In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces
- Corresponding author: Lei Xie, xiel@sari.ac.cn Fei Song, songf@sari.ac.cn
Citation: Lei Xie, Chaoqin Huang, Zhaofeng Liang, Hongbing Wang, Zheng Jiang, Fei Song. In-Situ HP-STM and Operando EC-STM Studies of Heterogeneous Catalysis at Interfaces[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221002. doi: 10.14102/j.cnki.0254-5861.2022-0136
Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487-3539.
doi: 10.1021/cr5002657
Mizuno, N.; Misono, M. Heterogeneous catalysis. Chem. Rev. 1998, 98, 199-218.
doi: 10.1021/cr960401q
Wang, H. Chapter 16 discovering and utilizing structure sensitivity: from chemical catalysis in the gas phase to electrocatalysis in the liquid phase. Stud. Surf. Sci. Catal. 2017, 177, 613-641.
Le Bailly, B. Heterogeneous catalysis: the importance of interfacial interactions. Nat. Rev. Chem. 2018, 2, 0132.
doi: 10.1038/s41570-018-0132
Feng, K.; Wang, Y.; Guo, M.; Zhang, J.; Li, Z.; Deng, T.; Zhang, Z.; Yan, B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. J. Energy Chem. 2021, 62, 153-171.
doi: 10.1016/j.jechem.2021.03.054
Xie, L.; Zhang, C.; Ding, Y.; Xu, W. Structural transformation and stabilization of metal-organic motifs induced by halogen doping. Angew. Chem. Int. Ed. 2017, 56, 5077-5081.
doi: 10.1002/anie.201702589
Yang, Y.; Wang, C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589.
doi: 10.1039/b807500j
Hu, J.; Liang, Z.; Shen, K.; Xie, L.; Zhang, H.; Huang, C.; Huang, Y.; Huang, H.; Tang, J.; Jiang, Z.; Yu, M.; Song, F. Identifying the convergent reaction path from predesigned assembled structures: dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Res. 2021, 14, 4704-4713.
doi: 10.1007/s12274-021-3409-9
Fan, Q.; Gottfried, J. M.; Zhu, J. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures. Accounts Chem. Res. 2015, 48, 2484-2494.
doi: 10.1021/acs.accounts.5b00168
Somorjai, G. A.; York, R. L.; Butcher, D.; Park, J. Y. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (< 10−3 Torr) to high pressure (> 10−3 Torr) to liquid interfaces. Phys. Chem. Chem. Phys. 2007, 9, 3500-3513.
doi: 10.1039/B618805B
Tao, F.; Nguyen, L.; Zhang, S. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies. Rev. Sci. Instrum. 2013, 84, 034101.
doi: 10.1063/1.4792673
Yoshimoto, S.; Itaya, K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: nanoscale aspects. Annu. Rev. Anal. Chem. 2013, 213-235.
Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178-180.
doi: 10.1063/1.92999
Binnig, G.; Rohrer, H. The scanning tunneling microscope. Sci. Am. 1985, 253, 50-50.
doi: 10.1038/scientificamerican0885-50
Hla, S. -W. Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 2005, 24, 1351-1360.
Zhao, A.; Li, Q.; Chen, L.; Xiang, H.; Wang, W.; Pan, S.; Wang, B.; Xiao, X.; Yang, J.; Hou, J. G.; Zhu, Q. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542-1544.
doi: 10.1126/science.1113449
Xie, L.; Lin, H.; Zhang, C.; Li, J.; Merino-Díez, N.; Friedrich, N.; Bouju, X.; Li, Y.; Pascual, J. I.; Xu, W. Switching the spin on a Ni trimer within a metal-organic motif by controlling the on-top bromine atom. ACS Nano 2019, 13, 9, 9936-9943.
Iancu, V.; Deshpande, A.; Hla, S. -W. Manipulation of the Kondo effect via two-dimensional molecular assembly. Phys. Rev. Lett. 2006, 97, 266603.
doi: 10.1103/PhysRevLett.97.266603
Kong, H.; Zhang, C.; Xie, L.; Wang, L.; Xu, W. Constitutional dynamics of metal-organic motifs on a Au(111) surface. Angew. Chem. Int. Ed. 2016, 55, 7157-7160.
doi: 10.1002/anie.201602572
Stipe, B. C.; Rezaei, M. A.; Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 1998, 280, 1732.
doi: 10.1126/science.280.5370.1732
Lauhon, L. J.; Ho, W. Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope. Phys. Rev. Lett. 2000, 85, 4566.
doi: 10.1103/PhysRevLett.85.4566
Ternes, M.; Heinrich, A. J.; Schneider, W. D. Spectroscopic manifestations of the kondo effect on single adatoms. J. Phys. : Condens. Matter 2009, 21, 053001.
doi: 10.1088/0953-8984/21/5/053001
Zhan, G.; Cai, Z. F.; Strutyński, K.; Yu, L.; Herrmann, N.; Martínez-Abadía, M.; Melle-Franco, M.; Mateo-Alonso, A.; De Feyter, S. Observing polymerization in 2D dynamic covalent polymers. Nature 2022, 603, 835-840.
doi: 10.1038/s41586-022-04409-6
Li, J.; Qian, Y.; Duan, W.; Zeng, Q. Advances in the study of the host-guest interaction by using coronene as the guest molecule. Chin. Chem. Lett. 2019, 30, 292-298.
doi: 10.1016/j.cclet.2018.05.037
Mali, K. S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface. Acc. Chem. Res. 2012, 45, 1309-1320.
doi: 10.1021/ar200342u
Xu, L.; Yanga, L.; Lei, S. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties. Nanoscale 2012, 4, 4399-4415.
doi: 10.1039/c2nr30122a
McIntyre, B. J.; Salmeron, M.; Somorjai, G. A. In situ scanning tunneling microscopy study of platinum (110) in a reactor cell at high pressures and temperatures. J. Vac. Sci. Technol. 1993, 11, 1964.
doi: 10.1116/1.578531
Laegsgaard, E.; Österlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537.
doi: 10.1063/1.1389497
Herbschleb, C. T.; van der Tuijn, P. C.; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; van Spronsen, M. A.; Bergman, M.; Crama, L.; Taminiau, I.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M. The reactor STM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions. Rev. Sci. Instrum. 2014, 85, 083703.
doi: 10.1063/1.4891811
Gentza, K.; Wandelt, K. Electrochemical scanning tunneling microscopy. Chimia 2012, 66, 44-51.
doi: 10.2533/chimia.2012.44
Tao, N. J.; Li, C. Z.; He, H. X. Scanning tunneling microscopy applications in electrochemistry—beyond imaging. J. Electroanal. Chem. 2000, 492, 81-93.
doi: 10.1016/S0022-0728(00)00295-3
Feng, H.; Xu, X.; Du, Y.; Dou, S. X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energy Rev. 2021, 4, 249-268.
doi: 10.1007/s41918-020-00074-3
Liang, Y.; Pfisterer, J. H. K.; McLaughlin, D.; Csoklich, C.; Seidl, L.; Bandarenka, A. S.; Schneider, O. Electrochemical scanning probe microscopies in electrocatalysis. Small Methods 2018, 1800387.
Abelev, E.; Sezin, N.; Ein-Eli, Y. An alternative isolation of tungsten tips for a scanning tunneling microscope. Rev. Sci. Instrum. 2005, 76, 106105.
doi: 10.1063/1.2075187
Salerno, M. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides. Rev. Sci. Instrum. 2010, 81, 093703.
doi: 10.1063/1.3484191
Zhang, H.; Sun, H.; Shen, K.; Hu, J.; Hu, J.; Jiang, Z.; Song, F. Recent progress with in situ characterization of interfacial structures under a solid-gas atmosphere by HP-STM and AP-XPS. Materials 2019, 12, 3674.
doi: 10.3390/ma12223674
Ning, Y.; Li, Y.; Wang, C.; Li, R.; Zhang, F.; Zhang, S.; Wang, Z.; Yang, F.; Zong, N.; Peng, Q.; Xu, Z.; Wang, X.; Li, R.; Breitschaft, M.; Hagen, S.; Schaff, O.; Fu, Q.; Bao, X. Tunable deep ultraviolet laser based near ambient pressure photoemission electron microscope for surface imaging in the millibar regime. Rev. Sci. Instrum. 2020, 91, 113704.
doi: 10.1063/5.0016242
Feng, K.; Wang, Y.; Guo, M.; Zhang, J.; Li, Z.; Deng, T.; Zhang, Z.; Yan, B. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. J. Energy Chem. 2021, 62, 153-171.
doi: 10.1016/j.jechem.2021.03.054
Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 2019, 9, 2521-2531.
doi: 10.1021/acscatal.8b04937
Wan, J.; Song, Y. -X.; Chen, W. -P.; Guo, H. -J.; Shi, Y.; Guo, Y. -J.; Shi, J. -L.; Guo, Y. -G.; Jia, F. -F.; Wang, F. -Y.; Wen, R.; Wan, L. -J. Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J. Am. Chem. Soc. 2021, 143, 839-848.
doi: 10.1021/jacs.0c10121
Li, S.; Wang, C.; Meng, C.; Ning, Y.; Zhang, G.; Fu, Q. Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations. J. Energy Chem. 2022, 67, 718-726.
doi: 10.1016/j.jechem.2021.10.003
Feng, C.; Liu, X.; Zhu, T.; Tian, M. Catalytic oxidation of CO on noble metal-based catalysts. Environ. Sci. Pollut. Res. 2021, 28, 24847-24871.
doi: 10.1007/s11356-021-13008-3
Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Salmeron, M.; Somorjai, G. A. Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. Nano Lett. 2009, 9, 2167-2171.
doi: 10.1021/nl900809u
van Spronsen, M. A.; van Baarle, G. J. C.; Herbschleb, C. T.; Frenken, J. W. M.; Groot, I. M. N. High-pressure operando STM studies giving insight in CO oxidation and NO reduction over Pt(110). Catal. Today 2015, 244, 85-95.
doi: 10.1016/j.cattod.2014.07.008
Thostrup, P.; Kruse Vestergaard, E.; An, T.; Lægsgaard, E.; Besenbacher, F. CO-induced restructuring of Pt(110)-(1×2): bridging the pressure gap with high-pressure scanning tunneling microscopy. J. Chem. Phys. 2003, 118, 3724.
doi: 10.1063/1.1540611
Hofmann, P.; Bare, S. R.; King, D. A. Surface phase transitions in Co chemisorption on Pt{110}. Surf. Sci. 1982, 117, 245-256.
doi: 10.1016/0039-6028(82)90505-2
Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Lægsgaard, E.; Stensgaard, I.; Brune, H.; Besenbacher, F. High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 14497-14502.
doi: 10.1021/jp0492218
Wu, H.; Ren, P.; Zhao, P.; Gong, Z.; Wen, X.; Cui, Y.; Fu, Q.; Bao, X. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Res. 2019, 12, 85-90.
doi: 10.1007/s12274-018-2184-8
Nguyen, L.; Cheng, F.; Zhang, S.; Tao, F. Visualization of surfaces of Pt and Ni model catalysts in reactive environments using ambient pressure high temperature scanning tunneling microscopy and understanding the restructurings of surfaces of model metal catalysts under reaction conditions at near ambient pressure. J. Phys. Chem. C 2013, 117, 971-977.
doi: 10.1021/jp3086842
Tao, F.; Dag, S.; Wang, L. -W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850.
doi: 10.1126/science.1182122
Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. Thermal evolution and instability of CO-induced platinum clusters on the Pt(557) surface at ambient pressure. J. Am. Chem. Soc. 2016, 138, 1110-1113.
doi: 10.1021/jacs.5b10628
Rider, K. B.; Hwang, K. S.; Salmeron, M.; Somorjai, G. A. High-pressure (1 Torr) scanning tunneling microscopy (STM) study of the coadsorption and exchange of CO and NO on the Rh(111) crystal face. J. Am. Chem. Soc. 2002, 124, 5588-5593.
doi: 10.1021/ja020055w
Cernota, P.; Rider, K.; Yoon, H. A.; Salmeron, M.; Somorjai, G. Dense structures formed by CO on Rh(111) studied by scanning tunneling microscopy. Surf. Sci. 2000, 445, 249-255.
doi: 10.1016/S0039-6028(99)01073-0
Eren, B.; Liu, Z.; Stacchiola, D.; Somorjai, G. A.; Salmeron, M. Structural changes of Cu(110) and Cu(110)-(2 × 1)‑O surfaces under carbon monoxide in the Torr pressure range studied with scanning tunneling microscopy and infrared reflection absorption spectroscopy. J. Phys. Chem. C 2016, 120, 8227-8231.
doi: 10.1021/acs.jpcc.6b02143
Eren, B.; Zherebetskyy, D.; Patera, L. L.; Wu, C. H.; Bluhm, H.; Africh, C.; Wang, L. -W.; Somorjai, G. A.; Salmeron, M. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science 2016, 351, 475-478.
doi: 10.1126/science.aad8868
Eren, B.; Zherebetskyy, D.; Hao, Y.; Patera, L. L.; Wang, L. -W.; Somorjai, G. A.; Salmeron, M. One-dimensional nanoclustering of the Cu(100) surface under CO gas in the mbar pressure range. Surf. Sci. 2016, 651, 210-214.
doi: 10.1016/j.susc.2016.04.016
Piccolo, L.; Loffreda, D.; Cadete Santos Aires, F. J.; Deranlot, C.; Jugnet, Y.; Sautet, P.; Bertolini, J. C. The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations. Surf. Sci. 2004, 566-568, 995-1000.
Kim, J.; Ha, H.; Doh, W. H.; Ueda, K.; Mase, K.; Kondoh, H.; Mun, B. S.; Kim H. Y.; Park, J. Y. How Rh surface breaks CO2 molecules under ambient pressure. Nat. Commun. 2020, 11, 5649.
doi: 10.1038/s41467-020-19398-1
Rider, K. B.; Hwang, K. S.; Salmeron, M.; Somorjai, G. A. Structure and dynamics of dense monolayers of NO adsorbed on Rh(111) in equilibrium with the gas phase in the Torr pressure range. Phys. Rev. Lett. 2001, 86, 4330-4333.
doi: 10.1103/PhysRevLett.86.4330
Osterlund, L.; Rasmussen, P. B.; Thostrup, P.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys. Rev. Lett. 2001, 86, 460-463.
doi: 10.1103/PhysRevLett.86.460
Eren, B.; Weatherup, R. S.; Liakakos, N.; Somorjai, G. A.; Salmeron, M. Dissociative carbon dioxide adsorption and morphological changes on Cu(100) and Cu(111) at ambient pressures. J. Am. Chem. Soc. 2016, 138, 8207-8211.
doi: 10.1021/jacs.6b04039
Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning tunneling microscopy (STM) at high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal surfaces. Catal. Lett. 2006, 107, 131-140.
doi: 10.1007/s10562-005-0015-5
Salmeron, M.; Eren, B. High-pressure scanning tunneling microscopy. Chem. Rev. 2021, 121, 962-1006.
doi: 10.1021/acs.chemrev.0c00429
Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. In situ observation of competitive CO and O2 adsorption on the Pt(111) surface with near-ambient pressure STM. J. Phys. Chem. C 2018, 122, 6246-6254.
doi: 10.1021/acs.jpcc.8b01672
Xu, Y.; Li, J.; Li, W.; Li, W.; Zhang, X.; Zhao, Y.; Xie, J.; Wang, X.; Liu, X.; Li, Y.; Xiao, D.; Yin, Z.; Cao, Y.; Ma, D. Direct conversion of CO and H2O into liquid fuels under mild conditions. Nat. Commun. 2019, 10, 1389.
doi: 10.1038/s41467-019-09396-3
Navarro, V.; van Spronsen, M.; Frenken, J. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst. Nat. Chem. 2016, 8, 929-934.
doi: 10.1038/nchem.2613
Anderson, R. B. The Fischer-Tropsch Synthesis (Academic, 1984).
Böller, B.; Ehrensperger, M.; Wintterlin, J. In situ scanning tunneling microscopy of the dissociation of CO on Co(0001). ACS Catal. 2015, 5, 6802-6806.
doi: 10.1021/acscatal.5b01684
Böller, B.; Durner, K. M.; Wintterlin , J. The active sites of a working Fischer-Tropsch catalyst revealed by operando scanning tunneling microscopy. Nat. Catal. 2019, 2, 1027-1034.
doi: 10.1038/s41929-019-0360-1
Yu, W.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780-5817.
doi: 10.1021/cr300096b
Zhang, H.; Liang, Z.; Huang, C.; Xie, L.; Wang, H.; Hu, J.; Jiang, Z.; Song, F. Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect. J. Catal. 2022, 410, 1-9.
doi: 10.1016/j.jcat.2022.04.001
Dong, J.; Fu, Q.; Li, H.; Xiao, J.; Yang, B.; Zhang, B.; Bai, Y.; Song, T.; Zhang, R.; Gao, L.; Cai, J.; Zhang, H.; Liu, Z.; Bao, X. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167-17174.
doi: 10.1021/jacs.0c08139
Rodríguez, J. A.; Hrbek, J. Inverse oxide/metal catalysts: a versatile approach for activity tests and mechanistic studies. Surf. Sci. 2010, 604, 241-244.
doi: 10.1016/j.susc.2009.11.038
Liu, Y.; Ning, Y.; Yu, L.; Zhou, Z.; Liu, Q.; Zhang, Y.; Chen, H.; Xiao, J.; Liu, P.; Yang, F.; Bao, X. Structure and electronic properties of interface-confined oxide nanostructures. ACS Nano. 2017, 11, 11449-11458.
doi: 10.1021/acsnano.7b06164
Fu, Q.; Li, W. -X.; Yao, Y.; Liu, H.; Su, H. -Y.; Ma, D.; Gu, X. -K.; Chen, L.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141-1144.
doi: 10.1126/science.1188267
Liu, Q.; Li, Y.; Zhao, X.; Zhu, B.; Yi, Z.; Yang, F.; Bao, X. Dynamic structural changes of iron oxide nanostructures on Cu(111). J. Phys. Chem. C 2022, 126, 2041-2048.
doi: 10.1021/acs.jpcc.1c08309
Li, Y.; Zhao, X.; Cui, Y.; Yang, F.; Bao, X. Oxidation-induced structural transition of two-dimensional iron oxide on Au(111). J. Phys. D: Appl. Phys. 2021, 54, 204003.
doi: 10.1088/1361-6463/abe66d
Liu, Y.; Zhang, R.; Ling, Y.; Lin, L.; Mu, R.; Fu, Q. Dynamic structural evolution of Mn-Au alloy and MnOx nanostructures on Au(111) under different atmospheres. J. Phys. Chem. C 2021, 125, 15335-15342.
doi: 10.1021/acs.jpcc.1c04195
Suchorski, Y.; Wrobel, R.; Becker, S.; Weiss, H. CO oxidation on a CeOx/Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams. J. Phys. Chem. C 2008, 112, 20012-20017.
doi: 10.1021/jp806033v
Kersell, H.; Hooshmand, Z.; Yan, G.; Le, D.; Nguyen, H.; Eren, B.; Wu, C. H.; Waluyo, I.; Hunt, A.; Nemšák, S.; Somorjai, G.; Rahman, T. S.; Sautet, P.; Salmeron, M. CO oxidation mechanisms on CoOx-Pt thin films. J. Am. Chem. Soc. 2020, 142, 8312-8322.
doi: 10.1021/jacs.0c01139
Huang, W.; Liu, Q.; Zhou, Z.; Li, Y.; Ling, Y.; Wang, Y.; Tu, Y.; Wang, B.; Zhou, X.; Deng, D.; Yang, B.; Yang, Y.; Liu, Z.; Bao, X.; Yang, F. Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nat. Commun. 2020, 11, 2312.
doi: 10.1038/s41467-020-15965-8
Liu, Q.; Li, Y.; Zhao, X.; Zhu, B.; Yi, Z.; Yang, F.; Bao, X. Dynamic structural changes of iron oxide nanostructures on Cu(111). J. Phys. Chem. C 2022, 126, 2041-2048.
doi: 10.1021/acs.jpcc.1c08309
Baber, A. E.; Xu, F.; Dvorak, F.; Mudiyanselage, K.; Soldemo, M.; Weissenrieder, J.; Senanayake, S. D.; Sadowski, J. T.; Rodriguez, J. A.; Matolin, V.; White, M. G.; Stacchiola, D. J. In situ imaging of Cu2O under reducing conditions: formation of metallic fronts by mass transfer. J. Am. Chem. Soc. 2013, 135, 16781-16784.
doi: 10.1021/ja408506y
Mao, J.; Wang, Y.; Zheng, Z.; Deng, D. The rise of two-dimensional MoS2 for catalysis. Front. Phys. 2018, 13, 138118.
doi: 10.1007/s11467-018-0812-0
Chen, T. A.; Chuu, C. -P.; Tseng, T. -T.; Wen, C. -K.; Philip Wong, H. -S.; Pan, S.; Li, R.; Chao, T. -A.; Chueh, W. -C.; Zhang, Y.; Fu, Q.; Yakobson, B. I.; Chang, W. H.; Li, L. -J. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 2020, 579, 219-223.
doi: 10.1038/s41586-020-2009-2
Fan, X.; Zhang, G.; Zhang, F. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023-3035.
doi: 10.1039/C5CS00094G
Lauritsen, J. V.; Bollinger, M. V.; Lægsgaard, E.; Jacobsen, K. W.; Nørskov, J. K.; Clausen, B. S.; Topsøe, H.; Besenbacher, F. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J. Catal. 2004, 221, 510-522.
doi: 10.1016/j.jcat.2003.09.015
Mom, R. V.; Louwen, J. N.; Frenken, J. W. M.; Groot, I. M. N. In situ observations of an active MoS2 model hydrodesulfurization catalyst. Nat. Commun. 2019, 10, 2546.
doi: 10.1038/s41467-019-10526-0
Gewirth, A. A.; Niece, B. K. Electrochemical applications of in situ scanning probe microscopy. Chem. Rev. 1997, 97, 1129-1162.
doi: 10.1021/cr960067y
Itaya, K.; Tomita, E. Scanning tunneling microscope for electrochemistry—a new concept for the in situ scanning tunneling microscope in electrolyte solutions. Surf. Sci. 1988, 201, L507-L512.
doi: 10.1016/0039-6028(88)90489-X
Itaya, K. In situ scanning tunneling microscopy in electrolyte solutions. Prog. Surf. Sci. 1988, 58, 121-247.
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisla, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.
doi: 10.1039/c0ee00071j
Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. USA. 2017, 114, 5918-5923.
doi: 10.1073/pnas.1618935114
Magnussen, O. M. Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 2002, 102, 679-725.
doi: 10.1021/cr000069p
Matsushima, H.; Taranovskyy, A.; Haak, C.; Gründer, Y.; Magnussen, O. M. Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. J. Am. Chem. Soc. 2009, 131, 10362-10363.
doi: 10.1021/ja904033t
Kim, Y. -G.; Javier, A.; Baricuatro, J. H.; Torelli, D.; Cummins, K. D.; Tsang, C. F.; Hemminger, J. C.; Soriaga, M. P. Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: a study by seriatim ECSTM-DEMS. J. Electroanal. Chem. 2016, 290-295.
Kolb, D. M.; Schneider, J. The study of reconstructed electrode surfaces: Au(100)-(5 x 20). Surf. Sci. 1998, 162, 764-775.
Magnussen, O. M.; Beitel, G.; Behm, R. J.; Hotlos, J.; Kolb, D. M. Atomic structure of ordered copper adlayers on single-crystalline gold electrodes. J. Vac. Sci. Technol. B 1991, 9, 969.
doi: 10.1116/1.585505
Zuili, D.; Maurice, V.; Marcus, P. Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy. J. Electrochem. Soc. 2000, 147, 1393-1400.
doi: 10.1149/1.1393367
del Barrio, M. C.; García, S. G.; Salinas, D. R. Alloy formation in the system Au(111)/Cd during the UPD process. Electrochem. Commun. 2004, 6, 762-766.
doi: 10.1016/j.elecom.2004.05.022
Bondos, J. C.; Andrew, A. G.; Ralph, G. N. Observation of uni-axial structures of under potentially deposited cadmium on Au(111) with in situ scanning tunneling microscopy. J. Phys. Chem. 1996, 100, 8617-8620.
doi: 10.1021/jp960569f
Damian, A.; Maroun, F.; Allongue, P. Electrochemical growth and dissolution of Ni on bimetallic Pd/Au(111) substrates. Electrochim. Acta 2010, 55, 8087-8099.
doi: 10.1016/j.electacta.2010.03.067
Di, N.; Damian, A.; Maroun, F.; Allongue, P. Infuence of potential on the electrodeposition of Co on Au(111) by in situ STM and refectivity measurements. J. Electrochem. Soc. 2016, 163, D3062-D3068.
doi: 10.1149/2.0091612jes
Inukai, J.; Osawa, Y.; Wakisaka, M.; Sashikata, K.; Kim, Y. -G.; Itaya, K. Underpotential deposition of copper on iodine-modified Pt(111): in situ STM and ex situ LEED studies. J. Phys. Chem. B 1998, 102, 3498-3505.
Stumm, C. Structural dynamics of ultrathin cobalt oxide nanoislands under potential control. Adv. Funct. Mater. 2021, 31, 2009923.
doi: 10.1002/adfm.202009923
Sato, K.; Yoshimoto, S.; Inukai, J.; Itaya, K. Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode. Electrochem. Commun. 2006, 8, 725-730.
doi: 10.1016/j.elecom.2006.03.001
Bae, S. -E.; Stewart, K. L.; Gewirth, A. A. Nitrate adsorption and reduction on Cu(100) in acidic solution. J. Am. Chem. Soc. 2007, 129, 10171-10180.
doi: 10.1021/ja071330n
Yamada, T.; Batina, N.; Itaya, K. Interfacial structure of iodine electrodeposited on Au(111): studies by LEED and in situ STM. Surf. Sci. 1995, 335, 204-209.
doi: 10.1016/0039-6028(95)00417-3
Takada, M.; Tada, H. Low temperature scanning tunneling microscopy of phthalocyanine multilayers on Au(111) surfaces. Chem. Phys. Lett. 2004, 392, 265-269.
doi: 10.1016/j.cplett.2004.04.121
Sedona, F.; Di Marino, M.; Forrer, D.; Vittadini, A.; Casarin, M.; Cossaro, A.; Floreano, L.; Verdini, A.; Sambi, M. Tuning the catalytic activity of Ag(110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nat. Mater. 2012, 11, 970-977.
doi: 10.1038/nmat3453
Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240-9244.
Suto, K.; Yoshimoto, S.; Itaya, K. Electrochemical control of the structure of two-dimensional supramolecular organization consisting of phthalocyanine and porphyrin on a gold single-crystal surface. Langmuir 2006, 22, 10766-10776.
doi: 10.1021/la061257z
Phan, T. H.; Kosmala, T.; Wandelt, K. Potential dependence of self-assembled porphyrin layers on a Cu(111) electrode surface: in-situ STM study. Surf. Sci. 2015, 631, 207-212.
doi: 10.1016/j.susc.2014.07.034
Wang, X.; Cai, Z. F.; Wang, Y. Q.; Feng, Y. C.; Yan, H. J.; Wang, D.; Wan, L. J. In situ scanning tunneling microscopy of cobalt-phthalocya-nine-catalyzed CO2 reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 16098-16103.
doi: 10.1002/anie.202005242
Cai, Z. F.; Wang, X.; Wang, D.; Wan. L. J. Cobalt-porphyrins catalyzed oxygen reduction reaction: a scanning tunneling microscopy study. ChemElectroChem 2016, 3, 2048-2051.
doi: 10.1002/celc.201600435
Wang, X.; Cai, Z. F.; Wang, D.; Wan, L. J. Molecular evidence for the catalytic process of cobalt porphyrin catalyzed oxygen evolution reaction in alkaline solution. J. Am. Chem. Soc. 2019, 141, 7665-7669.
doi: 10.1021/jacs.9b01229
Magnussen, O. M.; Zitzler, L.; Gleich, B.; Vogt, M. R.; Behm, R. J. In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochimica Acta 2001, 46, 3725-3733.
doi: 10.1016/S0013-4686(01)00654-5
Magnussen, O. M.; Polewska, W.; Zitzler, L.; Behm, R. J. In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss. 2002, 121, 43-52.
doi: 10.1039/b200016b
Magnussen, O. M.; Groß, A. Toward an atomic-scale understanding of electrochemical interface structure and dynamics. J. Am. Chem. Soc. 2019, 141, 4777-4790.
doi: 10.1021/jacs.8b13188
Matsushima, H.; Haak, C.; Taranovskyy, A.; Gründer, Y.; Magnussen, O. M. In situ video STM studies of the hydrogen-induced reconstruction of Cu(100): potential and pH dependence. Phys. Chem. Chem. Phys. 2010, 12, 13992-13998.
doi: 10.1039/c0cp00659a
Wei, J.; Chen, Y. -X.; Magnussen, O. M. Electrochemical in situ video-STM studies of the phase transition of CO adlayers on Pt(111) electrodes. J. Phys. Chem. C 2021, 125, 3066-3072.
Wen, R.; Rahn, B.; Magnussen, O. M. In situ video-STM study of adlayer structure and surface dynamics at the ionic liquid/Au(111) interface. J. Phys. Chem. C 2016, 120, 15765-15771.
doi: 10.1021/acs.jpcc.5b11590
Lemke, S.; Chang, C. -H.; Jung, U.; Magnussen, O. M. Reversible potential-induced switching of alkyl chain aggregation in octyl-triazatri-angulenium adlayers on Au(111). Langmuir 2015, 31, 3115-3124.
doi: 10.1021/acs.langmuir.5b00545
Tansel, T.; Taranovskyy, A.; Magnussen, O. M. In situ video-STM studies of adsorbate dynamics at electrochemical interfaces. ChemPhysChem 2010, 11, 1438-1445.
doi: 10.1002/cphc.200900939
Yang, Y. C.; Taranovskyy, A.; Magnussen O. M. In situ video-STM studies of methyl thiolate surface dynamics and self-assembly on Cu(100) electrodes. Langmuir 2012, 28, 14143-14154.
doi: 10.1021/la302939f
Matsushima, H.; Lin, S. -W.; Morin, S.; Magnussen. O. M. In situ video-STM studies of the mechanisms and dynamics of electrochemical bismuth nanostructure formation on Au. Faraday Discuss. 2016, 193, 171.
doi: 10.1039/C6FD00086J
Pfisterer, J. H. K.; Liang, Y.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74-77.
doi: 10.1038/nature23661
Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H.; Durante, C.; Valentin, C. D.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces. Nat. Catal. 2021, 4, 850-859.
doi: 10.1038/s41929-021-00682-2
Haid, R. W; Kluge, R. M.; Liang, Y. C.; Bandarenka, A. S. In situ quantification of the local electrocatalytic activity via electrochemical scanning tunneling microscopy. Small Methods 2021, 5, 2000710.
doi: 10.1002/smtd.202000710
Kluge, R. M.; Haid, R. W.; Bandarenka, A. S. Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface. J. Catal. 2021, 396, 14-22.
doi: 10.1016/j.jcat.2021.02.007
Liang, Y.; Csoklich, C.; McLaughlin, D.; Schneider, O.; Bandarenka, A. S. Revealing active sites for hydrogen evolution at Pt and Pd atomic layers on Au surfaces. ACS Appl. Mater. Interfaces 2019, 11, 12476-12480.
doi: 10.1021/acsami.8b22146
Liang, Y.; McLaughlin, D.; Csoklich, C.; Schneider, O.; Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 2019, 12, 351-357.
doi: 10.1039/C8EE03228A
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Yan-Li Li , Zhi-Ming Li , Kai-Kai Wang , Xiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372