Citation: Gai Li, Suyang Feng, Jing Li, Peilin Deng, Xinlong Tian, Chongtai Wang, Yingjie Hua. P-Ni4Mo Catalyst for Seawater Electrolysis with High Current Density and Durability[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220706. doi: 10.14102/j.cnki.0254-5861.2022-0110 shu

P-Ni4Mo Catalyst for Seawater Electrolysis with High Current Density and Durability

Figures(4)

  • Rational design of highly efficient and durable electrocatalysts with low cost to replace noble-metal based catalysts for seawater electrolysis is extremely desirable, but challenging. In this work, we demonstrate a rapid electrodeposition method by growing P-Ni4Mo on the surface of the copper foam (CF) substrate to synthesize an efficient seawater electrolysis catalyst (P-Ni4Mo/CF). The catalyst exhibited considerable HER performance and stability in alkaline seawater, with the overpotential as low as 260 mV at a current density of 100 mA cm-2. The P-Ni4Mo/CF is capable of achieving 1.0 A cm-2 with an overpotential of 551 mV, which is slightly worse than that of the Pt/C catalyst (453 mV). Moreover, P-Ni4Mo/CF demonstrates robust durability, with almost no activity loss after the durability test for more than 200 h. This work not only reports a new catalyst for seawater electrolysis, but also presents a strategy for the performance enhancement of seawater electrolysis.
  • 加载中
    1. [1]

      Tian, X.; Zhao, X.; Su, Y.-Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J.; Lou, X. W. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850-856.  doi: 10.1126/science.aaw7493

    2. [2]

      Liu, Z.; Zeng, L.; Yu, J.; Yang, L.; Zhang, J.; Zhang, X.; Han, F.; Zhao, L.; Li, X.; Liu, H. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940.  doi: 10.1016/j.nanoen.2021.105940

    3. [3]

      Feng, S.; Luo, J.; Li, J.; Yu, Y.; Kang, Z.; Huang, W.; Chen, Q.; Deng, P.; Shen, Y.; Tian, X. Heterogeneous structured Ni3Se2/MoO2@Ni12P5 catalyst for durable urea oxidation reaction. Mater. Today Phys. 2022, 23, 100646.  doi: 10.1016/j.mtphys.2022.100646

    4. [4]

      Yang, Y.; Wu, D.; Yu, Y.; Li, J.; Rao, P.; Jia, C.; Liu, Z.; Chen, Q.; Huang, W.; Luo, J.; Deng, P.; Shen, Y.; Tian, X. Bridge the activity and durability of ruthenium for hydrogen evolution reaction with the RuOC link. Chem. Eng. J. 2022, 433, 134421.  doi: 10.1016/j.cej.2021.134421

    5. [5]

      Yu, Y.; Chen, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Huang, W.; Luo, J.; Deng, P.; Shen, Y.; Tian, X. Progress in the development of heteroatom-doped nickel phosphates for electrocatalytic water splitting. J. Colloid Interface Sci. 2022, 607, 1091-1102.  doi: 10.1016/j.jcis.2021.09.032

    6. [6]

      Zheng, X.; Wu, D.; Liu, Y.; Li, J.; Yang, Y.; Huang, W.; Liu, W.; Shen, Y.; Tian, X. Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes. Mater. Today Energy 2022, 25, 100956.  doi: 10.1016/j.mtener.2022.100956

    7. [7]

      Gao, M.; Zhou, W.-Y.; Mo, Y.-X.; Sheng, T.; Deng, Y.; Chen, L.; Wang, K.; Tan, Y.; Zhou, H. Outstanding long-cycling lithium-sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv. Powder Mater. 2022, 1, 100006.  doi: 10.1016/j.apmate.2021.09.006

    8. [8]

      Li, Z.; Wu, X.; Jiang, X.; Shen, B.; Teng, Z.; Sun, D.; Fu, G.; Tang, Y. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2021, 1, 100020.

    9. [9]

      Li, P. Y.; Hong W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.

    10. [10]

      Yang, Y.; Yu, Y.; Li, J.; Chen, Q.; Du, Y.; Rao, P.; Li, R.; Jia, C.; Kang, Z.; Deng, P. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro. Lett. 2021, 13, 1-20.  doi: 10.1007/s40820-020-00525-y

    11. [11]

      Rao, P.; Luo, J.; Li, J.; Huang, W.; Sun, W.; Chen, Q.; Jia, C.; Liu, Z.; Deng, P.; Shen, Y.; Tian, X. One-dimensional PtFe hollow nanochains for the efficient oxygen reduction reaction. Carbon Energy 2022, https://doi.org/10.1002/cey2.192  doi: 10.1002/cey2.192

    12. [12]

      Wu, Y. L.; Xie, N.; Li, X. F.; Fu, Z. M.; Wu, X. T.; Zhu Q. L. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.

    13. [13]

      Yu, L.; Zhu, Q.; Song, S.; McElhenny, B.; Wang, D.; Wu, C.; Qin, Z.; Bao, J.; Yu, Y.; Chen, S. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 1-10.  doi: 10.1038/s41467-018-07882-8

    14. [14]

      Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; Liao, S.; Tian, X. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.  doi: 10.1002/aenm.202101222

    15. [15]

      Rao, P.; Wang, T.-J.; Li, J.; Deng, P.; Shen, Y.; Chen, Y.; Tian, X. Plasma induced Fe-N active sites to improve the oxygen reduction reaction performance. Adv. Sens. Energy Mater. 2022, 1, 100005.  doi: 10.1016/j.asems.2022.100005

    16. [16]

      Rao, P.; Wu, D.; Luo, J.; Li, J.; Deng, P.; Shen, Y.; Tian, X. A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction reaction. Cell Rep. Phys. Sci. 2022, 3, 100880.  doi: 10.1016/j.xcrp.2022.100880

    17. [17]

      Tian, H.; Wu, D.; Li, J.; Luo, J.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Shim, C. M.; Deng, P.; Shen, Y.; Tian, X. Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction. J. Energy Chem. 2022, 70, 230-235.  doi: 10.1016/j.jechem.2022.02.021

    18. [18]

      Dresp, S. R.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 2019, 4, 933-942.  doi: 10.1021/acsenergylett.9b00220

    19. [19]

      Wu, H. S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.

    20. [20]

      Ma, Y.-Y.; Wu, C.-X.; Feng, X.-J.; Tan, H.-Q.; Yan, L.-K.; Liu, Y.; Kang, Z.-H.; Wang, E.-B.; Li, Y.-G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788-798.  doi: 10.1039/C6EE03768B

    21. [21]

      Wang, C.; Zhu, M.; Cao, Z.; Zhu, P.; Cao, Y.; Xu, X.; Xu, C.; Yin, Z. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Appl. Catal., B 2021, 291, 120071.  doi: 10.1016/j.apcatb.2021.120071

    22. [22]

      Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439-3446.  doi: 10.1039/D0EE00921K

    23. [23]

      Chang, J.; Wang, G.; Yang, Z.; Li, B.; Wang, Q.; Kuliiev, R.; Orlovskaya, N.; Gu, M.; Du, Y.; Wang, G. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, 2101425.  doi: 10.1002/adma.202101425

    24. [24]

      Yang, C.; Zhou, L.; Wang, C.; Duan, W.; Zhang, L.; Zhang, F.; Zhang, J.; Zhen, Y.; Gao, L.; Fu, F. Large-scale synthetic Mo@(2H-1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Appl. Catal., B 2022, 304, 120993.  doi: 10.1016/j.apcatb.2021.120993

    25. [25]

      Wu, L. B.; Yu, L.; McElhenny, B.; Xing, X. X.; Luo, D.; Zhang, F. H.; Bao, J. M.; Chen, S.; Ren, Z. F. Rational design of core-shell-structured CoPx@FeOOH for efficient seawater electrolysis. Appl. Catal. B-Environ. 2021, 294, 120256.  doi: 10.1016/j.apcatb.2021.120256

    26. [26]

      Tran, P. K. L.; Tran, D. T.; Malhotra, D.; Prabhakaran, S.; Kim, D. H.; Kim, N. H.; Lee, J. H. Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures. Small 2021, 17, 2103826.  doi: 10.1002/smll.202103826

    27. [27]

      ul Haq, T.; Haik, Y. S doped Cu2O-CuO nanoneedles array: free standing oxygen evolution electrode with high efficiency and corrosion resistance for seawater splitting. Catal. Today 2021, 17, 0920-5861.

    28. [28]

      Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.  doi: 10.1002/adma.202007508

    29. [29]

      Yu, L.; Wu, L.; Song, S.; McElhenny, B.; Zhang, F.; Chen, S.; Ren, Z. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Lett. 2020, 5, 2681-2689.  doi: 10.1021/acsenergylett.0c01244

    30. [30]

      Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K.; Hu, S.; Kang, F.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86-95.  doi: 10.1039/C9EE02388G

    31. [31]

      Londoño-Calderón, V.; Ospina, R.; Rodriguez-Pereira, J.; Rincón-Ortiz, S. A.; Restrepo-Parra, E. Molybdenum and nickel nanoparticles synthesis by laser ablation towards the preparation of a hydrodesulfurization catalyst. Catalysts 2020, 10, 1076.  doi: 10.3390/catal10091076

    32. [32]

      Du, W.; Shi, Y.; Zhou, W.; Yu, Y.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 7051-7055.  doi: 10.1002/anie.202015723

    33. [33]

      Jin, Z.; Wang, L.; Chen, T.; Liang, J.; Zhang, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Transition metal/metal oxide interface (Ni-Mo-O/Ni4Mo) stabilized on N-doped carbon paper for enhanced hydrogen evolution reaction in alkaline conditions. Ind. Eng. Chem. Res. 2021, 60, 5145-5150.  doi: 10.1021/acs.iecr.1c00039

    34. [34]

      Hao, Y.; Du, G.; Fan, Y.; Jia, L.; Han, D.; Zhao, W.; Su, Q.; Ding, S.; Xu, B. Mo/P dual-doped co/oxygen-deficient Co3O4 core-shell nanorods supported on Ni foam for electrochemical overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 55263-55271.  doi: 10.1021/acsami.1c18813

    35. [35]

      Huang, S.; Ouyang, T.; Zheng, B. F.; Dan, M.; Liu, Z. Q. Enhanced photoelectrocatalytic activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity. Angew. Chem. Int. Ed. 2021, 60, 9546-9552.  doi: 10.1002/anie.202101058

    36. [36]

      Wang, X.; Wang, J.; Yu, B.; Jiang, W.; Wei, J.; Chen, B.; Xu, R.; Yang, L. Facile synthesis MnCo2O4.5@C nanospheres modifying PbO2 energy-saving electrode for zinc electrowinning. J. Hazard. Mater. 2022, 428, 128212.  doi: 10.1016/j.jhazmat.2021.128212

    37. [37]

      Lee, J.; Jung, H.; Park, Y. S.; Woo, S.; Yang, J.; Jang, M. J.; Jeong, J.; Kwon, N.; Lim, B.; Han, J. W. High-efficiency anion-exchange membrane water electrolyzer enabled by ternary layered double hydroxide anode. Small 2021, 17, 2100639.  doi: 10.1002/smll.202100639

    38. [38]

      Xue, S.; Wu, G.; Li, M.; Liu, Z.; Deng, Y.; Han, W.; Lv, X.; Wan, S.; Xi, X.; Yang, D. Generalized assembly of sandwich-like 0D/2D/0D heterostructures with highly exposed surfaces toward superior electrochemical performances. Nano Res. 2022, 15, 255-263.  doi: 10.1007/s12274-021-3468-y

    39. [39]

      Zang, W.; Sun, T.; Yang, T.; Xi, S.; Waqar, M.; Kou, Z.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.  doi: 10.1002/adma.202003846

    40. [40]

      Wu, D.; Chen, D.; Zhu, J.; Mu, S. Ultralow Ru Incorporated amorphous cobalt‐based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 2021, 17, 2102777.  doi: 10.1002/smll.202102777

    41. [41]

      Zheng, B.-F.; Ouyang, T.; Wang, Z.; Long, J.; Chen, Y.; Liu, Z.-Q. Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem. Commun. 2018, 54, 9583-9586.  doi: 10.1039/C8CC04199G

    42. [42]

      Tao, S.; Wen, Q.; Jaegermann, W.; Kaiser, B. Formation of highly active NiO(OH) thin films from electrochemically deposited Ni(OH)2 by a simple thermal treatment at a moderate temperature: a combined electrochemical and surface science investigation. ACS Catal. 2022, 12, 1508-1519.  doi: 10.1021/acscatal.1c04589

    43. [43]

      Wang, F.; Sun, X.; Wang, Y.; Zhou, H.; Yin, J.; Zhang, X. Metallized Ni(OH)2·NiO/FeOOH on Ni foam as a highly effective water oxidation catalyst prepared by surface treatment: oxidation-corrosion equilibrium. ACS Appl. Energy Mater. 2021, 4, 5599-5605.  doi: 10.1021/acsaem.1c00384

    44. [44]

      Lu, Q.; Huang, B.; Zhang, Q.; Chen, S.; Gu, L.; Song, L.; Yang, Y.; Wang, X. Single-crystal inorganic helical architectures induced by asymmetrical defects in sub-nanometric wires. J. Am. Chem. Soc. 2021, 143, 9858-9865.  doi: 10.1021/jacs.1c03607

    45. [45]

      Wang, M.; Ye, C.; Xu, M.; Bao, S. MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: self-supported electrodes for efficient hydrogen generation. Nano Res. 2018, 11, 4728-4734.  doi: 10.1007/s12274-018-2057-1

    46. [46]

      Yu, C.; Xu, F.; Luo, L.; Abbo, H. S.; Titinchi, S. J.; Shen, P. K.; Tsiakaras, P.; Yin, S. Bimetallic Ni-Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2019, 317, 191-198.  doi: 10.1016/j.electacta.2019.05.150

    47. [47]

      Panigrahi, K.; Howli, P.; Chattopadhyay, K. K. Three-dimensional VO2@PANI micro flower array for flexible supercapacitor. Mater. Lett. 2019, 253, 90-94.  doi: 10.1016/j.matlet.2019.06.034

    48. [48]

      She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal., B 2016, 187, 144-153.  doi: 10.1016/j.apcatb.2015.12.046

    49. [49]

      Wang, S.; Lu, Z.; Fang, Y.; Zheng, T.; Zhang, Z.; Wang, W.; Zhao, R.; Xue, W. Controllable synthesis of self-templated hierarchical Ni3S2@N-doped carbon for enhanced oxygen evolution reaction. Mater. Adv. 2021, 2, 3971-3980.  doi: 10.1039/D1MA00229E

  • 加载中
    1. [1]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    10. [10]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    11. [11]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    12. [12]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    15. [15]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    16. [16]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    17. [17]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    18. [18]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    19. [19]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    20. [20]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

Metrics
  • PDF Downloads(3)
  • Abstract views(280)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return