Citation: Zhaoyang An, Hui Xue, Jing Sun, Niankun Guo, Tianshan Song, Jiawen Sun, Yi-Ru Hao, Qin Wang. Co-Construction of Sulfur Vacancies and Heterogeneous Interface into Ni3S2/MoS2 Catalysts to Achieve Highly Efficient Overall Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220803. doi: 10.14102/j.cnki.0254-5861.2022-0130 shu

Co-Construction of Sulfur Vacancies and Heterogeneous Interface into Ni3S2/MoS2 Catalysts to Achieve Highly Efficient Overall Water Splitting

Figures(6)

  • Integrating the advantages of anion vacancies and heterostructures into the catalytic materials may increase the binding affinities to intermediates, provide more active sites, and significantly promote the activity of overall water splitting. However, the successful assembly of anion vacancies and heterostructures for high-efficiency water splitting performance is still challenging. In this work, we ingeniously present the co-construction of sulfur vacancies and heterogeneous interface into Ni3S2/MoS2 catalysts on nickel foam (NF). The introduction of sulfur vacancies and Ni3S2/MoS2 heterostructures can significantly improve electron and ion transport, effectively improve structural stability, and enhance overall water splitting activity. The obtained VS-Ni3S2/MoS2 catalysts (VS stands for sulfur vacancies) exhibit superior OER and HER activities, and the overpotentials for OER and HER are 180 and 71 mV at 10 mA·cm-2, respectively. Furthermore, a low water splitting voltage of 1.46 V is required at 10 mA·cm-2 for the VS-Ni3S2/MoS2 catalysts, which is considerably lower than most that of water splitting electrocatalysts currently reported. This work offers an effective mean for the preparation of catalysts with both anion vacancies and heterostructures for achieving high-performance alkaline overall water splitting.
  • 加载中
    1. [1]

      Yang, J. L.; He, Y. L.; Ren, H.; Li, J. F. Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal. 2021, 11, 5047-5053.

    2. [2]

      Xue, Z. Z.; Meng, X. D.; Pan, J.; Wang, G. M. Luminescent thermochromism and white-light emission of a 3D [Ag4Br6] cluster-based coordination framework with both adamantane-like node and linker. Inorg. Chem. 2021, 60, 4375-4379.

    3. [3]

      Mu, Y.; Wang, D.; Meng, X. D.; Xue, Z. Z. Construction of iodoargentates with diverse architectures: template syntheses, structures, and photocatalytic properties. Cryst. Growth Des. 2020, 20, 1130-1138.  doi: 10.1021/acs.cgd.9b01448

    4. [4]

      Zang, Z. H.; Wang, X. W.; Li, X.; Lu, Z. M. Co9S8 nanosheet coupled Cu2S nanorod heterostructure as efficient catalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 9865-9874.

    5. [5]

      Esposito, D. V.; Hunt, S. T.; Stottlemyer, A. L.; Chen, J. G. G. Lowcost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chem. Int. Ed. 2010, 122, 10055-10058.  doi: 10.1002/ange.201004718

    6. [6]

      Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307-326.

    7. [7]

      Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-1165.  doi: 10.1002/cctc.201000397

    8. [8]

      Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.  doi: 10.1126/science.1211934

    9. [9]

      Lin, C.; Li, J. L.; Li, X. P.; Yang, S. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012-1023.  doi: 10.1038/s41929-021-00703-0

    10. [10]

      Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

    11. [11]

      Lin, C.; Li, X. P.; Shinde, S. S.; Kim, D. H. Long-life rechargeable Zn air battery based on binary metal carbide armored by nitrogen-doped carbon. ACS Appl. Energy Mater. 2019, 2, 1747-1755.

    12. [12]

      Wang, J. H.; Cui, W.; Liu, Q.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.

    13. [13]

      Yan, Y.; Xia, B. Y.; Xu, Z. C.; Wang, X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014, 4, 1693-1705.

    14. [14]

      Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100-102.

    15. [15]

      Sun, J.; Guo, N. K.; Shao, Z. Y.; Wang, Q. A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant. Adv. Energy Mater. 2018, 8, 1800980.

    16. [16]

      Hao, S. Y.; Chen, L. C.; Yu, C. L.; Zhang, X. W. NiCoMo hydroxide nanosheet arrays synthesized via chloride corrosion for overall water splitting. ACS Energy Lett. 2019, 4, 952-959.

    17. [17]

      Li, P. S.; Duan, X. X.; Kuang, Y.; Sun, X. M. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Adv. Energy Mater. 2018, 8, 1703341.

    18. [18]

      Doan, T. L. L.; Tran, D. T.; Nguyen, D. C.; Lee, J. H. Rational engineering CoxOy nanosheets via phosphorous and sulfur dual-coupling for enhancing water splitting and Zn-air battery. Adv. Funct. Mater. 2020, 31, 2007822.

    19. [19]

      Wu, J.; Xie, Y.; Du, S. C.; Fu, H. G. Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci. China Mater. 2020, 63, 2314-2324.

    20. [20]

      Lin, K.; Xiao, F.; Xie, Y.; Fu, H. G. Surface domain heterojunction on rutile TiO2 for high-efficient photocatalytic hydrogen evolution. Nanoscale Horiz. 2020, 5, 1596-1602.

    21. [21]

      Tong, M. M.; Sun, F. F.; Xie, Y.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 2-10.

    22. [22]

      Wu, A. P.; Gu, Y.; Yang, B. R.; Fu, H. G. Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 22938-22946.

    23. [23]

      Tang, Y. Q.; Shen, H. M.; Cheng, J. Q.; Zou, R. Q. Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors. Adv. Funct. Mater. 2020, 30, 1908223.

    24. [24]

      Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Wang, S. Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087-12095.

    25. [25]

      Liang, Z. Z.; Huang, Z. H.; Yuan, H. Y.; Cao, R. Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chem. Sci. 2018, 9, 6961-6968.

    26. [26]

      Gao, Y.; Liu, C. B.; Zhou, W.; Zhang, B. Anion vacancy engineering in electrocatalytic water splitting. ChemNanoMat 2020, 6, 1-9.

    27. [27]

      Tang, Y. J.; Zhang, A. M.; Zhu, H. J.; Lan, Y. Q. Polyoxometalate precursors for precisely controlled synthesis of bimetallic sulfide heterostructure through nucleation-doping competition. Nanoscale 2018, 10, 8404-8412.

    28. [28]

      Zhu, Q.; Chen, W. Z.; Cheng, H.; Pan, H. WS2 nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies. ChemCatChem 2019, 11, 2667-2675.

    29. [29]

      Li, Y.; Qian, J.; Zhang, M. H.; Wu, C. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 2020, 32, 2005802.

    30. [30]

      Zhang, J.; Wang, T.; Pohl, D.; Feng, X. L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. 2016, 128, 6814-6819.

    31. [31]

      Wu, A. P.; Gu, Y.; Xie, Y.; Fu, H. G. Effective electrocatalytic hydrogen evolution in neutral medium based on 2D MoP/MoS2 heterostructure nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 25986-25995.

    32. [32]

      Cai, L.; He, J. F.; Liu, Q. H.; Sun, Z. H. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622-2627.

    33. [33]

      Ling, C. C.; Liu, X. F.; Li, M. Q.; Zhang, L. Z. Sulphur vacancy derived anaerobic hydroxyl radical generation at the pyrite-water interface: pollutants removal and pyrite self-oxidation behavior. Appl. Catal. B-Environ. 2021, 290, 120051.

    34. [34]

      Zhang, B.; Xiao, C. H.; Xie, S. M.; Tang, Y. H. Iron-nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934-6941.

    35. [35]

      Zhai, P. L.; Zhang, Y. X.; Wu, Y. Z.; Hou, J. G. Engineering active sites on hierarchical transition bimetal oxides/sulfifides heterostructure array enabling robust overall water splitting. Nat. Commun. 2020, 11, 5462.

    36. [36]

      Fei, B.; Chen, Z. L.; Liu, J. X.; Wu, R. B. Ultrathinning nickel sulfide with modulated electron density for efficient water splitting. Adv. Energy Mater. 2020, 10, 2001963.

    37. [37]

      Feng, X. T.; Jiao, Q. Z.; Dai, Z.; Li, A. Revealing the effect of interfacial electron transfer in heterostructured Co9S8@NiFe LDH for enhanced electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12244-12254.

    38. [38]

      Zhang, J. Y.; Xiao, W.; Gao, D. Q.; Ding, J. Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies. ACS Energy Lett. 2017, 2, 1022-1028.

    39. [39]

      Dong, X.; Jiao, Y. Q.; Yang, G. C.; Fu, H. G. One-dimensional Co9S8-V3S4 heterojunctions as bifunctional electrocatalysts for highly efficient overall water splitting. Sci. China Mater. 2021, 64, 1396-1407.

    40. [40]

      Wang, H.; Li, Z. J.; Li, Y.; Hou, Y. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy 2021, 81, 105613.

    41. [41]

      Shao, Z. Y.; Liu, R. B.; Xue, H.; Wang, Q. Regulating the electronic structure of ultrathin Ni-based chalcogenide nanosheets through iron modification towards high electrocatalytic activities. Chem. Eng. J. 2021, 416, 129098.

    42. [42]

      Li, S. L.; Ma, R. G.; Hu, J. C.; Li, Z. C. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat. Commun. 2022, 13, 2916.

    43. [43]

      Wang, X. L.; Ma, R. G.; Wang, M. M.; Wang, J. Hollow MoS2/Co nanopillars with boosted Li-ion diffusion rate and long-term cycling stability. Chem. Commun. 2021, 57, 11521-11524.

    44. [44]

      Zhu, L.; Liao, Y. X.; Jia, Y. B.; Zhang, X. Solid-solution hexagonal Ni0.5Co0.5Se nanoflakes toward boosted oxygen evolution reaction. Chem. Commun. 2020, 56, 13113-13116.

  • 加载中
    1. [1]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    2. [2]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    3. [3]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    4. [4]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    5. [5]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    6. [6]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    7. [7]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    8. [8]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    9. [9]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    12. [12]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    13. [13]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    14. [14]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    15. [15]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    16. [16]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    17. [17]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    18. [18]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    19. [19]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(3)
  • Abstract views(234)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return