Citation: Lei Xie, Chaoqin Huang, Zhaofeng Liang, Hongbing Wang, Zheng Jiang, Fei Song. In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221002. doi: 10.14102/j.cnki.0254-5861.2022-0136 shu

In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces



  • Author Bio: Lei Xie received her PhD degree in materials science and technology from Tongji University in 2019. Afterwards, she became an engineer at Shanghai Advanced Research Institute, Chinese Academy of Sciences. Her research interest focuses on the characterization of physical and chemical properties of surfaces, especially by scanning tunneling microscopy




    Fei Song received his PhD degree in Condensed Matter Physics from Zhejiang University and Aarhus University in 2009. He then moved to Norwegian and the Netherlands for postdoctoral research. He became an independent research fellow at Shanghai Institute of Applied Physics, Chinese Academy of Sciences in 2015, and is now a full professor at Shanghai Synchrotron Radiation Facility. His research interest is mainly focused on novel nanostructures characterization and manipulation at surface and interface
  • Corresponding author: Lei Xie, xiel@sari.ac.cn Fei Song, songf@sari.ac.cn
  • Received Date: 25 May 2022
    Accepted Date: 13 June 2022
    Available Online: 17 June 2022

Figures(14)

  • Heterogeneous catalysis taking place at solid interfaces plays a crucial role not only in industrial chemical production, energy conversion but also in fundamental research. The dynamic evolution of surface morphology and composition requires full understanding especially under realistic reaction conditions. To this end, conventional scanning tunneling microscopy (STM) has been integrated with high pressure cell and electrochemical cell, forming high pressure (HP) STM and electrochemical (EC) STM for the in-situ/operando characterization at solid-gas and solid-liquid interfaces with atomic resolution, respectively. In this review, we attempt to give a brief introduction to the development and working principle of these two techniques and subsequently summarize several representative progresses in recent days. The dynamic changes in active sites, surface reconstruction, absorbates alteration and products formation are directly characterized in a combination with other surface sensitive technologies. The correlation between surface structures and catalytic performance as well as the underlying mechanism can thus be unraveled, which provides insights into the rational design and optimization of catalysts.
  • 加载中
    1. [1]

      Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487-3539.  doi: 10.1021/cr5002657

    2. [2]

      Mizuno, N.; Misono, M. Heterogeneous catalysis. Chem. Rev. 1998, 98, 199-218.  doi: 10.1021/cr960401q

    3. [3]

      Wang, H. Chapter 16 discovering and utilizing structure sensitivity: from chemical catalysis in the gas phase to electrocatalysis in the liquid phase. Stud. Surf. Sci. Catal. 2017, 177, 613-641.

    4. [4]

      Le Bailly, B. Heterogeneous catalysis: the importance of interfacial interactions. Nat. Rev. Chem. 2018, 2, 0132.  doi: 10.1038/s41570-018-0132

    5. [5]

      Feng, K.; Wang, Y.; Guo, M.; Zhang, J.; Li, Z.; Deng, T.; Zhang, Z.; Yan, B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. J. Energy Chem. 2021, 62, 153-171.  doi: 10.1016/j.jechem.2021.03.054

    6. [6]

      Xie, L.; Zhang, C.; Ding, Y.; Xu, W. Structural transformation and stabilization of metal-organic motifs induced by halogen doping. Angew. Chem. Int. Ed. 2017, 56, 5077-5081.  doi: 10.1002/anie.201702589

    7. [7]

      Yang, Y.; Wang, C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589.  doi: 10.1039/b807500j

    8. [8]

      Hu, J.; Liang, Z.; Shen, K.; Xie, L.; Zhang, H.; Huang, C.; Huang, Y.; Huang, H.; Tang, J.; Jiang, Z.; Yu, M.; Song, F. Identifying the convergent reaction path from predesigned assembled structures: dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Res. 2021, 14, 4704-4713.  doi: 10.1007/s12274-021-3409-9

    9. [9]

      Fan, Q.; Gottfried, J. M.; Zhu, J. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Accounts Chem. Res. 2015, 48, 2484-2494.  doi: 10.1021/acs.accounts.5b00168

    10. [10]

      Somorjai, G. A.; York, R. L.; Butcher, D.; Park, J. Y. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (< 10−3 Torr) to high pressure (> 10−3 Torr) to liquid interfaces. Phys. Chem. Chem. Phys. 2007, 9, 3500-3513.  doi: 10.1039/B618805B

    11. [11]

      Tao, F.; Nguyen, L.; Zhang, S. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies. Rev. Sci. Instrum. 2013, 84, 034101.  doi: 10.1063/1.4792673

    12. [12]

      Yoshimoto, S.; Itaya, K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: nanoscale aspects. Annu. Rev. Anal. Chem. 2013, 213-235.

    13. [13]

      Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178-180.  doi: 10.1063/1.92999

    14. [14]

      Binnig, G.; Rohrer, H. The scanning tunneling microscope. Sci. Am. 1985, 253, 50-50.  doi: 10.1038/scientificamerican0885-50

    15. [15]

      Hla, S. -W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 2005, 24, 1351-1360.

    16. [16]

      Zhao, A.; Li, Q.; Chen, L.; Xiang, H.; Wang, W.; Pan, S.; Wang, B.; Xiao, X.; Yang, J.; Hou, J. G.; Zhu, Q. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542-1544.  doi: 10.1126/science.1113449

    17. [17]

      Xie, L.; Lin, H.; Zhang, C.; Li, J.; Merino-Díez, N.; Friedrich, N.; Bouju, X.; Li, Y.; Pascual, J. I.; Xu, W. Switching the spin on a Ni trimer within a metal-organic motif by controlling the on-top bromine atom. ACS Nano 2019, 13, 9, 9936-9943.

    18. [18]

      Iancu, V.; Deshpande, A.; Hla, S. -W. Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 2006, 97, 266603.  doi: 10.1103/PhysRevLett.97.266603

    19. [19]

      Kong, H.; Zhang, C.; Xie, L.; Wang, L.; Xu, W. Constitutional dynamics of metal-organic motifs on a Au(111) surface. Angew. Chem. Int. Ed. 2016, 55, 7157-7160.  doi: 10.1002/anie.201602572

    20. [20]

      Stipe, B. C.; Rezaei, M. A.; Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 1998, 280, 1732.  doi: 10.1126/science.280.5370.1732

    21. [21]

      Lauhon, L. J.; Ho, W. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 2000, 85, 4566.  doi: 10.1103/PhysRevLett.85.4566

    22. [22]

      Ternes, M.; Heinrich, A. J.; Schneider, W. D. Spectroscopic manifestations of the kondo effect on single adatoms. J. Phys. : Condens. Matter 2009, 21, 053001.  doi: 10.1088/0953-8984/21/5/053001

    23. [23]

      Zhan, G.; Cai, Z. F.; Strutyński, K.; Yu, L.; Herrmann, N.; Martínez-Abadía, M.; Melle-Franco, M.; Mateo-Alonso, A.; De Feyter, S. Observing polymerization in 2D dynamic covalent polymers. Nature 2022, 603, 835-840.  doi: 10.1038/s41586-022-04409-6

    24. [24]

      Li, J.; Qian, Y.; Duan, W.; Zeng, Q. Advances in the study of the host-guest interaction by using coronene as the guest molecule. Chin. Chem. Lett. 2019, 30, 292-298.  doi: 10.1016/j.cclet.2018.05.037

    25. [25]

      Mali, K. S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. Acc. Chem. Res. 2012, 45, 1309-1320.  doi: 10.1021/ar200342u

    26. [26]

      Xu, L.; Yanga, L.; Lei, S. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties. Nanoscale 2012, 4, 4399-4415.  doi: 10.1039/c2nr30122a

    27. [27]

      McIntyre, B. J.; Salmeron, M.; Somorjai, G. A. In situ scanning tunneling microscopy study of platinum (110) in a reactor cell at high pressures and temperatures. J. Vac. Sci. Technol. 1993, 11, 1964.  doi: 10.1116/1.578531

    28. [28]

      Laegsgaard, E.; Österlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537.  doi: 10.1063/1.1389497

    29. [29]

      Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; van Spronsen, M. A.; Bergman, M.; Crama, L.; Taminiau, I.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M. The reactor STM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions. Rev. Sci. Instrum. 2014, 85, 083703.  doi: 10.1063/1.4891811

    30. [30]

      Gentza, K.; Wandelt, K. Electrochemical scanning tunneling microscopy. Chimia 2012, 66, 44-51.  doi: 10.2533/chimia.2012.44

    31. [31]

      Tao, N. J.; Li, C. Z.; He, H. X. Scanning tunneling microscopy applications in electrochemistry—beyond imaging. J. Electroanal. Chem. 2000, 492, 81-93.  doi: 10.1016/S0022-0728(00)00295-3

    32. [32]

      Feng, H.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 2021, 4, 249-268.  doi: 10.1007/s41918-020-00074-3

    33. [33]

      Liang, Y.; Pfisterer, J. H. K.; McLaughlin, D.; Csoklich, C.; Seidl, L.; Bandarenka, A. S.; Schneider, O. Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 2018, 1800387.

    34. [34]

      Abelev, E.; Sezin, N.; Ein-Eli, Y. An alternative isolation of tungsten tips for a scanning tunneling microscope. Rev. Sci. Instrum. 2005, 76, 106105.  doi: 10.1063/1.2075187

    35. [35]

      Salerno, M. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides. Rev. Sci. Instrum. 2010, 81, 093703.  doi: 10.1063/1.3484191

    36. [36]

      Zhang, H.; Sun, H.; Shen, K.; Hu, J.; Hu, J.; Jiang, Z.; Song, F. Recent progress with in situ characterization of interfacial structures under a solid-gas atmosphere by HP-STM and AP-XPS. Materials 2019, 12, 3674.  doi: 10.3390/ma12223674

    37. [37]

      Ning, Y.; Li, Y.; Wang, C.; Li, R.; Zhang, F.; Zhang, S.; Wang, Z.; Yang, F.; Zong, N.; Peng, Q.; Xu, Z.; Wang, X.; Li, R.; Breitschaft, M.; Hagen, S.; Schaff, O.; Fu, Q.; Bao, X. Tunable deep ultraviolet laser based near ambient pressure photoemission electron microscope for surface imaging in the millibar regime. Rev. Sci. Instrum. 2020, 91, 113704.  doi: 10.1063/5.0016242

    38. [38]

      Feng, K.; Wang, Y.; Guo, M.; Zhang, J.; Li, Z.; Deng, T.; Zhang, Z.; Yan, B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. J. Energy Chem. 2021, 62, 153-171.  doi: 10.1016/j.jechem.2021.03.054

    39. [39]

      Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521-2531.  doi: 10.1021/acscatal.8b04937

    40. [40]

      Wan, J.; Song, Y. -X.; Chen, W. -P.; Guo, H. -J.; Shi, Y.; Guo, Y. -J.; Shi, J. -L.; Guo, Y. -G.; Jia, F. -F.; Wang, F. -Y.; Wen, R.; Wan, L. -J. Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J. Am. Chem. Soc. 2021, 143, 839-848.  doi: 10.1021/jacs.0c10121

    41. [41]

      Li, S.; Wang, C.; Meng, C.; Ning, Y.; Zhang, G.; Fu, Q. Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations. J. Energy Chem. 2022, 67, 718-726.  doi: 10.1016/j.jechem.2021.10.003

    42. [42]

      Feng, C.; Liu, X.; Zhu, T.; Tian, M. Catalytic oxidation of CO on noble metal-based catalysts. Environ. Sci. Pollut. Res. 2021, 28, 24847-24871.  doi: 10.1007/s11356-021-13008-3

    43. [43]

      Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Salmeron, M.; Somorjai, G. A. Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. Nano Lett. 2009, 9, 2167-2171.  doi: 10.1021/nl900809u

    44. [44]

      van Spronsen, M. A.; van Baarle, G. J. C.; Herbschleb, C. T.; Frenken, J. W. M.; Groot, I. M. N. High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110). Catal. Today 2015, 244, 85-95.  doi: 10.1016/j.cattod.2014.07.008

    45. [45]

      Thostrup, P.; Kruse Vestergaard, E.; An, T.; Lægsgaard, E.; Besenbacher, F. CO-induced restructuring of Pt(110)-(1×2): bridging the pressure gap with high-pressure scanning tunneling microscopy. J. Chem. Phys. 2003, 118, 3724.  doi: 10.1063/1.1540611

    46. [46]

      Hofmann, P.; Bare, S. R.; King, D. A. Surface phase transitions in Co chemisorption on Pt{110}. Surf. Sci. 1982, 117, 245-256.  doi: 10.1016/0039-6028(82)90505-2

    47. [47]

      Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Lægsgaard, E.; Stensgaard, I.; Brune, H.; Besenbacher, F. High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 14497-14502.  doi: 10.1021/jp0492218

    48. [48]

      Wu, H.; Ren, P.; Zhao, P.; Gong, Z.; Wen, X.; Cui, Y.; Fu, Q.; Bao, X. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Res. 2019, 12, 85-90.  doi: 10.1007/s12274-018-2184-8

    49. [49]

      Nguyen, L.; Cheng, F.; Zhang, S.; Tao, F. Visualization of surfaces of Pt and Ni model catalysts in reactive environments using ambient pressure high temperature scanning tunneling microscopy and understanding the restructurings of surfaces of model metal catalysts under reaction conditions at near ambient pressure. J. Phys. Chem. C 2013, 117, 971-977.  doi: 10.1021/jp3086842

    50. [50]

      Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850.  doi: 10.1126/science.1182122

    51. [51]

      Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. Thermal evolution and instability of CO-induced platinum clusters on the Pt(557) surface at ambient pressure. J. Am. Chem. Soc. 2016, 138, 1110-1113.  doi: 10.1021/jacs.5b10628

    52. [52]

      Rider, K. B.; Hwang, K. S.; Salmeron, M.; Somorjai, G. A. High-pressure (1 Torr) scanning tunneling microscopy (STM) study of the coadsorption and exchange of CO and NO on the Rh(111) crystal face. J. Am. Chem. Soc. 2002, 124, 5588-5593.  doi: 10.1021/ja020055w

    53. [53]

      Cernota, P.; Rider, K.; Yoon, H. A.; Salmeron, M.; Somorjai, G. Dense structures formed by CO on Rh(111) studied by scanning tunneling microscopy. Surf. Sci. 2000, 445, 249-255.  doi: 10.1016/S0039-6028(99)01073-0

    54. [54]

      Eren, B.; Liu, Z.; Stacchiola, D.; Somorjai, G. A.; Salmeron, M. Structural changes of Cu(110) and Cu(110)-(2 × 1)‑O surfaces under carbon monoxide in the Torr pressure range studied with scanning tunneling microscopy and infrared reflection absorption spectroscopy. J. Phys. Chem. C 2016, 120, 8227-8231.  doi: 10.1021/acs.jpcc.6b02143

    55. [55]

      Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, C. H.; Bluhm, H.; Africh, C.; Wang, L. -W.; Somorjai, G. A.; Salmeron, M. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475-478.  doi: 10.1126/science.aad8868

    56. [56]

      Eren, B.; Zherebetskyy, D.; Hao, Y.; Patera, L. L.; Wang, L. -W.; Somorjai, G. A.; Salmeron, M. One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range. Surf. Sci. 2016, 651, 210-214.  doi: 10.1016/j.susc.2016.04.016

    57. [57]

      Piccolo, L.; Loffreda, D.; Cadete Santos Aires, F. J.; Deranlot, C.; Jugnet, Y.; Sautet, P.; Bertolini, J. C. The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations. Surf. Sci. 2004, 566-568, 995-1000.

    58. [58]

      Kim, J.; Ha, H.; Doh, W. H.; Ueda, K.; Mase, K.; Kondoh, H.; Mun, B. S.; Kim H. Y.; Park, J. Y. How Rh surface breaks CO2 molecules under ambient pressure. Nat. Commun. 2020, 11, 5649.  doi: 10.1038/s41467-020-19398-1

    59. [59]

      Rider, K. B.; Hwang, K. S.; Salmeron, M.; Somorjai, G. A. Structure and dynamics of dense monolayers of NO adsorbed on Rh(111) in equilibrium with the gas phase in the Torr pressure range. Phys. Rev. Lett. 2001, 86, 4330-4333.  doi: 10.1103/PhysRevLett.86.4330

    60. [60]

      Osterlund, L.; Rasmussen, P. B.; Thostrup, P.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys. Rev. Lett. 2001, 86, 460-463.  doi: 10.1103/PhysRevLett.86.460

    61. [61]

      Eren, B.; Weatherup, R. S.; Liakakos, N.; Somorjai, G. A.; Salmeron, M. Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures. J. Am. Chem. Soc. 2016, 138, 8207-8211.  doi: 10.1021/jacs.6b04039

    62. [62]

      Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning tunneling microscopy (STM) at high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal surfaces. Catal. Lett. 2006, 107, 131-140.  doi: 10.1007/s10562-005-0015-5

    63. [63]

      Salmeron, M.; Eren, B. High-pressure scanning tunneling microscopy. Chem. Rev. 2021, 121, 962-1006.  doi: 10.1021/acs.chemrev.0c00429

    64. [64]

      Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. In situ observation of competitive CO and O2 adsorption on the Pt(111) surface with near-ambient pressure STM. J. Phys. Chem. C 2018, 122, 6246-6254.  doi: 10.1021/acs.jpcc.8b01672

    65. [65]

      Xu, Y.; Li, J.; Li, W.; Li, W.; Zhang, X.; Zhao, Y.; Xie, J.; Wang, X.; Liu, X.; Li, Y.; Xiao, D.; Yin, Z.; Cao, Y.; Ma, D. Direct conversion of CO and H2O into liquid fuels under mild conditions. Nat. Commun. 2019, 10, 1389.  doi: 10.1038/s41467-019-09396-3

    66. [66]

      Navarro, V.; van Spronsen, M.; Frenken, J. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst. Nat. Chem. 2016, 8, 929-934.  doi: 10.1038/nchem.2613

    67. [67]

      Anderson, R. B. The Fischer-Tropsch Synthesis (Academic, 1984).

    68. [68]

      Böller, B.; Ehrensperger, M.; Wintterlin, J. In situ scanning tunneling microscopy of the dissociation of CO on Co(0001). ACS Catal. 2015, 5, 6802-6806.  doi: 10.1021/acscatal.5b01684

    69. [69]

      Böller, B.; Durner, K. M.;   Wintterlin , J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunneling microscopy. Nat. Catal. 2019, 2, 1027-1034.  doi: 10.1038/s41929-019-0360-1

    70. [70]

      Yu, W.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780-5817.  doi: 10.1021/cr300096b

    71. [71]

      Zhang, H.; Liang, Z.; Huang, C.; Xie, L.; Wang, H.; Hu, J.; Jiang, Z.; Song, F. Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect. J. Catal. 2022, 410, 1-9.  doi: 10.1016/j.jcat.2022.04.001

    72. [72]

      Dong, J.; Fu, Q.; Li, H.; Xiao, J.; Yang, B.; Zhang, B.; Bai, Y.; Song, T.; Zhang, R.; Gao, L.; Cai, J.; Zhang, H.; Liu, Z.; Bao, X. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167-17174.  doi: 10.1021/jacs.0c08139

    73. [73]

      Rodríguez, J. A.; Hrbek, J. Inverse oxide/metal catalysts: a versatile approach for activity tests and mechanistic studies. Surf. Sci. 2010, 604, 241-244.  doi: 10.1016/j.susc.2009.11.038

    74. [74]

      Liu, Y.; Ning, Y.; Yu, L.; Zhou, Z.; Liu, Q.; Zhang, Y.; Chen, H.; Xiao, J.; Liu, P.; Yang, F.; Bao, X. Structure and electronic properties of interface-confined oxide nanostructures. ACS Nano. 2017, 11, 11449-11458.  doi: 10.1021/acsnano.7b06164

    75. [75]

      Fu, Q.; Li, W. -X.; Yao, Y.; Liu, H.; Su, H. -Y.; Ma, D.; Gu, X. -K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141-1144.  doi: 10.1126/science.1188267

    76. [76]

      Liu, Q.; Li, Y.; Zhao, X.; Zhu, B.; Yi, Z.; Yang, F.; Bao, X. Dynamic structural changes of iron oxide nanostructures on Cu(111). J. Phys. Chem. C 2022, 126, 2041-2048.  doi: 10.1021/acs.jpcc.1c08309

    77. [77]

      Li, Y.; Zhao, X.; Cui, Y.; Yang, F.; Bao, X. Oxidation-induced structural transition of two-dimensional iron oxide on Au(111). J. Phys. D: Appl. Phys. 2021, 54, 204003.  doi: 10.1088/1361-6463/abe66d

    78. [78]

      Liu, Y.; Zhang, R.; Ling, Y.; Lin, L.; Mu, R.; Fu, Q. Dynamic structural evolution of Mn-Au alloy and MnOx nanostructures on Au(111) under different atmospheres. J. Phys. Chem. C 2021, 125, 15335-15342.  doi: 10.1021/acs.jpcc.1c04195

    79. [79]

      Suchorski, Y.; Wrobel, R.; Becker, S.; Weiss, H. CO oxidation on a CeOx/Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams. J. Phys. Chem. C 2008, 112, 20012-20017.  doi: 10.1021/jp806033v

    80. [80]

      Kersell, H.; Hooshmand, Z.; Yan, G.; Le, D.; Nguyen, H.; Eren, B.; Wu, C. H.; Waluyo, I.; Hunt, A.; Nemšák, S.; Somorjai, G.; Rahman, T. S.; Sautet, P.; Salmeron, M. CO oxidation mechanisms on CoOx-Pt thin films. J. Am. Chem. Soc. 2020, 142, 8312-8322.  doi: 10.1021/jacs.0c01139

    81. [81]

      Huang, W.; Liu, Q.; Zhou, Z.; Li, Y.; Ling, Y.; Wang, Y.; Tu, Y.; Wang, B.; Zhou, X.; Deng, D.; Yang, B.; Yang, Y.; Liu, Z.; Bao, X.; Yang, F. Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nat. Commun. 2020, 11, 2312.  doi: 10.1038/s41467-020-15965-8

    82. [82]

      Liu, Q.; Li, Y.; Zhao, X.; Zhu, B.; Yi, Z.; Yang, F.; Bao, X. Dynamic structural changes of iron oxide nanostructures on Cu(111). J. Phys. Chem. C 2022, 126, 2041-2048.  doi: 10.1021/acs.jpcc.1c08309

    83. [83]

      Baber, A. E.; Xu, F.; Dvorak, F.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Sadowski, J. T.; Rodriguez, J. A.; Matolin, V.; White, M. G.; Stacchiola, D. J. In situ imaging of Cu2O under reducing conditions: formation of metallic fronts by mass transfer. J. Am. Chem. Soc. 2013, 135, 16781-16784.  doi: 10.1021/ja408506y

    84. [84]

      Mao, J.; Wang, Y.; Zheng, Z.; Deng, D. The rise of two-dimensional MoS2 for catalysis. Front. Phys. 2018, 13, 138118.  doi: 10.1007/s11467-018-0812-0

    85. [85]

      Chen, T. A.; Chuu, C. -P.; Tseng, T. -T.; Wen, C. -K.; Philip Wong, H. -S.; Pan, S.; Li, R.; Chao, T. -A.; Chueh, W. -C.; Zhang, Y.; Fu, Q.; Yakobson, B. I.; Chang, W. H.; Li, L. -J. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 2020, 579, 219-223.  doi: 10.1038/s41586-020-2009-2

    86. [86]

      Fan, X.; Zhang, G.; Zhang, F. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023-3035.  doi: 10.1039/C5CS00094G

    87. [87]

      Lauritsen, J. V.; Bollinger, M. V.; Lægsgaard, E.; Jacobsen, K. W.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 2004, 221, 510-522.  doi: 10.1016/j.jcat.2003.09.015

    88. [88]

      Mom, R. V.; Louwen, J. N.; Frenken, J. W. M.; Groot, I. M. N. In situ observations of an active MoS2 model hydrodesulfurization catalyst. Nat. Commun. 2019, 10, 2546.  doi: 10.1038/s41467-019-10526-0

    89. [89]

      Gewirth, A. A.; Niece, B. K. Electrochemical applications of in situ scanning probe microscopy. Chem. Rev. 1997, 97, 1129-1162.  doi: 10.1021/cr960067y

    90. [90]

      Itaya, K.; Tomita, E. Scanning tunneling microscope for electrochemistry—a new concept for the in situ scanning tunneling microscope in electrolyte solutions. Surf. Sci. 1988, 201, L507-L512.  doi: 10.1016/0039-6028(88)90489-X

    91. [91]

      Itaya, K. In situ scanning tunneling microscopy in electrolyte solutions. Prog. Surf. Sci. 1988, 58, 121-247.

    92. [92]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisla, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.  doi: 10.1039/c0ee00071j

    93. [93]

      Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. USA. 2017, 114, 5918-5923.  doi: 10.1073/pnas.1618935114

    94. [94]

      Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 2002, 102, 679-725.  doi: 10.1021/cr000069p

    95. [95]

      Matsushima, H.; Taranovskyy, A.; Haak, C.; Gründer, Y.; Magnussen, O. M. Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. J. Am. Chem. Soc. 2009, 131, 10362-10363.  doi: 10.1021/ja904033t

    96. [96]

      Kim, Y. -G.; Javier, A.; Baricuatro, J. H.; Torelli, D.; Cummins, K. D.; Tsang, C. F.; Hemminger, J. C.; Soriaga, M. P. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 2016, 290-295.

    97. [97]

      Kolb, D. M.; Schneider, J. The study of reconstructed electrode surfaces: Au(100)-(5 x 20). Surf. Sci. 1998, 162, 764-775.

    98. [98]

      Magnussen, O. M.; Beitel, G.; Behm, R. J.; Hotlos, J.; Kolb, D. M. Atomic structure of ordered copper adlayers on single-crystalline gold electrodes. J. Vac. Sci. Technol. B 1991, 9, 969.  doi: 10.1116/1.585505

    99. [99]

      Zuili, D.; Maurice, V.; Marcus, P. Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy. J. Electrochem. Soc. 2000, 147, 1393-1400.  doi: 10.1149/1.1393367

    100. [100]

      del Barrio, M. C.; García, S. G.; Salinas, D. R. Alloy formation in the system Au(111)/Cd during the UPD process. Electrochem. Commun. 2004, 6, 762-766.  doi: 10.1016/j.elecom.2004.05.022

    101. [101]

      Bondos, J. C.; Andrew, A. G.; Ralph, G. N. Observation of uni-axial structures of under potentially deposited cadmium on Au(111) with in situ scanning tunneling microscopy. J. Phys. Chem. 1996, 100, 8617-8620.  doi: 10.1021/jp960569f

    102. [102]

      Damian, A.; Maroun, F.; Allongue, P. Electrochemical growth and dissolution of Ni on bimetallic Pd/Au(111) substrates. Electrochim. Acta 2010, 55, 8087-8099.  doi: 10.1016/j.electacta.2010.03.067

    103. [103]

      Di, N.; Damian, A.; Maroun, F.; Allongue, P. Infuence of potential on the electrodeposition of Co on Au(111) by in situ STM and refectivity measurements. J. Electrochem. Soc. 2016, 163, D3062-D3068.  doi: 10.1149/2.0091612jes

    104. [104]

      Inukai, J.; Osawa, Y.; Wakisaka, M.; Sashikata, K.; Kim, Y. -G.; Itaya, K. Underpotential deposition of copper on iodine-modified Pt(111):   in situ STM and ex situ LEED studies. J. Phys. Chem. B 1998, 102, 3498-3505.

    105. [105]

      Stumm, C. Structural dynamics of ultrathin cobalt oxide nanoislands under potential control. Adv. Funct. Mater. 2021, 31, 2009923.  doi: 10.1002/adfm.202009923

    106. [106]

      Sato, K.; Yoshimoto, S.; Inukai, J.; Itaya, K. Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode. Electrochem. Commun. 2006, 8, 725-730.  doi: 10.1016/j.elecom.2006.03.001

    107. [107]

      Bae, S. -E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. J. Am. Chem. Soc. 2007, 129, 10171-10180.  doi: 10.1021/ja071330n

    108. [108]

      Yamada, T.; Batina, N.; Itaya, K. Interfacial structure of iodine electrodeposited on Au(111): studies by LEED and in situ STM. Surf. Sci. 1995, 335, 204-209.  doi: 10.1016/0039-6028(95)00417-3

    109. [109]

      Takada, M.; Tada, H. Low temperature scanning tunneling microscopy of phthalocyanine multilayers on Au(111) surfaces. Chem. Phys. Lett. 2004, 392, 265-269.  doi: 10.1016/j.cplett.2004.04.121

    110. [110]

      Sedona, F.; Di Marino, M.; Forrer, D.; Vittadini, A.; Casarin, M.; Cossaro, A.; Floreano, L.; Verdini, A.; Sambi, M. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nat. Mater. 2012, 11, 970-977.  doi: 10.1038/nmat3453

    111. [111]

      Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240-9244.

    112. [112]

      Suto, K.; Yoshimoto, S.; Itaya, K. Electrochemical control of the structure of two-dimensional supramolecular organization consisting of phthalocyanine and porphyrin on a gold single-crystal surface. Langmuir 2006, 22, 10766-10776.  doi: 10.1021/la061257z

    113. [113]

      Phan, T. H.; Kosmala, T.; Wandelt, K. Potential dependence of self-assembled porphyrin layers on a Cu(111) electrode surface: in-situ STM study. Surf. Sci. 2015, 631, 207-212.  doi: 10.1016/j.susc.2014.07.034

    114. [114]

      Wang, X.; Cai, Z. F.; Wang, Y. Q.; Feng, Y. C.; Yan, H. J.; Wang, D.; Wan, L. J. In situ scanning tunneling microscopy of cobalt-phthalocya-nine-catalyzed CO2 reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 16098-16103.  doi: 10.1002/anie.202005242

    115. [115]

      Cai, Z. F.; Wang, X.; Wang, D.; Wan. L. J. Cobalt-porphyrins catalyzed oxygen reduction reaction: a scanning tunneling microscopy study. ChemElectroChem 2016, 3, 2048-2051.  doi: 10.1002/celc.201600435

    116. [116]

      Wang, X.; Cai, Z. F.; Wang, D.; Wan, L. J. Molecular evidence for the catalytic process of cobalt porphyrin catalyzed oxygen evolution reaction in alkaline solution. J. Am. Chem. Soc. 2019, 141, 7665-7669.  doi: 10.1021/jacs.9b01229

    117. [117]

      Magnussen, O. M.; Zitzler, L.; Gleich, B.; Vogt, M. R.; Behm, R. J. In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochimica Acta 2001, 46, 3725-3733.  doi: 10.1016/S0013-4686(01)00654-5

    118. [118]

      Magnussen, O. M.; Polewska, W.; Zitzler, L.; Behm, R. J. In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss. 2002, 121, 43-52.  doi: 10.1039/b200016b

    119. [119]

      Magnussen, O. M.; Groß, A. Toward an atomic-scale understanding of electrochemical interface structure and dynamics. J. Am. Chem. Soc. 2019, 141, 4777-4790.  doi: 10.1021/jacs.8b13188

    120. [120]

      Matsushima, H.; Haak, C.; Taranovskyy, A.; Gründer, Y.; Magnussen, O. M. In situ video STM studies of the hydrogen-induced reconstruction of Cu(100): potential and pH dependence. Phys. Chem. Chem. Phys. 2010, 12, 13992-13998.  doi: 10.1039/c0cp00659a

    121. [121]

      Wei, J.; Chen, Y. -X.; Magnussen, O. M. Electrochemical in situ video-STM studies of the phase transition of CO adlayers on Pt(111) electrodes. J. Phys. Chem. C 2021, 125, 3066-3072.

    122. [122]

      Wen, R.; Rahn, B.; Magnussen, O. M. In situ video-STM study of adlayer structure and surface dynamics at the ionic liquid/Au(111) interface. J. Phys. Chem. C 2016, 120, 15765-15771.  doi: 10.1021/acs.jpcc.5b11590

    123. [123]

      Lemke, S.; Chang, C. -H.; Jung, U.; Magnussen, O. M. Reversible potential-induced switching of alkyl chain aggregation in octyl-triazatri-angulenium adlayers on Au(111). Langmuir 2015, 31, 3115-3124.  doi: 10.1021/acs.langmuir.5b00545

    124. [124]

      Tansel, T.; Taranovskyy, A.; Magnussen, O. M. In situ video-STM studies of adsorbate dynamics at electrochemical interfaces. ChemPhysChem 2010, 11, 1438-1445.  doi: 10.1002/cphc.200900939

    125. [125]

      Yang, Y. C.; Taranovskyy, A.; Magnussen O. M. In situ video-STM studies of methyl thiolate surface dynamics and self-assembly on Cu(100) electrodes. Langmuir 2012, 28, 14143-14154.  doi: 10.1021/la302939f

    126. [126]

      Matsushima, H.; Lin, S. -W.; Morin, S.; Magnussen. O. M. In situ video-STM studies of the mechanisms and dynamics of electrochemical bismuth nanostructure formation on Au. Faraday Discuss. 2016, 193, 171.  doi: 10.1039/C6FD00086J

    127. [127]

      Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74-77.  doi: 10.1038/nature23661

    128. [128]

      Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H.; Durante, C.; Valentin, C. D.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces. Nat. Catal. 2021, 4, 850-859.  doi: 10.1038/s41929-021-00682-2

    129. [129]

      Haid, R. W; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710.  doi: 10.1002/smtd.202000710

    130. [130]

      Kluge, R. M.; Haid, R. W.; Bandarenka, A. S. Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface. J. Catal. 2021, 396, 14-22.  doi: 10.1016/j.jcat.2021.02.007

    131. [131]

      Liang, Y.; Csoklich, C.; McLaughlin, D.; Schneider, O.; Bandarenka, A. S. Revealing active sites for hydrogen evolution at Pt and Pd atomic layers on Au surfaces. ACS Appl. Mater. Interfaces 2019, 11, 12476-12480.  doi: 10.1021/acsami.8b22146

    132. [132]

      Liang, Y.; McLaughlin, D.; Csoklich, C.; Schneider, O.; Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 2019, 12, 351-357.  doi: 10.1039/C8EE03228A

  • 加载中
    1. [1]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    4. [4]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    5. [5]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    8. [8]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    9. [9]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    10. [10]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    11. [11]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    12. [12]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    13. [13]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    14. [14]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    15. [15]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    16. [16]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    17. [17]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    20. [20]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

Metrics
  • PDF Downloads(4)
  • Abstract views(269)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return