Citation: Zhongliao Wang, Ruilian Liu, Jinfeng Zhang, Kai Dai. S-scheme Porous g-C3N4/Ag2MoO4 Heterojunction Composite for CO2 Photoreduction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220601. doi: 10.14102/j.cnki.0254-5861.2022-0108 shu

S-scheme Porous g-C3N4/Ag2MoO4 Heterojunction Composite for CO2 Photoreduction

Figures(8)

  • Utilizing solar energy to achieve artificial photosynthesis of chemical fuel is prevalent in tackling excessive CO2 emission and fossil fuel depletion. Grievous charge recombination and weak redox capability aggravate the CO2 photoreduction performance. Engineering tailored morphology and constructing matched heterostructure are two significant schemes to ameliorate the CO2 photoconversion efficiency of g-C3N4-based composite. Herein, a novel S-scheme ultrathin porous g-C3N4 (UPCN)/Ag2MoO4 (AMO) composite was designed by in-situ growing tetragonal α-AMO nanoparticles (NPs) (5-30 nm) on UPCN nanosheets (NSs). The S-scheme charge transfer route endows UPCN/AMO with fast charge separation and strong redox capability, demonstrated by X-ray photoelectron spectroscopy (XPS), photoelectrochemical tests, steady-state and time-resolved photoluminescence (PL) spectra, and DFT calculations. The UPCN/AMO composite exhibits elevated CO2 photoreduction performance with CO and CH4 yield rates of 6.98 and 0.38 μmol g-1 h-1, which are 3.5 and 2.9 folds higher than that of pristine UPCN, respectively. Finally, the CO2 photoreduction intermediates are analyzed, and the CO2 photoreduction mechanism is discussed. This work provides a reference for various g-C3N4-based composites applied in artificial photosynthesis.
  • 加载中
    1. [1]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.  doi: 10.1002/adma.202107668

    2. [2]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction. Acta Phys. Chim. Sin. 2021, 37, 2009030.
       

    3. [3]

      Wageh, S.; Al-Hartomy, O. A.; Alotaibi, M. F.; Liu, L. Ionized cocatalyst to promote CO2 photoreduction activity over core-triple-shell ZnO hollow spheres. Rare Metals 2022, 41, 1077-1079.  doi: 10.1007/s12598-021-01902-1

    4. [4]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.  doi: 10.1002/smll.202103447

    5. [5]

      Ke, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 nanosheets for robust solar-driven CO2 conversion. Solar RRL 2021, 5, 2000805.  doi: 10.1002/solr.202000805

    6. [6]

      Liu, S.; Chen, W.; Li, Y.; Ding, K.; Zhang, Y.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 rhotoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.
       

    7. [7]

      Mei, Z.; Wang, G.; Yan, S.; Wang, J. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2009097.
       

    8. [8]

      Zhang, J.; Fu, J.; Dai, K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192-198.  doi: 10.1016/j.jmst.2021.10.045

    9. [9]

      Zhang, M.; Yi, J.; Huang, Y.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.
       

    10. [10]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat. Commun. 2021, 12, 4936.  doi: 10.1038/s41467-021-25007-6

    11. [11]

      Wang, Z.; Fan, J.; Cheng, B.; Yu, J.; Xu, J. Nickel-based cocatalysts for photocatalysis: hydrogen evolution, overall water splitting and CO2 reduction. Mater. Today Phys. 2020, 15, 100279.  doi: 10.1016/j.mtphys.2020.100279

    12. [12]

      Zhao, X.; Zhuo, D.; Chen, Q.; Guo, G. Enhancing electrochemical reduction of CO2 to formate by regulating the support morphology. Chin. J. Struct. Chem. 2021, 40, 376-382.
       

    13. [13]

      Li, M.; Li, J.; Wu, M.; Wang, X. First-principles study on the properties of CaO (100) surface adsorbing carbon dioxide. Chin. J. Struct. Chem. 2021, 40, 973-984.
       

    14. [14]

      Fei, X.; Tan, H.; Cheng, B.; Zhu, B.; Zhang, L. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. Chim. Sin. 2021, 37, 2010027.
       

    15. [15]

      Mei, F.; Dai, K.; Zhang, J.; Li, L.; Liang, C. Ultrathin indium vanadate/cadmium selenide-amine step-scheme heterojunction with interfacial chemical bonding for promotion of visible-light-driven carbon dioxide reduction. J. Colloid Interface Sci. 2022, 608, 1846-1856.  doi: 10.1016/j.jcis.2021.10.034

    16. [16]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. S-Scheme heterojunction photocatalyst for CO2 photoreduction. Acta Phys. Chim. Sin. 2021, 37, 2010024.
       

    17. [17]

      Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Al Ghamdi, A.; Wageh, S.; Zhang, L.; Yu, J. EPR investigation on electron transfer of 2D/3D g-C3N4/ZnO S-scheme heterojunction for enhanced CO2 photoreduction. Adv. Sustain. Syst. 2022, 6, 2100264.  doi: 10.1002/adsu.202100264

    18. [18]

      Xu, C.; Lv, P. Photo-assisted deposited titanium dioxide film and the enhancement of its photocatalytic water splitting activity. Chin. J. Struct. Chem. 2021, 40, 1223-1230.
       

    19. [19]

      Li, M.; Guan, R.; Li, J.; Zhao, Z.; Zhang, J.; Dong, C.; Qi, Y.; Zhai, H. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437-1443.
       

    20. [20]

      Wang, P.; Li, H.; Cao, Y.; Yu, H. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Phys. Chim. Sin. 2021, 37, 2008047.
       

    21. [21]

      Zhang, J.; Liao, H.; Sun, S. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.
       

    22. [22]

      Li, J.; Wu, X.; Liu, S. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications. Acta Phys. Chim. Sin. 2021, 37, 2009038.
       

    23. [23]

      Jiang, X.; Chen, Y.; Lu, C. Bio-inspired materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123-2130.

    24. [24]

      Chang, H.; Liu, J.; Dong, Z.; Wang, D.; Xin, Y.; Jiang, Z.; Tang, S. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 modified AgNbO3 photocatalyst under visible-light irradiation. Chin. J. Struct. Chem. 2021, 40, 1595-1603.
       

    25. [25]

      Wang, D.; Yin, F.; Cheng, B.; Xia, Y.; Yu, J.; Ho, W. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Metals 2021, 40, 2369-2380.  doi: 10.1007/s12598-021-01731-2

    26. [26]

      Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. g-C3N4-Based 2D/2D composite heterojunction photocatalyst. Small Struct. 2021, 2, 2100086.  doi: 10.1002/sstr.202100086

    27. [27]

      Li, X.; Liu, J.; Huang, J.; He, C.; Feng, Z.; Chen, Z.; Wan, L.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys. Chim. Sin. 2021, 37, 2010030.
       

    28. [28]

      Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Two-dimensional sulfur- and chlorine-codoped g-C3N4/CdSe-amine heterostructures nanocomposite with effective interfacial charge transfer and mechanism insight. Appl. Catal. B: Environ. 2021, 280, 119452.  doi: 10.1016/j.apcatb.2020.119452

    29. [29]

      Bie, C.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem 2021, 3, 100051.  doi: 10.1016/j.enchem.2021.100051

    30. [30]

      Chen, Y.; Li, L.; Xu, Q.; Düren, T.; Fan, J.; Ma, D. Controllable synthesis of g-C3N4 inverse opal photocatalysts for superior hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2009080.
       

    31. [31]

      Shen, R.; Lu, X.; Zheng, Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Solar RRL 2021, 5, 2100177.  doi: 10.1002/solr.202100177

    32. [32]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance. J. Mater. Sci. Technol. 2022, 117, 109-119.  doi: 10.1016/j.jmst.2021.11.046

    33. [33]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.  doi: 10.1016/j.apcatb.2020.119006

    34. [34]

      Guo, H.; Ding, J.; Wan, S.; Wang, Y.; Zhong, Q. Highly efficient CH3OH production over Zn0.2Cd0.8S decorated g-C3N4 heterostructures for the photoreduction of CO2. Appl. Surf. Sci. 2020, 528, 146943.  doi: 10.1016/j.apsusc.2020.146943

    35. [35]

      Huo, Y.; Zhang, J.; Dai, K.; Li, Q.; Lv, J.; Zhu, G.; Liang, C. All-solid-state artificial Z-scheme porous g-C3N4/Sn2S3-DETA heterostructure photocatalyst with enhanced performance in photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 241, 528-538.  doi: 10.1016/j.apcatb.2018.09.073

    36. [36]

      Thanh Truc, N. T.; Hanh, N. T.; Nguyen, M. V.; Le Chi, N. T. P.; Van Noi, N.; Tran, D. T.; Ha, M. N.; Trung, D. Q.; Pham, T. -D. Novel direct Z-scheme Cu2V2O7/g-C3N4 for visible light photocatalytic conversion of CO2 into valuable fuels. Appl. Surf. Sci. 2018, 457, 968-974.  doi: 10.1016/j.apsusc.2018.07.034

    37. [37]

      Liang, M.; Borjigin, T.; Zhang, Y.; Liu, H.; Liu, B.; Guo, H. Z-Scheme Au@Void@g-C3N4/SnS yolk-shell heterostructures for superior photocatalytic CO2 reduction under visible light. ACS Appl. Mater. Interfaces 2018, 10, 34123-34131.  doi: 10.1021/acsami.8b09455

    38. [38]

      Li, M.; Zhang, L.; Fan, X.; Wu, M.; Wang, M.; Cheng, R.; Zhang, L.; Yao, H.; Shi, J. Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Appl. Catal. B: Environ. 2017, 201, 629-635.  doi: 10.1016/j.apcatb.2016.09.004

    39. [39]

      Wang, Z.; Zhang, J.; Lv, J.; Dai, K.; Liang, C. Plasmonic Ag2MoO4/AgBr/Ag composite: excellent photocatalytic performance and possible photocatalytic mechanism. Appl. Surf. Sci. 2017, 396, 791-798.  doi: 10.1016/j.apsusc.2016.11.031

    40. [40]

      Tang, H.; Lu, A.; Li, L.; Zhou, W.; Xie, Z.; Zhang, L. Highly antibacterial materials constructed from silver molybdate nanoparticles immobilized in chitin matrix. Chem. Eng. J. 2013, 234, 124-131.  doi: 10.1016/j.cej.2013.08.096

    41. [41]

      Huo, Y.; Wang, Z.; Zhang, J.; Liang, C.; Dai, K. Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation. Appl. Surf. Sci. 2018, 459, 271-280.  doi: 10.1016/j.apsusc.2018.08.005

    42. [42]

      Yu, W.; Xu, D.; Peng, T. Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J. Mater. Chem. A 2015, 3, 19936-19947.  doi: 10.1039/C5TA05503B

    43. [43]

      Cai, H.; Li, N.; Li, Y.; An, D. Solvothermal synthesis and characterization of two Cd(Ⅱ) coordination polymers with isomeric multi-carboxylate ligands. Chin. J. Struct. Chem. 2021, 40, 637-645.
       

    44. [44]

      Yan, L.; Meng, X.; Xu, Y.; Liu, W. Synthesis, crystal structure, theoretical calculation, and photophysical property of a new Cd(Ⅱ) complex based on N-heterocyclic ligand and isophthalic acid. Chin. J. Struct. Chem. 2021, 40, 329-333.
       

    45. [45]

      He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Fabrication of graphene quantum dots modified BiOI/PAN flexible fiber with enhanced photocatalytic activity. Acta Phys. Chim. Sin. 2021, 37, 2011022.
       

    46. [46]

      Chang, X.; Yang, X.; Zhai, Z.; Chen, J.; Li, F. Synthesis, structure and highly enhanced phosphorescence of a cadmium(Ⅱ) coordination polymer assembled with 1, 4-naphthalenedicarboxylic acid and 2-propylimidazole. Chin. J. Struct. Chem. 2021, 40, 187-192.

    47. [47]

      Bi, M.; Wen, Y.; Zhang, H.; Zhang, J. Syntheses, crystal structures and properties of two new Zn based boron imidazolate frameworks. Chin. J. Struct. Chem. 2021, 40, 865-870.
       

    48. [48]

      Wang, Z.; Dai, K.; Liang, C.; Zhang, J.; Zhu, G. Facile synthesis of novel butterfly-like Ag2MoO4 nanosheets for visible-light driven photocatalysis. Mater. Lett. 2017, 196, 373-376.
       

    49. [49]

      Wu, X.; Liu, M.; Guo, H.; Ying, S.; Chen, Z. Polyoxovanadate-based MOFs microsphere constructed from 3-D discrete nano-sheets as supercapacitor. Chin. J. Struct. Chem. 2021, 40, 994-998.
       

    50. [50]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2022, 38, 2108028.

    51. [51]

      Wang, Z.; Huo, Y.; Zhang, J.; Lu, C.; Dai, K.; Liang, C.; Zhu, G. Facile preparation of two-dimensional Bi2MoO6@Ag2MoO4 core-shell composite with enhanced visible light photocatalytic activity. J. Alloys Compd. 2017, 729, 100-108.
       

    52. [52]

      Sun, J.; Liu, H.; Liu, T. Synthesis, crystal structure and characterization of a new hydrogen-bonded organic framework. Chin. J. Struct. Chem. 2021, 40, 1082-1087.
       

    53. [53]

      Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Cd3(C3N3S3)2 polymer/Sn Schottky heterojunction for broadband-solar highly selective photocatalytic CO2 reduction. Solar RRL 2021, 5, 2100788.
       

    54. [54]

      Huo, Y.; Zhang, J.; Wang, Z.; Dai, K.; Pan, C.; Liang, C. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. J. Colloid Interface Sci. 2021, 585, 684-693.
       

    55. [55]

      Li, Z.; Wu, Z.; He, R.; Wan, L.; Zhang, S. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151-161.

    56. [56]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218-5225.
       

    57. [57]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.
       

    58. [58]

      Huang, Y.; Mao, J.; Qian, Q.; Xue, H.; Liu, Y. Study on the different photocatalytic performances for tetracycline hydrochloride degradation of p-block metal composite oxides Sr1.36Sb2O6 and Sr2Sb2O7. Chin. J. Struct. Chem. 2021, 40, 394-402.

    59. [59]

      Liu, Y.; Hao, X.; Hu, H.; Jin, Z. High efficiency electron transfer reali zed over NiS2/MoSe2 S-Scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2008030.
       

    60. [60]

      Wang, Z.; Lv, J.; Zhang, J.; Dai, K.; Liang, C. Facile synthesis of Z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst. Appl. Surf. Sci. 2018, 430, 595-602.
       

    61. [61]

      Xu, F.; Meng, K.; Cao, S.; Jiang, C.; Chen, T.; Xu, J.; Yu, J. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 2021, 12, 164-172.
       

    62. [62]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chin. J. Catal. 2022, 43, 1657-1666.

    63. [63]

      Yang, H.; Zhang, J. F.; Dai, K. Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chin. J. Catal. 2022, 43, 255-264.
       

    64. [64]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation. Appl. Catal. B: Environ. 2020, 269, 118844.

    65. [65]

      Wu, H.; Xu, Y.; Miao, T.; Fu, X.; Shi, H.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.
       

    66. [66]

      Liang, Y.; Xu, X.; Ni, J.; Li, J.; Wang, F. Synthesis, structure and fluorescence property of new Cd-MOFs based on a tetraphenylethylene (TPE) ligand. Chin. J. Struct. Chem. 2021, 40, 193-198.
       

    67. [67]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Solar RRL 2022, 6, 2100587.
       

    68. [68]

      Deng, H.; Fei, X.; Yang, Y.; Fan, J.; Yu, J.; Cheng, B.; Zhang, L. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377.

    69. [69]

      Lei, G.; Cao, Y.; Zhao, W.; Dai, Z.; Shen, L.; Xiao, Y.; Jiang, L. Exfoliation of graphitic carbon nitride for enhanced oxidative desulfurization: a facile and general strategy. ACS Sustain. Chem. Eng. 2019, 7, 4941-4950.

  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    3. [3]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    13. [13]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    14. [14]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    16. [16]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    17. [17]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    18. [18]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

Metrics
  • PDF Downloads(7)
  • Abstract views(489)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return