D0DT02309D
Zhang, H.; Yang, Y.; Li, C.; Tang, H.; Zhang, F.; Zhang, G.; Yan, H. A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 16743.
doi: 10.1039/D1TA04493A
Zhang, M.; Li J.; Wang, R.; Zhao, S.; Zang, S.; Thomas, C. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, 2101884.
doi: 10.1002/advs.202101884
Kayhaneh, B.; Ali, M. The role of metal-organic porous frameworks in dual catalysis. Inorg. Chem. Front. 2021, 8, 3618.
Chen, L.; Qi, Z.; Peng, X.; Chen, J.; Pao, C, .; Zhang, X.; Dun, C.; Melissa, Y.; David, P.; Jeffrey, J.; Guo, J.; Gabor, A.; Su, J. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts. J. Am. Chem. Soc. 2021, 143, 12074-12081.
doi: 10.1021/jacs.1c03895
Fu, J.; Yang, Y.; Hu, J. Dual-sites tandem catalysts for C-N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules. ACS Materials Lett. 2021, 3, 1468-1476.
doi: 10.1021/acsmaterialslett.1c00375
Li, Z.; Cheng, H.; Zhang, X.; Ji, M.; Wang, S.; Wang, S. The comparative study on the catalytic activity of Cu-M/Ce0.8Zr0.2O2 (M = W, Nb, Cr and Mo) catalysts with dual-function for the simultaneous removal of NO and CO under oxygen-rich conditions. Catal. Sci. Technol. 2021, 11, 4987.
doi: 10.1039/D1CY00517K
Nilanjan, S.; Athulya, S.; Manpreet, S.; Ranadip, G.; Renjith, S.; Subhadip, N. Chemically robust and bifunctional Co(Ⅱ)-framework for trace detection of assorted organo-toxins and highly cooperative Deacetalization-Knoevenagel condensation with pore-fitting-induced size-selectivity. ACS Appl. Mater. Interfaces 2021, 13, 28378-28389.
doi: 10.1021/acsami.1c07273
Zhang, Y.; Huang, C.; Mi, L. Metal-organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Trans. 2020, 49, 14723.
doi: 10.1039/D0DT03025B
Shi, W.; Quan, Y.; Lan, G.; Ni, K.; Song, Y.; Jiang, X.; Wang, C.; Lin, W. Bifunctional metal-organic layers for tandem catalytic transformations using molecular oxygen and carbon dioxide. J. Am. Chem. Soc. 2021, 143, 16718-16724.
doi: 10.1021/jacs.1c07963
Jin, J.; Wu, K.; Liu, X.; Huang, G.; Huang, Y.; Luo, D.; Xie, M.; Zhao, Y.; Lu, W.; Zhou, X.; He, J.; Li, D. Building a pyrazole-benzothiadiazole-pyrazole photosensitizer into Metal-Organic Frameworks for photocatalytic aerobic oxidation. J. Am. Chem. Soc. 2021, 143, 21340-21349.
doi: 10.1021/jacs.1c10008
Christian, F.; James, N.; Rebecca, S.; Zhang, X.; Hu, Y.; Yang, S.; Huang, J.; Zhang, J. Symmetry-guided synthesis of N, N'-bicarbazole and porphyrin-based mixed-ligand Metal-Organic Frameworks: light harvesting and energy transfer. J. Am. Chem. Soc. 2021, 143, 20411-20418.
doi: 10.1021/jacs.1c10291
Liu, J.; Li, Q.; Xiao, X.; Li, F.; Zhao, C.; Sun, Q.; Qiao, P.; Zhou, J.; Wu, J.; Li, B.; Bao, H.; Jiang, B. Metal-organic frameworks loaded on phosphorus-doped tubular carbon nitride for enhanced photocatalytic hydrogen production and amine oxidation. J. Colloid. Interf. Sci. 2021, 590, 1-11.
doi: 10.1016/j.jcis.2021.01.031
Wang, S.; Tang, L.; Cai, B.; Yin, Z.; Li, Y.; Xiong, L.; Kang, X.; Xuan, J.; Pei, Y.; Zhu, M. Ligand modification of Au25 nanoclusters for near-Infrared photocatalytic oxidative functionalization. J. Am. Chem. Soc. 2022, 144, 3787-3792.
doi: 10.1021/jacs.2c01570
Liu, S.; Li, Y.; Ding, K.; Chen, W.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.
Md., I.; Raffaele, C.; Gianluca, M.; Luca, N.; Matteo, M. Mechanistic and multiscale aspects of thermocatalytic CO2 conversion to C1 products. Catal. Sci. Technol. 2021, 11, 6601.
doi: 10.1039/D1CY00922B
Dao, X.; Sun, W. Single- and mixed-metal-organic framework photocatalysts for carbon dioxide reduction. Inorg. Chem. Front. 2021, 8, 3178.
doi: 10.1039/D1QI00411E
Sourav, G.; Arindam, M.; Arnab, S.; Kanika, K.; Subhra, J. Recent progress in materials development for CO2 conversion: issues and challenges. Mater. Adv. 2021, 2, 3161.
doi: 10.1039/D1MA00107H
Ma, D.; Jin, T.; Xie, K.; Huang, H. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 2021, 9, 20897.
doi: 10.1039/D1TA06101A
Siglinda, P.; Kevin, M.; Guy, B.; Gabriele, C. Reuse of CO2 in energy intensive process industries. Chem. Commun. 2021, 57, 10967.
doi: 10.1039/D1CC03154F
Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Achieving simultaneous Cu particles anchoring in meso-porous TiO2 nanofabrication for enhancing photo-catalytic CO2 reduction through rapid charge separation. Chin. Chem. Lett. 2022, 33, 1313-1316.
doi: 10.1016/j.cclet.2021.07.052
Fu, S.; Yao, S.; Guo, S.; Guo, G.; Yuan, W.; Lu, T.; Zhang, Z. Feeding carbonylation with CO2 via the synergy of single-site/nanocluster catalysts in a photosensitizing MOF. J. Am. Chem. Soc. 2021, 143, 20792-20801.
doi: 10.1021/jacs.1c08908
Yun, Y.; Sheng, H.; Bao, K.; Xu, L.; Zhang, Y.; Didier, A.; Zhu, M. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126-4130.
doi: 10.1021/jacs.0c00378
Khan, I. S.; Mateo, D.; Shterk, G.; Shoinkhorova, T.; Poloneeva, D.; Garzon-Tovar, L.; Gascon, J. An efficient metal-organic framework-derived nickel catalyst for the light driven methanation of CO2. Angew. Chem. Int. Ed. 2021, 60, 26476-26482.
doi: 10.1002/anie.202111854
Chen, E.; Qiu, M.; Zhang, Y.; He, L.; Sun, Y.; Zheng, H.; Wu, X.; Zhang, J.; Lin, Q. Energy band alignment and redox-active sites in metalloporphyrin-spaced metal-catechol frameworks for enhanced CO2 photoreduction. Angew. Chem. Int. Ed. 2022, 61, e202111622.
Ana, A.; Sara, R.; Iv´an, O.; Ana, T.; Marta, L.; Fabrice, S.; Daniel, A.; Sara, B.; David, Á.; Patricia, H. Ultrafast reproducible synthesis of a Agnanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. J. Mater. Chem. A 2021, 9, 15704.
doi: 10.1039/D1TA02251B
Ajay, L.; Anil, M. Reduced graphene oxide-decorated CdS/ZnO nanocomposites for photoreduction of hexavalent chromium and photodegradation of methylene blue. Dalton Trans. 2021, 50, 14163.
doi: 10.1039/D1DT02192C
Ayushi, S.; Ashish, K.; Liu, J.; Abhinav, K. Syntheses, design strategies, and photocatalytic charge dynamics of metal-organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catal. Sci. Technol. 2021, 11, 3946.
doi: 10.1039/D0CY02275F
Bui, T.; Nguyen, V.; Nguyen, T. The development of biomass-derived carbonbased photocatalysts for the visible-light-driven photodegradation of pollutants: a comprehensive review. RSC Adv. 2021, 11, 30574.
doi: 10.1039/D1RA05079F
Zhang, B.; He, X.; Yu, C.; Liu, G.; Ma, D.; Cui, C.; Yan, Q.; Zhang, Y.; Zhang, G.; Ma, J.; Xin, Y. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: influencing factors, products and mechanism insight. Chin. Chem. Lett. 2022, 33, 1337-1342.
doi: 10.1016/j.cclet.2021.08.008
Xia, Z.; Shi, B.; Zhu, W.; Lü, C. Temperature-responsive polymer-tethered Zr-porphyrin MOFs encapsulated carbon dot nanohybrids with boosted visible-light photodegradation for organic contaminants in water. Chem. Eng. J. 2021, 426, 131794.
doi: 10.1016/j.cej.2021.131794
Wang, J.; Cao, C.; Wang, J.; Zhang, Y.; Zhu, L. Insights into highly efficient photodegradation of poly/perfluoroalkyl substances by In-MOF/BiOF heterojunctions: built-in electric field and strong surface adsorption. Appl. Catal. B Environ. 2022, 304, 121013.
doi: 10.1016/j.apcatb.2021.121013
Chen, P.; He, X.; Pang, M.; Dong, X.; Zhao, S.; Zhang, W. Iodine capture using Zr-based Metal-Organic Frameworks (Zr MOFs): adsorption performance and mechanism. ACS Appl. Mater. Interfaces 2020, 12, 20429-20439.
doi: 10.1021/acsami.0c02129
Gao, K.; Li, H.; Meng, Q.; Wu, J.; Hou, H. Efficient and selective visible-light-driven oxidative coupling of amines to imines in air over CdS@Zr-MOFs. ACS Appl. Mater. Interfaces 2021, 13, 2779-2787.
doi: 10.1021/acsami.0c21007
Huang, G.; Chen, J.; Huang, Y.; Wu, K.; Luo, D.; Jin, J.; Zheng, J.; Xu, S.; Lu, W. Mixed-linker isoreticular Zn(Ⅱ) metal-organic frameworks as Brønsted acid-base bifunctional catalysts for Knoevenagel condensation reactions. Inorg. Chem. 2022, DOI:10.1021/acs.inorgchem.2c00941.
doi: 10.1021/acs.inorgchem.2c00941
Tang, D.; Yang, X.; Wang, B.; Ding, Y.; Xu, S.; Liu, J.; Peng, Y.; Yu, X.; Su, Z.; Qin, X. One-step electrochemical growth of 2D/3D Zn(Ⅱ)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay. ACS Appl. Mater. Interfaces 2021, 13, 46225-46232.
doi: 10.1021/acsami.1c09095
Yuan, S.; Qin, J.; Xu, H.; Su, J.; Daniel, R.; Chen, Y.; Zhang, L.; Christina, L.; Wang, Q.; Son, D.; Xu, H.; Huang, Z.; Zou, X.; Zhou, H. [Ti8Zr2O12(COO)16] cluster: an ideal inorganic building unit for photoactive metal-organic frameworks. ACS Cent. Sci. 2018, 4, 105-111.
doi: 10.1021/acscentsci.7b00497
Ha, L.; Thanh, T.; Dinh, L.; Tan, L.; Viet, Q.; Nam, T. A Titaniumorganic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 2017, 7, 338-342.
doi: 10.1021/acscatal.6b02642
Vieira, C.; Maurin, G.; Leitão, A. Computational exploration of the catalytic degradation of sarin and its simulants by a titanium metal-organic framework. J. Phys. Chem. C 2019, 123, 19077-19086.
doi: 10.1021/acs.jpcc.9b05838
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Ziyi Zhu , Yang Cao , Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063