A Review on the Progress of Metal-Organic Frameworks in Electrochemiluminescence Sensors
- Corresponding author: Huiping Sun, huipingsun@usts.edu.cn
Citation: Huiping Sun, Zuoxi Li, Yu Gu, Chunxian Guo. A Review on the Progress of Metal-Organic Frameworks in Electrochemiluminescence Sensors[J]. Chinese Journal of Structural Chemistry, ;2022, 41(11): 221101. doi: 10.14102/j.cnki.0254-5861.2022-0126
Richter, M. M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003-3036.
doi: 10.1021/cr020373d
Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506-2553.
doi: 10.1021/cr068083a
Qi, H.; Zhang, C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020, 92, 524-534.
doi: 10.1021/acs.analchem.9b03425
Zhao, W.; Chen, H. Y.; Xu, J. J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci. 2021, 12, 5720-5736.
doi: 10.1039/D0SC07085H
Gao, H.; Han, W.; Qi, H.; Gao, Q.; Zhang, C. Electrochemiluminescence imaging for the morphological and quantitative analysis of living cells under external stimulation. Anal. Chem. 2020, 92, 8278-8284.
doi: 10.1021/acs.analchem.0c00528
Miao, W.; Bard, A. J. Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres. Anal. Chem. 2004, 76, 7109-7113.
doi: 10.1021/ac048782s
Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638-10690.
doi: 10.1021/acs.chemrev.9b00257
Zhang, J. P.; Zhou, H. L.; Zhou, D. D.; Liao, P. Q.; Chen, X. M. Controlling flexibility of metal-organic frameworks. Natl. Sci. Rev. 2018, 5, 907-919.
doi: 10.1093/nsr/nwx127
Pang, J.; Yuan, S.; Qin, J.; Liu, C.; Lollar, C.; Wu, M.; Yuan, D.; Zhou, H. -C.; Hong, M. Control the structure of Zr-tetracarboxylate frameworks through steric tuning. J. Am. Chem. Soc. 2017, 139, 16939-16945.
doi: 10.1021/jacs.7b09973
Bernard, F. H.; Richard, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962-5964.
doi: 10.1021/ja00197a079
Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
doi: 10.1126/science.1192160
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444
Zhou, H. -C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
doi: 10.1039/C4CS90059F
Cai, P.; Xu, M.; Meng, S. S.; Lin, Z.; Yan, T.; Drake, H. F.; Zhang, P.; Pang, J.; Gu, Z. Y.; Zhou, H. C. Precise spatial-designed metal-organic-framework nanosheets for efficient energy transfer and photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 27258-27263.
doi: 10.1002/anie.202111594
Pang, J.; Yuan, S.; Qin, J. -S.; Lollar, C. T.; Huang, N.; Li, J.; Wang, Q.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. C. Tuning the ionicity of stable metalorganic frameworks through ionic linker installation. J. Am. Chem. Soc. 2019, 141, 3129-3136.
doi: 10.1021/jacs.8b12530
Pang, J.; Di, Z.; Qin, J. S.; Yuan, S.; Lollar, C. T.; Li, J.; Zhang, P.; Wu, M.; Yuan, D.; Hong, M.; Zhou, H. C. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis. J. Am. Chem. Soc. 2020, 142, 15020-15026.
doi: 10.1021/jacs.0c05758
Pang, J.; Yuan, S.; Qin, J.; Wu, M.; Lollar, C. T.; Li, J.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. C. Enhancing pore-environment complexity using a trapezoidal linker: toward stepwise assembly of multivariate quinary metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12328-12332.
doi: 10.1021/jacs.8b07411
Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-1504.
doi: 10.1039/b802426j
Li, G. P.; Li, Z. Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Efficient C-2 hydrocarbons and CO2 adsorption and separation in a multi-site functionalized MOF. Chin. J. Struct. Chem. 2021, 40, 1047-1054.
Pang, J.; Jiang, F.; Wu, M.; Liu, C.; Su, K.; Lu, W.; Yuan, D.; Hong, M. A porous metal-organic framework with ultrahigh acetylene uptake capacity under ambient conditions. Nat. Commun. 2015, 6, 7575.
doi: 10.1038/ncomms8575
Zhang, X.; Chen, A.; Zhong, M.; Zhang, Z.; Zhang, X.; Zhou, Z.; Bu, X. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion. Electrochem. Energy Rev. 2019, 2, 29-104.
doi: 10.1007/s41918-018-0024-x
Wu, X. M.; Liu, M. M.; Guo, H. X. A.; Ying, S. M.; Chen, Z. X. Polyoxovanadate-based MOFs microsphere constructed from 3-D discrete nano-sheets as supercapacitor. Chin. J. Struct. Chem. 2021, 40, 994-998.
Xue, H.; Li, T.; Yin, Q.; Huang, G.; Liu, T. F. A Sulfonate-based metalorganic framework for the transformation of CO2 and epoxides into cyclic carbonates. Chin. J. Struct. Chem. 2020, 39, 2027-2032.
Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232-1268.
doi: 10.1021/cr200256v
Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1248-1256.
doi: 10.1039/b807083k
Sikdar+, N.; Junqueira+, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Öhl, D.; Andronescu, C.; Schuhmann, W. A metal-organic framework derived CuxOyCz catalyst for electrochemical CO2 reduction and impact of local pH change. Angew. Chem. Int. Ed. 2021, 60, 23427-23434.
doi: 10.1002/anie.202108313
Liu, M.; Su, H.; Cheng, W.; Yu, F.; Li, Y.; Zhou, W.; Zhang, H.; Sun, X.; Zhang, X.; Wei, S.; Liu Q. Synergetic dual-ion centers boosting metal organic framework alloy catalysts toward efficient two electron oxygen reduction. Small 2022, 18, 2202248.
doi: 10.1002/smll.202202248
Basaleh, A. S.; Sheta, S. M. Manganese metal-organic framework: chemical stability, photoluminescence studies, and biosensing application. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1726-1737.
doi: 10.1007/s10904-021-01888-4
Aboagye, N. K.; Hu, J. S.; Li, J. X. Two coordination polymers with high selectivity for sensing iron(III) constructed from bifunctional ligand. Chin. J. Struct. Chem. 2021, 40, 465-472.
Shu, Y.; Ye, Q.; Dai, T.; Xu, Q.; Hu, X. Encapsulation of luminescent guests to construct luminescent metal-organic frameworks for chemical sensing. ACS Sens. 2021, 6, 641-658.
doi: 10.1021/acssensors.0c02562
Afravi, Z.; Nobakht, V.; Pourreza, N.; Ghomi, M.; Trzybiński, D.; Woźniak, K. Design of a sensitive fluorescent Zn-based metal-organic framework sensor for cimetidine monitoring in biological and pharmaceutical samples. ACS Omega. 2022, 7, 22221-22231.
doi: 10.1021/acsomega.2c00874
Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Detection of diethyl ether by a europium MOF through fluorescence enhancement. Chin. J. Struct. Chem. 2021, 40, 369-375.
Kumar, S.; Pramudya, Y.; Müller, K.; Chandresh, A.; Dehm, S.; Heidrich, S.; Fediai, A.; Parmar, D.; Perera, D.; Rommel, M.; Heinke, L.; Wenzel, W.; Wöll, C.; Krupke, R. Sensing molecules with metal-organic framework functionalized graphene transistors. Adv. Mater. 2021, 33, 2103316.
doi: 10.1002/adma.202103316
Wu, K.; Yu, Y.; Hou, Z.; Guan, X.; Zhao, H.; Liu, S.; Yang, X.; Fei, T.; Zhang, T. A humidity sensor based on ionic liquid modified metal organic frameworks for low humidity detection. Sensor. Actuat. B-Chem. 2022, 355, 131136.
doi: 10.1016/j.snb.2021.131136
Ahmadi, A.; Khoshfetrat, S. M.; Kabiri, S.; Dorraji, P. S.; Larijani, B.; Omidfar, K. Electrochemiluminescence paper-based screen-printed electrode for HbA1c detection using two-dimensional zirconium metal-organic framework/Fe3O4 nanosheet composites decorated with Au nanoclusters. Microchim. Acta 2021, 188, 296.
doi: 10.1007/s00604-021-04959-y
Bai, W.; Cui, A.; Liu, M.; Qiao, X.; Li, Y.; Wang, T. Signal-off electrogenerated chemiluminescence biosensing platform based on the quenching effect between ferrocene and Ru(bpy)32+-functionalized metalorganic frameworks for the detection of methylated RNA. Anal. Chem. 2019, 91, 11840-11847.
doi: 10.1021/acs.analchem.9b02569
Gu, W.; Wang, X.; Wen, J.; Cao, S.; Jiao, L.; Wu, Y.; Wei, X.; Zheng, L.; Hu, L.; Zhang, L.; Zhu, C. Modulating oxygen reduction behaviors on nickel single-atom catalysts to probe the electrochemiluminescence mechanism at the atomic level. Anal. Chem. 2021, 93, 8663-8670.
doi: 10.1021/acs.analchem.1c01835
Wang, Z.; Jiang, X.; Yuan, R.; Chai, Y. N-(aminobutyl)-N-(ethylisoluminol) functionalized Fe-based metal-organic frameworks with intrinsic mimic peroxidase activity for sensitive electrochemiluminescence mucin1 determination. Biosens. Bioelectron. 2018, 121, 250-256.
doi: 10.1016/j.bios.2018.09.022
Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron. 2020, 164, 112332.
doi: 10.1016/j.bios.2020.112332
Huang, W.; Hu, G. B.; Yao, L. Y.; Yang, Y.; Liang, W. B.; Yuan, R.; Xiao, D. R. Matrix coordination-induced electrochemiluminescence enhancement of tetraphenylethylene-based hafnium metal-organic framework: an electrochemiluminescence chromophore for ultrasensitive electrochemiluminescence sensor construction. Anal. Chem. 2020, 92, 3380-3387.
doi: 10.1021/acs.analchem.9b05444
Wang, X.; Xiao, S.; Yang, C.; Hu, C.; Wang, X.; Zhen, S.; Huang, C.; Li, Y. Zinc-metal organic frameworks: a coreactant-free electrochemi-luminescence luminophore for ratiometric detection of miRNA-133a. Anal. Chem. 2021, 93, 14178-14186.
doi: 10.1021/acs.analchem.1c02881
Yang, X.; Yu, Y. Q.; Peng, L. Z.; Lei, Y. M.; Chai, Y. Q.; Yuan, R.; Zhuo, Y. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace cTnI. Anal. Chem. 2018, 90, 3995-4002.
doi: 10.1021/acs.analchem.7b05137
Li, F.; Li, R.; Feng, Y.; Gong, T.; Zhang, M.; Wang, L.; Meng, T.; Jia, H.; Wang, H.; Zhang, Y. Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 95, 78-85.
doi: 10.1016/j.msec.2018.10.074
Jin, Z.; Zhu, X.; Wang, N.; Li, Y.; Ju, H.; Lei, J. Electroactive metalorganic frameworks as emitters for self-enhanced electrochemiluminescence in aqueous medium. Angew. Chem. Int. Ed. 2020, 59, 10446-10450.
doi: 10.1002/anie.202002713
Zhu, D.; Zhang, Y.; Bao, S.; Wang, N.; Yu, S.; Luo, R.; Ma, J.; Ju, H.; Lei, J. Dual intrareticular oxidation of mixed-ligand metal-organic frameworks for stepwise electrochemiluminescence. J. Am. Chem. Soc. 2021, 143, 3049-3053.
doi: 10.1021/jacs.1c00001
Zaporski, J.; Jamison, M.; Zhang, L.; Gu, B.; Yang, Z. Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline. Sci. Total Environ. 2020, 729, 138879.
doi: 10.1016/j.scitotenv.2020.138879
Lin, X.; Luo, F.; Zheng, L.; Gao, G.; Chi, Y. Fast, sensitive, and selective ion-triggered disassembly and release based on tris(bipyridine)-ruthenium(II)-functionalized metal-organic frameworks. Anal. Chem. 2015, 87, 4864-4870.
doi: 10.1021/acs.analchem.5b00391
Ma, Y.; Yu, Y.; Mu, X.; Yu, C.; Zhou, Y.; Chen, J.; Zheng, S.; He, J. Enzyme-induced multicolor colorimetric and electrochemiluminescence sensor with a smartphone for visual and selective detection of Hg2+. J. Hazard. Mater. 2021, 415, 125538.
doi: 10.1016/j.jhazmat.2021.125538
Qin, D.; Xu, R.; Shen, H.; Mamat, X.; Wang, L.; Gao, S.; Wang, Y.; Yalikun, N.; Wagberg, T.; Zhang, S.; Yuan, Q.; Li, Y.; Hu, G. Protic saltbased nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of Cd(II) and Pb(II). RSC Adv. 2017, 7, 36929-36934.
doi: 10.1039/C7RA04806H
Shan, X.; Pan, T.; Pan, Y.; Wang, W.; Chen, X.; Shan, X.; Chen, Z. Highly sensitive and selective detection of Pb(II) by NH2-SiO2/Ru(bpy)32+-UiO66 based solid-state ECL sensor. Electroanalysis 2019, 32, 462-469.
Feng, D.; Li, P.; Tan, X.; Wu, Y.; Wei, F.; Du, F.; Ai, C.; Luo, Y.; Chen, Q.; Han, H. Electrochemiluminescence aptasensor for multiple determination of Hg2+ and Pb2+ ions by using the MIL-53(Al)@CdTe-PEI modified electrode. Anal. Chim. Acta 2020, 1100, 232-239.
doi: 10.1016/j.aca.2019.11.069
Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q. Electrogenerated chemiluminescence behavior of Au nanoparticleshybridized Pb(II) metal-organic framework and its application in selective sensing hexavalent chromium. Sci. Rep. 2016, 6, 22059.
doi: 10.1038/srep22059
Hu, D.; Zhan, T.; Guo, Z.; Wang, S.; Hu, Y. Electrosynthesized metalorganic framework: a dual-modality readout platform for Cu(II), coenzyme A and histone acetyltransferase analysis. Sensor. Actuat. B-Chem. 2021, 327, 128896.
doi: 10.1016/j.snb.2020.128896
Tang, T.; Hao, Z.; Yang, H.; Nie, F.; Zhang, W. A highly enhanced electrochemiluminescence system based on a novel Cu-MOF and its application in the determination of ferrous ion. J. Electroanal. Chem. 2020, 856, 113498.
doi: 10.1016/j.jelechem.2019.113498
Ma, C.; Cao, Y.; Gou, X.; Zhu, J. J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92, 431-454.
doi: 10.1021/acs.analchem.9b04947
Fu, X.; Yang, Y.; Wang, N.; Chen, S. The electrochemiluminescence resonance energy transfer between Fe-MIL-88 metal-organic framework and 3, 4, 9, 10-perylenetetracar-boxylic acid for dopamine sensing. Sensor. Actuat. B-Chem. 2017, 250, 584-590.
doi: 10.1016/j.snb.2017.04.054
Li, Y.; Yang, L.; Peng, Z.; Huang, C.; Li, Y. Encapsulating a ruthenium(II) complex into metal organic frameworks to engender high sensitivity for dopamine electrochemiluminescence detection. Anal. Methods 2018, 10, 1560-1564.
doi: 10.1039/C7AY02903A
Wang, Y. W.; Nan, L. J.; Jiang, Y. R.; Fan, M. F.; Chen, J.; Yuan, P. X.; Wang, A. J.; Feng, J. J. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metalorganic frameworks and its application in ascorbic acid detection. Analyst 2020, 145, 2758-2766.
doi: 10.1039/C9AN02442E
Tao, X. L.; Pan, M. C.; Yang, X.; Yuan, R.; Zhuo, Y. CDs assembled metal-organic framework: exogenous coreactant-free biosensing platform with pore confinement-enhanced electrochemiluminescence. Chin. Chem. Lett. 2022.
Sies, H.; Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363-383.
doi: 10.1038/s41580-020-0230-3
Tian, H.; Tan, B.; Dang, X.; Zhao, H. Enhanced electrochemiluminescence detection for hydrogen peroxide using peroxidase-mimetic Fe/N-doped porous carbon. J. Electrochem. Soc. 2019, 166, B1594-B1601.
doi: 10.1149/2.1021915jes
Jian, X.; Xu, J.; Wang, Y.; Zhao, C.; Gao, Z.; Song, Y. Y. Deployment of MIL-88B(Fe)/TiO2 nanotube-supported Ti wires as reusable electrochemiluminescence microelectrodes for noninvasive sensing of H2O2 from single cancer cells. Anal. Chem. 2021, 93, 11312-11320.
doi: 10.1021/acs.analchem.1c02670
Li, H.; Sun, D. -E.; Liu, Y.; Liu, Z. An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 2014, 55, 149-156.
doi: 10.1016/j.bios.2013.11.079
Wen, J.; Zhou, L.; Jiang, D.; Shan, X.; Wang, W.; Shiigi, H.; Chen, Z. Ultrasensitive ECL aptasensing of kanamycin based on synergistic promotion strategy using 3, 4, 9, 10-perylenetetracar-boxylic-l-cysteine/Au@HKUST-1. Anal. Chim. Acta 2021, 1180, 338780.
doi: 10.1016/j.aca.2021.338780
Feng, D.; Tan, X.; Wu, Y.; Ai, C.; Luo, Y.; Chen, Q.; Han, H. Electrochemiluminecence nanogears aptasensor based on MIL-53(Fe)@CdS for multiplexed detection of kanamycin and neomycin. Biosens Bioelectron 2019, 129, 100-106.
doi: 10.1016/j.bios.2018.12.050
Nie, Y.; Tao, X.; Zhang, H.; Chai, Y. Q.; Yuan, R. Self-assembly of gold nanoclusters into a metal-organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin. Anal. Chem. 2021, 93, 3445-3451.
doi: 10.1021/acs.analchem.0c04682
Ma, X.; Pang, C.; Li, S.; Li, J.; Wang, M.; Xiong, Y.; Su, L.; Luo, J.; Xu, Z.; Lin, L. Biomimetic synthesis of ultrafine mixed-valence metal-organic framework nanowires and their application in electrochemiluminescence sensing. ACS Appl Mater Interfaces 2021, 13, 41987-41996.
doi: 10.1021/acsami.1c10074
Li, J.; Jiang, D.; Shan, X.; Wang, W.; Ou, G.; Jin, H.; Chen, Z. Determination of acetamiprid using electrochemiluminescent aptasensor modified by MoS2QDs-PATP/PTCA and NH2-UiO-66. Microchim. Acta 2021, 188, 44.
doi: 10.1007/s00604-021-04706-3
Ding, L.; Hong, H.; Xiao, L.; Hu, Q.; Zuo, Y.; Hao, N.; Wei, J.; Wang, K. Nanoparticles-doped induced defective ZIF-8 as the novel cathodic luminophore for fabricating high-performance electrochemiluminescence aptasensor for detection of omethoate. Biosens. Bioelectron. 2021, 192, 113492.
doi: 10.1016/j.bios.2021.113492
Chen, P.; Liu, Z.; Liu, J.; Liu, H.; Bian, W.; Tian, D.; Xia, F.; Zhou, C. A novel electrochemiluminescence aptasensor based CdTe QDs@NH2-MIL-88(Fe) for signal amplification. Electrochim. Acta 2020, 354, 136644.
doi: 10.1016/j.electacta.2020.136644
Liu, H.; Liu, Z.; Yi, J.; Ma, D.; Xia, F.; Tian, D.; Zhou, C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sensor. Actuat. B-Chem. 2021, 331, 129412.
doi: 10.1016/j.snb.2020.129412
Gao, H.; Wei, X.; Li, M.; Wang, L.; Wei, T.; Dai, Z. Co-quenching effect between lanthanum metal-organic frameworks luminophore and crystal violet for enhanced electrochemiluminescence gene detection. Small 2021, 17, e2103424.
doi: 10.1002/smll.202103424
Chen, I. H.; Aguilar, H. A.; Paez Paez, J. S.; Wu, X.; Pan, L.; Wendt, M. K.; Iliuk, A. B.; Zhang, Y.; Tao, W. A. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem. 2018, 90, 6307-6313.
doi: 10.1021/acs.analchem.8b01090
Wang, H. M.; Wang, A. J.; Yuan, P. X.; Feng, J. J. Flower-like metalorganic framework microsphere as a novel enhanced ECL luminophore to construct the coreactant-free biosensor for ultrasensitive detection of breast cancer 1 gene. Sensor. Actuat. B-Chem. 2020, 320, 128395.
doi: 10.1016/j.snb.2020.128395
Shao, H.; Lu, J.; Zhang, Q.; Hu, Y.; Wang, S.; Guo, Z. Rutheniumbased metal organic framework (Ru-MOF)-derived novel Faraday-cage electrochemiluminescence biosensor for ultrasensitive detection of miRNA-141. Sensor. Actuat. B-Chem. 2018, 268, 39-46.
doi: 10.1016/j.snb.2018.04.088
Yang, Y.; Zhang, J. L.; Liang, W. -B.; Zhang, J. L.; Xu, X. L.; Zhang, Y. J.; Yuan, R.; Xiao, D. -R. Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform. Sensor. Actuat. B-Chem. 2022, 362, 131802.
doi: 10.1016/j.snb.2022.131802
Jiang, Y.; Li, R.; He, W.; Li, Q.; Yang, X.; Li, S.; Bai, W.; Li, Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti3C2Tx composite and duplex-specific nuclease-assisted signal amplification. Microchim. Acta 2022, 189, 129.
doi: 10.1007/s00604-022-05246-0
Wang, J. M.; Yao, L. Y.; Huang, W.; Yang, Y.; Liang, W. B.; Yuan, R.; Xiao, D. R. Overcoming aggregation-induced quenching by metal-organic framework for electrochemiluminescence (ECL) enhancement: Zn-PTC as a new ECL emitter for ultrasensitive micrornas detection. ACS Appl. Mater. Interfaces 2021, 13, 44079-44085.
doi: 10.1021/acsami.1c13086
Zhao, L.; Song, X.; Ren, X.; Wang, H.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin. Biosens. Bioelectron. 2021, 191, 113409.
doi: 10.1016/j.bios.2021.113409
Hu, L.; Song, C.; Shi, T.; Cui, Q.; Yang, L.; Li, X.; Wu, D.; Ma, H.; Zhang, Y.; Wei, Q.; Ju, H. Dual-quenching electrochemiluminescence resonance energy transfer system from IRMOF-3 coreaction accelerator enriched nitrogen-doped GQDs to ZnO@Au for sensitive detection of procalcitonin. Sensor. Actuat. B-Chem. 2021, 346, 130495.
doi: 10.1016/j.snb.2021.130495
Wang, C.; Zhang, N.; Wei, D.; Feng, R.; Fan, D.; Hu, L.; Wei, Q.; Ju, H. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens. Bioelectron. 2019, 142, 111521.
doi: 10.1016/j.bios.2019.111521
Wang, R.; Ma, H.; Zhang, Y.; Wang, Q.; Yang, Z.; Du, B.; Wu, D.; Wei, Q. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine. Biosens. Bioelectron. 2017, 96, 345-350.
doi: 10.1016/j.bios.2017.05.029
Ma, H.; Li, X.; Yan, T.; Li, Y.; Liu, H.; Zhang, Y.; Wu, D.; Du, B.; Wei, Q. Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ and Au nanoparticledoped beta-cyclodextrin-Pb(II) metal-organic framework. ACS Appl. Mater. Interfaces 2016, 8, 10121-7.
doi: 10.1021/acsami.5b11991
Zhao, G.; Wang, Y.; Li, X.; Dong, X.; Wang, H.; Du, B.; Cao, W.; Wei, Q. Quenching electrochemiluminescence immunosensor based on resonance energy transfer between ruthenium(II) complex incorporated in the UiO-67 metal-organic framework and gold nanoparticles for insulin detection. ACS Appl. Mater. Interfaces 2018, 10, 22932-22938.
doi: 10.1021/acsami.8b04786
Yan, M.; Ye, J.; Zhu, Q.; Zhu, L.; Huang, J.; Yang, X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal. Chem. 2019, 91, 10156-10163.
doi: 10.1021/acs.analchem.9b02169
Wang, S.; Zhao, Y.; Wang, M.; Li, H.; Saqib, M.; Ge, C.; Zhang, X.; Jin, Y. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin I. Anal. Chem. 2019, 91, 3048-3054.
doi: 10.1021/acs.analchem.8b05443
Jiang, X.; Wang, H.; Chai, Y.; Shi, W.; Yuan, R. High-efficiency CNNS@NH2-MIL(Fe) electrochemiluminescence emitters coupled with Ti3C2 nanosheets as a matrix for a highly sensitive cardiac troponin I assay. Anal. Chem. 2020, 92, 8992-9000.
doi: 10.1021/acs.analchem.0c01075
Dutta Dipankar, J.; Woo Dong, H.; Lee Philip, R.; Pajevic, S.; Bukalo, O.; Huffman William, C.; Wake, H.; Basser Peter, J.; SheikhBahaei, S.; Lazarevic, V.; Smith Jeffrey, C.; Fields, R. D. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 11832-11837.
doi: 10.1073/pnas.1811013115
Sharma, R.; Waller, A. P.; Agrawal, S.; Wolfgang, K. J.; Luu, H.; Shahzad, K.; Isermann, B.; Smoyer, W. E.; Nieman, M. T.; Kerlin, B. A. Thrombin-induced podocyte injury is protease-activated receptor dependent. J. Am. Soc. Nephrol. 2017, 28, 2618.
doi: 10.1681/ASN.2016070789
Fang, Y.; Wang, H. M.; Gu, Y. X.; Yu, L.; Wang, A. J.; Yuan, P. X.; Feng, J. J. Highly enhanced electrochemiluminescence luminophore generated by zeolitic imidazole framework-8-linked porphyrin and its application for thrombin detection. Anal. Chem. 2020, 92, 3206-3212.
doi: 10.1021/acs.analchem.9b04938
Li, P.; Luo, L.; Cheng, D.; Sun, Y.; Zhang, Y.; Liu, M.; Yao, S. Regulation of the structure of zirconium-based porphyrinic metal-organic framework as highly electrochemiluminescence sensing platform for thrombin. Anal. Chem. 2022, 94, 5707-5714.
doi: 10.1021/acs.analchem.2c00737
Huang, Q.; Luo, F.; Lin, C.; Wang, J.; Qiu, B.; Lin, Z. Electrochemiluminescence biosensor for thrombin detection based on metal organic framework with electrochemiluminescence indicator embedded in the framework. Biosens. Bioelectron. 2021, 189, 113374.
doi: 10.1016/j.bios.2021.113374
Huang, W.; Hu, G. B.; Liang, W. B.; Wang, J. M.; Lu, M. L.; Yuan, R.; Xiao, D. R. Ruthenium(II) complex-grafted hollow hierarchical metalorganic frameworks with superior electrochemiluminescence performance for sensitive assay of thrombin. Anal. Chem. 2021, 93, 6239-6245.
doi: 10.1021/acs.analchem.1c00636
Song, X.; Zhao, L.; Luo, C.; Ren, X.; Yang, L.; Wei, Q. Peptide-based biosensor with a luminescent copper-based metal-organic framework as an electrochemiluminescence emitter for trypsin assay. Anal. Chem. 2021, 93, 9704-9710.
doi: 10.1021/acs.analchem.1c00850
Ma, H.; Li, X.; Yan, T.; Li, Y.; Zhang, Y.; Wu, D.; Wei, Q.; Du, B. Electrochemiluminescent immunosensing of prostate-specific antigen based on silver nanoparticles-doped Pb(II) metal-organic framework. Biosens. Bioelectron. 2016, 79, 379-385.
doi: 10.1016/j.bios.2015.12.080
Shao, K.; Wang, B.; Nie, A.; Ye, S.; Ma, J.; Li, Z.; Lv, Z.; Han, H. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens. Bioelectron. 2018, 118, 160-166.
doi: 10.1016/j.bios.2018.07.029
Khoshfetrat, S. M.; Hashemi, P.; Afkhami, A.; Hajian, A.; Bagheri, H. Cascade electrochemiluminescence-based integrated graphitic carbon nitride-encapsulated metal-organic framework nanozyme for prostatespecific antigen biosensing. Sensor. Actuat. B-Chem. 2021, 348, 130658.
doi: 10.1016/j.snb.2021.130658
Ji, L.; Yan, T.; Li, Y.; Gao, J.; Wang, Q.; Hu, L.; Wu, D.; Wei, Q.; Du, B. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen. Sci. Rep. 2016, 6, 21017.
doi: 10.1038/srep21017
Huang, X.; Deng, X.; Qi, W.; Wu, D. A metal-organic framework nanomaterial as an ideal loading platform for ultrasensitive electrochemiluminescence immunoassays. New J. Chem. 2018, 42, 13558-13564.
doi: 10.1039/C8NJ02038H
Liu, Q.; Yang, Y.; Liu, X. P.; Wei, Y. P.; Mao, C. J.; Chen, J. S.; Niu, H. L.; Song, J. M.; Zhang, S. Y.; Jin, B. K.; Jiang, M. A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. Sensor. Actuat. B-Chem. 2017, 242, 1073-1078.
doi: 10.1016/j.snb.2016.09.143
Wang, C.; Li, Z.; Ju, H. Copper-doped terbium luminescent metal organic framework as an emitter and a Co-reaction promoter for amplified electrochemiluminescence immunoassay. Anal. Chem. 2021, 93, 14878-14884.
doi: 10.1021/acs.analchem.1c03988
Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal-organic frameworks for ultrasensitive detection of amyloid-beta. Anal. Chem. 2019, 91, 1989-1996.
doi: 10.1021/acs.analchem.8b04332
Wang, C.; Zhang, N.; Li, Y.; Yang, L.; Wei, D.; Yan, T.; Ju, H.; Du, B.; Wei, Q. Cobalt-based metal-organic frameworks as co-reaction accele-rator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-β protein. Sensor. Actuat. B-Chem. 2019, 291, 319-328.
doi: 10.1016/j.snb.2019.04.097
Wu, J.; Wang, A.; Liu, P.; Hou, Y.; Song, L.; Yuan, R.; Fu, Y. Sulfur-functionalized zirconium(IV)-based metal-organic frameworks relieves aggregation-caused quenching effect in efficient electrochemiluminescence. Sensor. Actuat. B-Chem. 2020, 321, 128531.
doi: 10.1016/j.snb.2020.128531
Johnson, G. L.; Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298, 1911-1912.
doi: 10.1126/science.1072682
Newton, K.; Dugger Debra, L.; Wickliffe Katherine, E.; Kapoor, N.; de Almagro, M. C.; Vucic, D.; Komuves, L.; Ferrando Ronald, E.; French Dorothy, M.; Webster, J.; Roose-Girma, M.; Warming, S.; Dixit Vishva, M. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 2014, 343, 1357-1360.
doi: 10.1126/science.1249361
Zhang, G. Y.; Cai, C.; Cosnier, S.; Zeng, H. B.; Zhang, X. J.; Shan, D. Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. Nanoscale 2016, 8, 11649-11657.
doi: 10.1039/C6NR01206J
Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874-885.
doi: 10.1038/nrc2761
Huang, L. Y.; Hu, X.; Shan, H. Y.; Yu, L.; Gu, Y. X.; Wang, A. J.; Shan, D.; Yuan, P. -X.; Feng, J. J. High-performance electrochemiluminescence emitter of metal organic framework linked with porphyrin and its application for ultrasensitive detection of biomarker mucin-1. Sensor. Actuat. B-Chem. 2021, 344, 130300.
doi: 10.1016/j.snb.2021.130300
Hu, G. B.; Xiong, C. Y.; Liang, W. B.; Zeng, X. S.; Xu, H. L.; Yang, Y.; Yao, L. Y.; Yuan, R.; Xiao, D. R. Highly stable mesoporous luminescence-functionalized MOF with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl. Mater. Interfaces 2018, 10, 15913-15919.
doi: 10.1021/acsami.8b05038
Yao, L. Y.; Yang, F.; Liang, W. B.; Hu, G. B.; Yang, Y.; Huang, W.; Yuan, R.; Xiao, D. R. Ruthenium complex doped metal-organic nanoplate with high electrochemiluminescent intensity and stability for ultrasensitive assay of mucin 1. Sensor. Actuat. B-Chem. 2019, 292, 105-110.
doi: 10.1016/j.snb.2019.04.130
Wang, S.; Wang, M.; Li, C.; Li, H.; Ge, C.; Zhang, X.; Jin, Y. A highly sensitive and stable electrochemiluminescence immunosensor for alphafetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensor. Actuat. B-Chem. 2020, 311, 127919.
doi: 10.1016/j.snb.2020.127919
Ding, Y.; Zhang, X.; Peng, J.; Zheng, D.; Zhang, X.; Song, Y.; Chen, Y.; Gao, W. Ultra-sensitive electrochemiluminescence platform based on magnetic metal-organic framework for the highly efficient enrichment. Sensor. Actuat. B-Chem. 2020, 324, 128700.
doi: 10.1016/j.snb.2020.128700
Baker-Austin, C.; Stockley, L.; Rangdale, R.; Martinez-Urtaza, J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective. Environ. Microbiol. Rep. 2010, 2, 7-18.
doi: 10.1111/j.1758-2229.2009.00096.x
Wei, W.; Lin, H.; Shao, H.; Hao, T.; Wang, S.; Hu, Y.; Guo, Z.; Su, X. Faraday cage-type aptasensor for dual-mode detection of Vibrio parahaemolyticus. Microchim. Acta 2020, 187, 529.
doi: 10.1007/s00604-020-04506-1
Adegoke, O.; Morita, M.; Kato, T.; Ito, M.; Suzuki, T.; Park, E. Y. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens. Bioelectron. 2017, 94, 513-522.
doi: 10.1016/j.bios.2017.03.046
Zhang, Y. W.; Liu, W. S.; Chen, J. S.; Niu, H. L.; Mao, C. J.; Jin, B. K. Metal-organic gel and metal-organic framework based switchable electrochemiluminescence RNA sensing platform for Zika virus. Sensor. Actuat. B-Chem. 2020, 321, 128456.
doi: 10.1016/j.snb.2020.128456
Ma, J.; Wang, W.; Li, Y.; Lu, Z.; Tan, X.; Han, H. Novel porphyrin Zr metal-organic framework (PCN-224)-based ultrastable electrochemiluminescence system for PEDV sensing. Anal. Chem. 2021, 93, 2090-2096.
doi: 10.1021/acs.analchem.0c03836
Shabani, A.; Zourob, M.; Allain, B.; Marquette, C. A.; Lawrence, M. F.; Mandeville, R. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 2008, 80, 9475-9482.
doi: 10.1021/ac801607w
Sun, L.; Chen, Y.; Duan, Y.; Ma, F. Electrogenerated chemiluminescence biosensor based on functionalized two-dimensional metal-organic frameworks for bacterial detection and antimicrobial susceptibility assays. ACS Appl. Mater. Interfaces 2021, 13, 38923-38930.
doi: 10.1021/acsami.1c11949
Xiaoyan Peng , Xuanhao Wu , Fan Yang , Yefei Tian , Mingming Zhang , Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
Kang Wang , Qinglin Zhou , Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
Lihua Ma , Song Guo , Zhi-Ming Zhang , Jin-Zhong Wang , Tong-Bu Lu , Xian-Shun Zeng . Sensitizing photoactive metal–organic frameworks via chromophore for significantly boosting photosynthesis. Chinese Chemical Letters, 2024, 35(5): 108661-. doi: 10.1016/j.cclet.2023.108661
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249