-
[1]
Zhu, Y.; Yue, K.; Xia, C.; Zaman, S.; Yang, H.; Wang, X.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano Micro. Lett. 2021, 13, 137.
-
[2]
Yue, K.; Liu, J.; Zhu, Y.; Xia, C.; Wang, P.; Zhang, J.; Kong, Y.; Wang, X.; Yan, Y.; Xia, B. Y. In situ ion-exchange preparation and topological transformation of trimetal-organic frameworks for efficient electrocatalytic water oxidation. Energy Environ. Sci. 2021, 14, 6546-6553.
doi: 10.1039/D1EE02606B
-
[3]
Yan, Y.; Zhang, J. -Y.; Shi, X. -R.; Zhu, Y.; Xia, C.; Zaman, S.; Hu, X.; Wang, X.; Xia, B. Y. A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells. ACS Nano 2021, 15, 10286-10295.
doi: 10.1021/acsnano.1c02440
-
[4]
IRENA hydrogen from renewable power: technology outlook for the energy transition. https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.
-
[5]
Zhang, J. -Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; Xia, B. Y. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365-373.
doi: 10.1039/D0EE03500A
-
[6]
Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H.; Xia, B. Y. Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 15905-15926.
-
[7]
Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 2020, 32, 1904717.
doi: 10.1002/adma.201904717
-
[8]
Fang, M.; Qin, Q.; Cai, Q.; Liu, W. Transparent Co3FeOx film passivated BiVO4 photoanode for efficient photoelectrochemical water splitting. Chin. J. Struct. Chem. 2021, 40, 1505-1512.
-
[9]
Hu, C.; Chen, F.; Wang, Y.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv. Mater. 2021, 33, 2101751.
doi: 10.1002/adma.202101751
-
[10]
Liu, J.; Gao, Y.; Tang, X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y. Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8, 19254-19261.
doi: 10.1039/D0TA07616C
-
[11]
Yue, K.; Liu, J.; Xia, C.; Zhan, K.; Wang, P.; Wang, X.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191-7198.
doi: 10.1039/D1QM00960E
-
[12]
Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561-3608.
doi: 10.1039/D1CS01182K
-
[13]
Zhang, J. Y.; Liao, H. G.; Sun, S. G. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.
-
[14]
Jiang, X.; Chen, Y. X.; Lu, C. Z. Bio-inspired Materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123-2130.
-
[15]
Zhan, X.; Fang, Z.; Li, B.; Zhang, H.; Xu, L.; Hou, H.; Yang, W. Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production. J. Mater. Chem. A 2021, 9, 27084-27094.
-
[16]
Ricciarelli, D.; Kaiser, W.; Mosconi, E.; Wiktor, J.; Ashraf, M. W.; Malavasi, L.; Ambrosio, F.; De Angelis, F. Reaction mechanism of photocatalytic hydrogen production at water/tin halide perovskite interfaces. ACS Energy Lett. 2022, 7, 1308-1315.
-
[17]
Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437-1443.
-
[18]
Zhao, H.; Liu, J.; Li, C. -F.; Zhang, X.; Li, Y.; Hu, Z. -Y.; Li, B.; Chen, Z.; Hu, J.; Su, B. -L. Meso-microporous nanosheet-constructed 3DOM perovskites for remarkable photocatalytic hydrogen production. Adv. Funct. Mater. 2022, https://doi.org/10.1002/adfm.202112831.
doi: 10.1002/adfm.202112831
-
[19]
Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 2020, 32, e1904717.
-
[20]
Do, H. H.; Nguyen, D. L. T.; Nguyen, X. C.; Le, T. -H.; Nguyen, T. P.; Trinh, Q. T.; Ahn, S. H.; Vo, D. -V. N.; Kim, S. Y.; Le, Q. V. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arabian J. Chem. 2020, 13, 3653-3671.
-
[21]
Varunkumar, K.; Sellappan, R. Photoelectrochemical behaviour of CuBi2O4@MoS2 photocathode for solar water splitting. Mater. Chem. Phys. 2021, 261, 124245.
-
[22]
Ullah, I.; Munir, A.; Haider, A.; Ullah, N.; Hussain, I. Supported polyoxometalates as emerging nanohybrid materials for photochemical and photoelectrochemical water splitting. Nanophotonics 2021, 10, 1595-1620.
-
[23]
Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 2020, 11, 861.
-
[24]
Li, Y.; Wang, K.; Huang, D.; Li, L.; Tao, J.; Ghany, N. A. A.; Jiang, F. CdXZn1-XS/Sb2Se3 thin film photocathode for efficient solar water splitting. Appl. Catal., B 2021, 286, 119872.
-
[25]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
-
[26]
Najaf, Z.; Nguyen, D. L. T.; Chae, S. Y.; Joo, O. -S.; Shah, A. U. H. A.; Vo, D. -V. N.; Nguyen, V. -H.; Le, Q. V.; Rahman, G. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int. J. Hydrogen Energy 2021, 46, 23334-23357.
-
[27]
Zhu, X.; Liang, X.; Wang, P.; Huang, B.; Zhang, Q.; Qin, X.; Zhang, X. Fabrication of large size nanoporous BiVO4 photoanode by a printing-like method for efficient solar water splitting application. Catal. Today 2020, 340, 145-151.
-
[28]
Liu, J.; Chen, W.; Sun, Q.; Zhang, Y.; Li, X.; Wang, J.; Wang, C.; Yu, Y.; Wang, L.; Yu, X. Oxygen vacancies enhanced WO3/BiVO4 photoanodes modified by cobalt phosphate for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 2864-2872.
-
[29]
Arifin, K.; Yunus, R. M.; Minggu, L. J.; Kassim, M. B. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review. Int. J. Hydrogen Energy 2021, 46, 4998-5024.
-
[30]
Li, C.; Fang, T.; Hu, H.; Wang, Y.; Liu, X.; Zhou, S.; Fu, J.; Wang, W. Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation. Ceram. Int. 2021, 47, 11379-11386.
-
[31]
Zhu, S. -S.; Zhang, Y.; Zou, Y.; Guo, S. -Y.; Liu, H.; Wang, J. -J.; Braun, A. Cu2S/BiVO4 Heterostructure photoanode with extended wavelength range for efficient water splitting. J. Phys. Chem. C 2021, 125, 15890-15898.
-
[32]
Zhang, S.; Liu, Z.; Chen, D.; Yan, W. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal., B 2020, 277, 119197.
-
[33]
Fang, G.; Liu, Z.; Han, C.; Wang, P.; Ma, X.; Lv, H.; Huang, C.; Cheng, Z.; Tong, Z. Promising CoFe-NiOOH ternary polymetallic cocatalyst for BiVO4-based photoanodes in photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 3842-3850.
-
[34]
Jiao, T.; Lu, C.; Zhang, D.; Feng, K.; Wang, S.; Kang, Z.; Zhong, J. Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting. Appl. Catal., B 2020, 269, 118768.
-
[35]
Pan, L.; Kim, J. H.; Mayer, M. T.; Son, M. -K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J.; Grätzel, M. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 2018, 1, 412-420.
-
[36]
Song, A.; Bogdanoff, P.; Esau, A.; Ahmet, I. Y.; Levine, I.; Dittrich, T.; Unold, T.; van de Krol, R.; Berglund, S. P. Assessment of a W: BiVO4-CuBi2O4 tandem photoelectrochemical cell for overall solar water splitting. ACS Appl. Mater. Interfaces 2020, 12, 13959-13970.
-
[37]
Ye, S.; Shi, W.; Liu, Y.; Li, D.; Yin, H.; Chi, H.; Luo, Y.; Ta, N.; Fan, F.; Wang, X.; Li, C. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499-12508.
-
[38]
Huang, D.; Wang, K.; Li, L.; Feng, K.; An, N.; Ikeda, S.; Kuang, Y.; Ng, Y.; Jiang, F. 3.17% efficient Cu2ZnSnS4-BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 2021, 14, 1480-1489.
-
[39]
Zhou, H.; Feng, M.; Song, K.; Liao, B.; Wang, Y.; Liu, R.; Gong, X.; Zhang, D.; Cao, L.; Chen, S. A highly [001]-textured Sb2Se3 photocathode for efficient photoelectrochemical water reduction. Nanoscale 2019, 11, 22871-22879.
-
[40]
Kobayashi, H.; Sato, N.; Orita, M.; Kuang, Y.; Kaneko, H.; Minegishi, T.; Yamada, T.; Domen, K. Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 2018, 11, 3003-3009.
-
[41]
Jang, J. -W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; Guo, J.; Wang, D. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 2015, 6, 7447.
-
[42]
Hayashi, T.; Niishiro, R.; Ishihara, H.; Yamaguchi, M.; Jia, Q.; Kuang, Y.; Higashi, T.; Iwase, A.; Minegishi, T.; Yamada, T.; Domen, K.; Kudo, A. Powder-based (CuGa1-yIny)1-xZn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting. Sust. Energy Fuels 2018, 2, 2016-2024.
-
[43]
Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.
-
[44]
Ji, J. -M.; Zhou, H.; Eom, Y. K.; Kim, C. H.; Kim, H. K. 14.2% Efficiency dye-sensitized solar cells by Co-sensitizing novel thieno[3, 2-b]indole-based organic dyes with a promising porphyrin sensitizer. Adv. Energy Mater. 2020, 10, 2000124.
-
[45]
Zhang, Q.; He, B.; Tang, L.; Zhou, Z.; Kang, L.; Sun, J.; Zhang, T.; Li, Q.; Li, C.; Zhao, J.; Zhang, Z.; Wei, L.; Yao, Y. Fully solar-powered uninterrupted overall water-splitting systems. Adv. Funct. Mater. 2019, 29, 1808889.
-
[46]
Sun, Z.; Wang, G.; Koh, S. W.; Ge, J.; Zhao, H.; Hong, W.; Fei, J.; Zhao, Y.; Gao, P.; Miao, H.; Li, H. Solar-driven alkaline water electrolysis with multifunctional catalysts. Adv. Funct. Mater. 2020, 30, 2002138.
-
[47]
Pham, D. P.; Lee, S.; Le, A. H. T.; Cho, E. -C.; Hyun Cho, Y.; Yi, J. Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorg. Chem. Commun. 2020, 116, 107926.
-
[48]
Lee, M.; Ding, X.; Banerjee, S.; Krause, F.; Smirnov, V.; Astakhov, O.; Merdzhanova, T.; Klingebiel, B.; Kirchartz, T.; Finger, F.; Rau, U.; Haas, S. Bifunctional CoFeVOx catalyst for solar water splitting by using multijunction and heterojunction silicon solar cells. Adv. Mater. Technol. 2020, 5, 2000592.
-
[49]
Wang, S.; Ma, Z.; Liu, B.; Wu, W.; Zhu, Y.; Ma, R.; Wang, C. High-performance perovskite solar cells with large grain-size obtained by using the lewis acid-base adduct of thiourea. Sol. RRL 2018, 2, 1800034.
-
[50]
Qian, F.; Yuan, S.; Cai, Y.; Han, Y.; Zhao, H.; Sun, J.; Liu, Z.; Liu, S. Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 2019, 3, 1900072.
-
[51]
Yu, Y.; Zhang, F.; Yu, H. Self-healing perovskite solar cells. Sol. Energy 2020, 209, 408-414.
-
[52]
Kim, J. Y.; Lee, J. -W.; Jung, H. S.; Shin, H.; Park, N. -G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867-7918.
-
[53]
Tang, G.; You, P.; Tai, Q.; Wu, R.; Yan, F. Performance enhancement of perovskite solar cells induced by lead acetate as an additive. Sol. RRL 2018, 2, 1800066.
-
[54]
Parvin, S.; Chaudhary, D. K.; Ghosh, A.; Bhattacharyya, S. Attuning the electronic properties of two-dimensional Co-Fe-O for accelerating water electrolysis and photolysis. ACS Appl. Mater. Interfaces 2019, 11, 30682-30693.
-
[55]
Liang, J.; Han, X.; Qiu, Y.; Fang, Q.; Zhang, B.; Wang, W.; Zhang, J.; Ajayan, P. M.; Lou, J. A low-cost and high-efficiency integrated device toward solar-driven water splitting. ACS Nano 2020, 14, 5426-5434.
-
[56]
Park, H.; Park, I. J.; Lee, M. G.; Kwon, K. C.; Hong, S. -P.; Kim, D. H.; Lee, S. A.; Lee, T. H.; Kim, C.; Moon, C. W.; Son, D. -Y.; Jung, G. H.; Yang, H. S.; Lee, J. R.; Lee, J.; Park, N. -G.; Kim, S. Y.; Kim, J. Y.; Jang, H. W. Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed Ni-based electrocatalysts and perovskite/Si tandem solar cell. ACS Appl. Mater. Interfaces 2019, 11, 33835-33843.
-
[57]
Venkatraman, V.; Raju, R.; Oikonomopoulos, S. P.; Alsberg, B. K. The dye-sensitized solar cell database. J. Cheminf. 2018, 10, 18.
-
[58]
Cheema, H.; Watson, J.; Shinde, P. S.; Rodrigues, R. R.; Pan, S.; Delcamp, J. H. Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chem. Commun. 2020, 56, 1569-1572.
-
[59]
Wang, M.; Ge, H.; Jin, Z.; Wang, Y.; Zhang, M.; Zheng, G.; Wang, Z. -S. Hollow NiCo2Se4 microspheres composed of nanoparticles as multifunctional electrocatalysts for unassisted artificial photosynthesis. Electrochim. Acta 2018, 283, 628-637.
-
[60]
Wang, M.; Li, Y.; Feng, C.; Zhao, G.; Wang, Z. -S. Quaternary iron nickel cobalt selenide as an efficient electrocatalyst for both quasi-solid-state dye-sensitized solar cells and water splitting. Chem. -Asian J. 2019, 14, 1034-1041.
-
[61]
Si, F.; Wei, M.; Li, M.; Xie, X.; Gao, Q.; Cai, X.; Zhang, S.; Peng, F.; Fang, Y.; Yang, S. Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam. J. Power Sources 2022, 538, 231536.
-
[62]
Sun, P.; Zhou, Y.; Li, H.; Zhang, H.; Feng, L.; Cao, Q.; Liu, S.; Wågberg, T.; Hu, G. Round-the-clock bifunctional honeycomb-like nitrogendoped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency. Appl. Catal., B 2022, 310, 121354.
-
[63]
Riyajuddin, S.; Pahuja, M.; Sachdeva, P. K.; Azmi, K.; Kumar, S.; Afshan, M.; Ali, F.; Sultana, J.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic leaflike Sn4P3 on the porous seamless graphene-carbon nanotube heterostructure as an efficient electrocatalyst for solar-driven overall water splitting. ACS Nano 2022, 16, 4861-4875.
-
[64]
Kwan, T. H.; Wu, X. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Appl. Energy 2016, 165, 297-307.
-
[65]
Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765-777.
-
[66]
Zhao, L.; Yang, Z.; Cao, Q.; Yang, L.; Zhang, X.; Jia, J.; Sang, Y.; Wu, H. -J.; Zhou, W.; Liu, H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 2019, 56, 563-570.
-
[67]
Yuan, H.; Liu, F.; Xue, G.; Liu, H.; Wang, Y.; Zhao, Y.; Liu, X.; Zhang, X.; Zhao, L.; Liu, Z.; Liu, H.; Zhou, W. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl. Catal., B 2021, 283, 119647.
-
[68]
Hao, W.; Wu, R.; Yang, H.; Guo, Y. Photothermal coupling electrolysis on Ni-W-B toward practical overall water splitting. J. Mater. Chem. A 2019, 7, 12440-12445.
-
[69]
Wang, C.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Pyroelectric catalysis. Nano Energy 2020, 78, 105371.
-
[70]
Zhang, D.; Wu, H.; Bowen, C. R.; Yang, Y. Recent advances in pyroelectric materials and applications. Small 2021, 17, 2103960.
-
[71]
Sun, S.; Song, L.; Zhang, S.; Sun, H.; Wei, J. Pyroelectric hydrogen production performance of silicon carbide. Ceram. Int. 2021, 47, 20486-20493.
-
[72]
Zhang, M.; Hu, Q.; Ma, K.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.
-
[73]
Li, M.; Sun, J.; Chen, G.; Yao, S.; Cong, B.; Liu, P. Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity. Appl. Catal., B 2021, 298, 120573.
-
[74]
Xu, X.; Xiao, L.; Jia, Y.; Wu, Z.; Wang, F.; Wang, Y.; Haugen, N. O.; Huang, H. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature. Energy Environ. Sci. 2018, 11, 2198-2207.
-
[75]
Hinchet, R.; Khan, U.; Falconi, C.; Kim, S. -W. Piezoelectric properties in two-dimensional materials: simulations and experiments. Mater. Today 2018, 21, 611-630.
-
[76]
Feng, W.; Yuan, J.; Gao, F.; Weng, B.; Hu, W.; Lei, Y.; Huang, X.; Yang, L.; Shen, J.; Xu, D.; Zhang, X.; Liu, P.; Zhang, S. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 2020, 75, 104990.
-
[77]
Yu, J.; Guo, H.; Feng, W.; Guo, X.; Zhu, Y.; Thomas, T.; Jiang, C.; Liu, S.; Yang, M. Co4N-WNX composite for efficient piezocatalytic hydrogen evolution. Dalton Trans. 2022, 51, 7127-7134.
-
[78]
Wang, B.; Zhang, Q.; He, J.; Huang, F.; Li, C.; Wang, M. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. J. Energy Chem. 2022, 65, 304-311.
-
[79]
Karuturi, S. K.; Shen, H.; Sharma, A.; Beck, F. J.; Varadhan, P.; Duong, T.; Narangari, P. R.; Zhang, D.; Wan, Y.; He, J. -H.; Tan, H. H.; Jagadish, C.; Catchpole, K. Over 17% Efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers. Adv. Energy Mater. 2020, 10, 2000772.
-
[80]
Chen, Y.; Feng, X.; Liu, Y.; Guan, X.; Burda, C.; Guo, L. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 2020, 5, 844-866.
-
[81]
Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248-2252.
-
[82]
Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645-4660.
-
[83]
Li, X.; Jia, M.; Lu, Y.; Li, N.; Zheng, Y. -Z.; Tao, X.; Huang, M. Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 2020, 330, 135183.
-
[84]
Zhou, J.; Hou, J.; Tao, X.; Meng, X.; Yang, S. Solution-processed electron transport layer of N-doped fullerene for efficient and stable all carbon based perovskite solar cells. J. Mater. Chem. A 2019, 7, 7710-7716.
-
[85]
Lee, S. A.; Park, I. J.; Yang, J. W.; Park, J.; Lee, T. H.; Kim, C.; Moon, J.; Kim, J. Y.; Jang, H. W. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 2020, 1, 100219.
-
[86]
Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316, 495-500.
-
[87]
Zhang, K.; Ma, M.; Li, P.; Wang, D. H.; Park, J. H. Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv. Energy Mater. 2016, 6, 1600602.
-
[88]
Kang, Y.; Chen, R.; Zhen, C.; Wang, L.; Liu, G.; Cheng, H. -M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163-1169.
-
[89]
Hu, X.; Huang, J.; Zhao, F.; Yi, P.; He, B.; Wang, Y.; Chen, T.; Chen, Y.; Li, Z.; Liu, X. Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. J. Mater. Chem. A 2020, 8, 14915-14920.
-
[90]
Zhang, S.; Chen, D.; Liu, Z.; Ruan, M.; Guo, Z. Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal., B 2021, 284, 119686.
-
[91]
Zhang, J.; Wang, C.; Bowen, C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014, 6, 13314-13327.
-
[92]
Zhang, S.; Zhang, B.; Chen, D.; Guo, Z.; Ruan, M.; Liu, Z. Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy 2021, 79, 105485.
-
[93]
Shi, J.; Starr, M. B.; Xiang, H.; Hara, Y.; Anderson, M. A.; Seo, J. -H.; Ma, Z.; Wang, X. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 2011, 11, 5587-5593.
-
[94]
Zhang, S.; Liu, Z.; Ruan, M.; Guo, Z.; E, L.; Zhao, W.; Zhao, D.; Wu, X.; Chen, D. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl. Catal., B 2020, 262, 118279.
-
[95]
Chen, Y.; Wang, L.; Gao, R.; Zhang, Y. -C.; Pan, L.; Huang, C.; Liu, K.; Chang, X. -Y.; Zhang, X.; Zou, J. -J. Polarization-enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water splitting. Appl. Catal., B 2019, 259, 118079.
-
[96]
Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.
-
[97]
Kumar, D.; Sharma, S.; Khare, N. Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity. Renew. Energy 2021, 163, 1569-1579.
-
[98]
Fan, F. -R.; Tian, Z. -Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.