Citation: Sha Li, Xin Wang, Min Cao, Jingjun Lu, Li Qiu, Xiaoliang Yan. Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane[J]. Chinese Journal of Structural Chemistry, ;2022, 41(12): 221200. doi: 10.14102/j.cnki.0254-5861.2022-0113 shu

Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO2-Al2O3 Catalyst for Dry Reforming of Methane

  • Corresponding author: Xiaoliang Yan, yanxiaoliang@tyut.edu.cn
  • Received Date: 7 May 2022
    Accepted Date: 1 August 2022
    Available Online: 6 August 2022

Figures(9)

  • Designing and tailoring metal-support interaction in Ni-based catalysts with plentiful interfacial sites is of significant interest for achieving a targeted catalytic performance in dry reforming of methane (DRM), but remains as a challenging task. In this work, Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts with the same strong metal-support interaction (SMSI) but distinct interface structure are developed by an improved evaporation-induced self-assembly method using pseudobohemite gel as aluminum source. Ni/CeO2-Al2O3 exhibits superior catalytic activity and stability in DRM in comparison with Ni/Al2O3. The highest CH4 and CO2 conversion reaches at 71.4% and 82.1% for Ni/CeO2-Al2O3, which are higher than that of 64.3% and 75.6% for Ni/Al2O3 at 700 ℃. The SMSI effect in Ni/CeO2-Al2O3 provides more active interfacial sites with less coke deposition, and promotes the generation of active formate species which are the key intermediates for DRM. The findings of the present work could possibly pave the way for fabricating catalysts with SMSI strategy for efficient heterogeneous catalysis.
  • 加载中
    1. [1]

      Diao, Y. N.; Zhang, X.; Liu, Y.; Chen, B. B.; Wu, G. H.; Shi, C. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Appl. Catal. B Environ. 2022, 301, 120779.  doi: 10.1016/j.apcatb.2021.120779

    2. [2]

      Guo, Y.; Li, Y. F.; Ning, Y. X.; Liu, Q. K.; Tian, L.; Zhang, R. D.; Fu, Q.; Wang, Z. J. CO2 reforming of methane over a highly dispersed Ni/Mg-Al-O catalyst prepared by a facile and green method. Ind. Chem. Eng. Res. 2020, 59, 15506-15514.  doi: 10.1021/acs.iecr.0c02444

    3. [3]

      Zhang, T. T.; Liu, Z. X.; Zhu, Y. A.; Liu, Z. C.; Sui, Z. J.; Zhu, K. K.; Zhou, X. G. Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics. Appl. Catal. B Environ. 2020, 264, 118497.  doi: 10.1016/j.apcatb.2019.118497

    4. [4]

      Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D.; Choi, S. H.; Yavuz, C. T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777-781.  doi: 10.1126/science.aav2412

    5. [5]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem 2011, 3, 529-541.  doi: 10.1002/cctc.201000358

    6. [6]

      Chen, S. Y.; Zaffran, J.; Yang, B. Descriptor design in the computational screening of Ni-based catalysts with balanced activity and stability for dry reforming of methane reaction. ACS Catal. 2020, 10, 3074-3083.  doi: 10.1021/acscatal.9b04429

    7. [7]

      Huang, Y. L.; Li, X. D. Zhang, Q.; Vinokurov, V. A.; Huang, W. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel 2022, 310, 122449.  doi: 10.1016/j.fuel.2021.122449

    8. [8]

      Azancot, L.; Bobadilla, L. F.; Centeno, M. A.; Odriozola, J. A. IR spectroscopic insights into the coking-resistance effect of potassium on nickel-based catalyst during dry reforming of methane. Appl. Catal. B Environ. 2021, 285, 119822.  doi: 10.1016/j.apcatb.2020.119822

    9. [9]

      Liu, Z. Y.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T. D.; Zhou, Y. H.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; Carrasco, J.; Busnengo, H. F.; Ganduglia-Pirovano, M. V.; Senanayake, S. D.; Rodriguez, J. A. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: effects of metal-support interactions on C-H bond breaking. Angew. Chem. Int. Ed. 2016, 55, 7455-7459.  doi: 10.1002/anie.201602489

    10. [10]

      Akri, M.; Zhao, S.; Li, X. Y.; Zang, K. T.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y. J.; Cui, Y. T.; Li, L.; Su, Y.; Pan, X. L.; Wen, W.; Pan, Y.; Wilson, K.; Li, L.; Qiao, B. T.; Ishii, H.; Liao, Y. F.; Wang, A. Q.; Wang, X. D.; Zhang, T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.  doi: 10.1038/s41467-019-12843-w

    11. [11]

      Ewbank, J. L.; Kovarik, L.; Diallo, F. Z.; Sivers, C. Effect of metal-support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming. Appl. Catal. A Gen. 2015, 494, 57-67.  doi: 10.1016/j.apcata.2015.01.029

    12. [12]

      Yang, B.; Deng, J.; Li, H. R.; Yan, T. T.; Zhang, J. P.; Zhang, D. S. Coking-resistant dry reforming of methane over Ni/gamma-Al2O3 catalysts by rationally steering metal-support interaction. iScience 2021, 24, 102747.  doi: 10.1016/j.isci.2021.102747

    13. [13]

      Zhou, L.; Li, L. D.; Wei, N. N.; Li, J.; Basset, J. M. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane. ChemCatChem 2015, 7, 2508-2516.  doi: 10.1002/cctc.201500379

    14. [14]

      Zhang, S. S.; Ying, M.; Yu, J.; Zhan, W. C.; Wang, L.; Guo, Y.; Guo, Y. L. NixAl1O2-delta mesoporous catalysts for dry reforming of methane: the special role of NiAl2O4 spinel phase and its reaction mechanism. Appl. Catal. B Environ. 2021, 291, 120074.  doi: 10.1016/j.apcatb.2021.120074

    15. [15]

      Li, K.; Pei, C. L.; Li, X. Y.; Chen, S.; Zhang, X. H.; Liu, R.; Gong, J. L. Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B Environ. 2020, 264, 118448.  doi: 10.1016/j.apcatb.2019.118448

    16. [16]

      Stroud, T.; Smith, T. J.; Le, S. E.; Santos, J. L.; Centeno, M. A.; Arellano-Garcia, H.; Odriozola, J. A.; Reina, T. R. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Appl. Catal. B Environ. 2018, 224, 125-135.  doi: 10.1016/j.apcatb.2017.10.047

    17. [17]

      Wang, S. B.; Lu, M. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B Environ. 1998, 19, 267-277.  doi: 10.1016/S0926-3373(98)00081-2

    18. [18]

      Peng, W. X.; Wang, L. S.; Mirzaee, M.; Ahmadi, H.; Esfahani, M. J.; Fremaux, S. Hydrogen and syngas production by catalytic biomass gasification. Energy Convers. Manage. 2017, 135, 270-273.  doi: 10.1016/j.enconman.2016.12.056

    19. [19]

      Biset-Peiró, M.; Guilera, J.; Zhang, T.; Arbiol, J.; Andreu, T. On the role of ceria in Ni-Al2O3 catalyst for CO2 plasma methanation. Appl. Catal. A Gen. 2019, 575, 223-229.  doi: 10.1016/j.apcata.2019.02.028

    20. [20]

      Luisetto, I.; Tuti, S.; Battocchio, C.; Lo Mastro, S.; Sodo, A. Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl. Catal. A Gen. 2015, 500, 12-22.  doi: 10.1016/j.apcata.2015.05.004

    21. [21]

      Ahmed, W.; Awadallah, A. E.; Aboul-Enein, A. A. Ni/CeO2-Al2O3 catalysts for methane thermo-catalytic decomposition to COx-free H2 production. Int. J. Hydrogen Energy 2016, 41, 18484-18493.  doi: 10.1016/j.ijhydene.2016.08.177

    22. [22]

      Anita, H.; Miklós, N.; Andrea, B.; Boglárka, M.; György, S.; Giuseppe, P.; Leonarda, F. L.; Anna, M. V.; ValeriaLa, P. Strong impact of indium promoter on Ni/Al2O3 and Ni/CeO2-Al2O3 catalysts used in dry reforming of methane. Appl. Catal. A Gen. 2021, 621, 118174.  doi: 10.1016/j.apcata.2021.118174

    23. [23]

      Song, Z. W.; Wang, Q. Q.; Guo, C.; Li, S.; Yan, W. J.; Jiao, W. Y.; Qiu, L.; Yan, X. L.; Li, R. F. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane. Ind. Eng. Chem. Res. 2020, 59, 17250-17258.  doi: 10.1021/acs.iecr.0c01204

    24. [24]

      Meng, F. H.; Li, X.; Li, M. H.; Cui, X. X.; Li, Z. Catalytic performance of CO methanation over La-promoted Ni/Al2O3 catalyst in a slurry-bed reactor. Chem. Eng. J. 2016, 313, 1548-1555.

    25. [25]

      Rynkowski, J. M.; Paryjczak, T.; Lenik, M. On the nature of oxidic nickel phases in NiO/γ-AI2O3 catalysts. Appl. Catal. A Gen. 1993, 106, 73-82.  doi: 10.1016/0926-860X(93)80156-K

    26. [26]

      Ai, H. M.; Yang, H. Y.; Liu, Q.; Zhao, G. M.; Yang, J.; Gu, F. N. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance. Chin. J. Catal. 2018, 39, 297-308.  doi: 10.1016/S1872-2067(17)62995-4

    27. [27]

      Tan, M.; Wang, X.; Wang, X.; Zou, X.; Ding, W.; Lu, X. Influence of calcination temperature on textural and structural properties, reducibility, and catalytic behavior of mesoporous γ-alumina-supported Ni-Mg oxides by one-pot template-free route. J. Catal. 2015, 329, 151-166.  doi: 10.1016/j.jcat.2015.05.011

    28. [28]

      Yan, X. L.; Zhao, B. R.; Liu, Y.; Li, Y. N. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective. Catal. Today 2015, 256, 29-40.  doi: 10.1016/j.cattod.2015.04.045

    29. [29]

      Al-Fatesh, A. S.; Naeem, M. A.; Fakeeha, A. H.; Abasaeed, A. E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chin. J. Chem. Eng. 2014, 22, 28-37.  doi: 10.1016/S1004-9541(14)60029-X

    30. [30]

      McCarty, J. G.; Wise, H. Hydrogenation of surface carbon on alumina-supported nickel. J. Catal. 1979, 57, 406-416.  doi: 10.1016/0021-9517(79)90007-1

    31. [31]

      Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127-134.  doi: 10.1038/s41929-017-0016-y

    32. [32]

      Pan, Y.; Liu C. J.; Ge, Q. Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 2008, 24, 12410-12419.  doi: 10.1021/la802295x

    33. [33]

      Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89-126.  doi: 10.1016/0390-6035(82)90059-1

    34. [34]

      Wang, X.; Hong, Y. C.; Shi, H.; Szanyi, J. Kinetic modeling and transient DRIFTS-MS studies of CO2 methanation over Ru/Al2O3 catalysts. J. Catal. 2016, 343, 185-195.  doi: 10.1016/j.jcat.2016.02.001

    35. [35]

      Alarcon, A.; Guilera, J.; Soto, R.; Andreu, T. Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2. Appl. Catal. B Environ. 2020, 263, 118346.  doi: 10.1016/j.apcatb.2019.118346

    36. [36]

      Zhang, X. Y.; Deng, J.; Pupucevski, M.; Impeng, S.; Yang, B.; Chen, G. R.; Kuboon, S.; Zhong, Q. D.; Faungnawakij, K.; Zheng, L. R.; Wu, G.; Zhang, D. S. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane. ACS Catal. 2021, 11, 12087-12095.  doi: 10.1021/acscatal.1c02124

    37. [37]

      Shi, L.; Yang, G. H.; Tao, K.; Yoneyama, Y.; Tan, Y. S.; Tsubaki, N. An introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Acc. Chem. Res. 2013, 46, 1838-1847.  doi: 10.1021/ar300217j

    38. [38]

      Szanyi, J.; Kwak, J. H. Dissecting the steps of CO2 reduction: 2. The interaction of CO and CO2 with Pd/gamma-Al2O3: an in situ FTIR study. Phys. Chem. Chem. Phys. 2014, 16, 15126-15138.  doi: 10.1039/C4CP00617H

    39. [39]

      Ni, J.; Chen, L. W.; Lin, J. Y.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674-686.  doi: 10.1016/j.nanoen.2012.07.011

    40. [40]

      Ferreira-Aparicio, P.; Fernandez-Garcia, M.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Evaluation of the role of the metal-support interfacial centers in the dry reforming of methane on alumina-supported rhodium catalysts. J. Catal. 2000, 190, 296-308.  doi: 10.1006/jcat.1999.2752

    41. [41]

      Luo, J. Z.; Yu, Z. L.; Ng, C. F.; Au, C. T. CO2/CH4 reforming over Ni-La2O3/5A: an investigation on carbon deposition and reaction steps. J. Catal. 2000, 194, 198-210.  doi: 10.1006/jcat.2000.2941

    42. [42]

      Yan, X. L.; Hu, T.; Liu, P.; Li, S.; Zhao, B. R.; Zhang, Q.; Jiao, W. Y.; Chen, S.; Wang, P. F.; Lu, J. J. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B Environ. 2019, 246, 221-231.  doi: 10.1016/j.apcatb.2019.01.070

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    6. [6]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    7. [7]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    8. [8]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    9. [9]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    12. [12]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    13. [13]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    14. [14]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    15. [15]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    16. [16]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    17. [17]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    18. [18]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    19. [19]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    20. [20]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

Metrics
  • PDF Downloads(20)
  • Abstract views(1252)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return