Citation: Weiquan Ji, Kang Zhang, Ke Zhan, Ping Wang, Xianying Wang, Ya Yan. Solar-Powered Environmentally Friendly Hydrogen Production: Advanced Technologies for Sunlight-Electricity-Hydrogen Nexus[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220501. doi: 10.14102/j.cnki.0254-5861.2022-0106 shu

Solar-Powered Environmentally Friendly Hydrogen Production: Advanced Technologies for Sunlight-Electricity-Hydrogen Nexus





  • Author Bio: Weiquan Ji received his bachelor's degree of engineering from Zhejiang University of Water Resources and Electric Power in 2020. Then, he was admitted to University of Shanghai for Science and Technology to pursue his M.S under the guidance of Dr. Ke Zhan. At the same time, he was jointly cultivated at the Shanghai Institute of Ceramics, Chinese Academy of Sciences under the guidance of Dr. Ya Yan. His research interest is focused on the application of nano-functional materials in electrocatalysis
    Kang Zhang received his bachelor of Science degree from Shanxi Datong University in 2020. Then, he was admitted to University of Shanghai for Science and Technology to pursue his M.S under the guidance of Dr. Ke Zhan. At the same time, he was jointly cultivated at the Shanghai Institute of Ceramics, Chinese Academy of Sciences under the guidance of Dr. Ya Yan. His research interest is focused on the application of nano-functional materials in electrocatalytic water splitting
    Prof. Xianying Wang is currently a researcher at the Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS). She received her Ph.D. under the supervision of Academician Gan Fuxi from Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (SIOFMCAS) in 2005. In recent years, the research direction mainly focuses on the application of nano-functional materials in the fields of photo/electrocatalysis and energy conversion


    Dr. Ya Yan is currently an Associate Professor of Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS). She received her bachelor's degree in Chemical Engineering from Northwest University (China) in 2010 and earned her Ph.D. degree under the supervision of Professor Xin Wang at Nanyang Technological University (NTU) in 2015. Her recent research interests are in the areas of nanostructured functional materials and their application in energy and environments
  • Corresponding author: Xianying Wang, wangxianying@mail.sic.ac.cn Ya Yan, yanya@mail.sic.ac.cn
  • # These authors contribute equally to the work.
  • Received Date: 3 May 2022
    Accepted Date: 18 May 2022

Figures(7)

  • Hydrogen production from water splitting is a clean and sustainable hydrogen production route to alleviate the current energy crisis. However, factors such as energy conversion efficiency, cost-effectiveness, and social benefit limit their industrial application. Therefore, the development of advanced water splitting technologies using clean and renewable energy has become an important research goal of the world. Converting endless solar energy into hydrogen energy directly or indirectly is an effective way to reduce the energy input of hydrogen production. This review focuses on the latest advances in the coupling design of renewable energy supply devices and catalytic electrodes in hydrogen production systems. We not only review the single hydrogen production system based on photochemical, photoelectrochemical, photovoltaic, thermoelectric, pyroelectric, and piezoelectric devices, but also discuss the complex systems of the multiple devices. The structural design of energy supply devices and catalytic electrodes and the study of hydrogen production performance in different systems will be critically discussed in this work. Finally, current challenges and future perspectives of advanced technologies for sunlight-electricity-hydrogen nexus are also presented. It is hoped that this review will provide a timely reference for advancing the development of sunlight-electricity-hydrogen nexus and thus achieve the goal of sustainable production of green hydrogen.
  • 加载中
    1. [1]

      Zhu, Y.; Yue, K.; Xia, C.; Zaman, S.; Yang, H.; Wang, X.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano Micro. Lett. 2021, 13, 137.

    2. [2]

      Yue, K.; Liu, J.; Zhu, Y.; Xia, C.; Wang, P.; Zhang, J.; Kong, Y.; Wang, X.; Yan, Y.; Xia, B. Y. In situ ion-exchange preparation and topological transformation of trimetal-organic frameworks for efficient electrocatalytic water oxidation. Energy Environ. Sci. 2021, 14, 6546-6553.  doi: 10.1039/D1EE02606B

    3. [3]

      Yan, Y.; Zhang, J. -Y.; Shi, X. -R.; Zhu, Y.; Xia, C.; Zaman, S.; Hu, X.; Wang, X.; Xia, B. Y. A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells. ACS Nano 2021, 15, 10286-10295.  doi: 10.1021/acsnano.1c02440

    4. [4]

      IRENA hydrogen from renewable power: technology outlook for the energy transition. https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power.

    5. [5]

      Zhang, J. -Y.; Yan, Y.; Mei, B.; Qi, R.; He, T.; Wang, Z.; Fang, W.; Zaman, S.; Su, Y.; Ding, S.; Xia, B. Y. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy Environ. Sci. 2021, 14, 365-373.  doi: 10.1039/D0EE03500A

    6. [6]

      Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H.; Xia, B. Y. Metal/covalent-organic frameworks-based electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 15905-15926.

    7. [7]

      Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 2020, 32, 1904717.  doi: 10.1002/adma.201904717

    8. [8]

      Fang, M.; Qin, Q.; Cai, Q.; Liu, W. Transparent Co3FeOx film passivated BiVO4 photoanode for efficient photoelectrochemical water splitting. Chin. J. Struct. Chem. 2021, 40, 1505-1512.

    9. [9]

      Hu, C.; Chen, F.; Wang, Y.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Exceptional cocatalyst-free photo-enhanced piezocatalytic hydrogen evolution of carbon nitride nanosheets from strong in-plane polarization. Adv. Mater. 2021, 33, 2101751.  doi: 10.1002/adma.202101751

    10. [10]

      Liu, J.; Gao, Y.; Tang, X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y. Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8, 19254-19261.  doi: 10.1039/D0TA07616C

    11. [11]

      Yue, K.; Liu, J.; Xia, C.; Zhan, K.; Wang, P.; Wang, X.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191-7198.  doi: 10.1039/D1QM00960E

    12. [12]

      Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561-3608.  doi: 10.1039/D1CS01182K

    13. [13]

      Zhang, J. Y.; Liao, H. G.; Sun, S. G. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.

    14. [14]

      Jiang, X.; Chen, Y. X.; Lu, C. Z. Bio-inspired Materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123-2130.

    15. [15]

      Zhan, X.; Fang, Z.; Li, B.; Zhang, H.; Xu, L.; Hou, H.; Yang, W. Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production. J. Mater. Chem. A 2021, 9, 27084-27094.

    16. [16]

      Ricciarelli, D.; Kaiser, W.; Mosconi, E.; Wiktor, J.; Ashraf, M. W.; Malavasi, L.; Ambrosio, F.; De Angelis, F. Reaction mechanism of photocatalytic hydrogen production at water/tin halide perovskite interfaces. ACS Energy Lett. 2022, 7, 1308-1315.

    17. [17]

      Li, M. X.; Guan, R. Q.; Li, J. X.; Zhao, Z.; Zhang, J. K.; Dong, C. C.; Qi, Y. F.; Zhai, H. J. Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 1437-1443.

    18. [18]

      Zhao, H.; Liu, J.; Li, C. -F.; Zhang, X.; Li, Y.; Hu, Z. -Y.; Li, B.; Chen, Z.; Hu, J.; Su, B. -L. Meso-microporous nanosheet-constructed 3DOM perovskites for remarkable photocatalytic hydrogen production. Adv. Funct. Mater. 2022, https://doi.org/10.1002/adfm.202112831.  doi: 10.1002/adfm.202112831

    19. [19]

      Wu, H.; Tan, H. L.; Toe, C. Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y. H. Photocatalytic and photoelectrochemical systems: similarities and differences. Adv. Mater. 2020, 32, e1904717.

    20. [20]

      Do, H. H.; Nguyen, D. L. T.; Nguyen, X. C.; Le, T. -H.; Nguyen, T. P.; Trinh, Q. T.; Ahn, S. H.; Vo, D. -V. N.; Kim, S. Y.; Le, Q. V. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arabian J. Chem. 2020, 13, 3653-3671.

    21. [21]

      Varunkumar, K.; Sellappan, R. Photoelectrochemical behaviour of CuBi2O4@MoS2 photocathode for solar water splitting. Mater. Chem. Phys. 2021, 261, 124245.

    22. [22]

      Ullah, I.; Munir, A.; Haider, A.; Ullah, N.; Hussain, I. Supported polyoxometalates as emerging nanohybrid materials for photochemical and photoelectrochemical water splitting. Nanophotonics 2021, 10, 1595-1620.

    23. [23]

      Yang, W.; Kim, J. H.; Hutter, O. S.; Phillips, L. J.; Tan, J.; Park, J.; Lee, H.; Major, J. D.; Lee, J. S.; Moon, J. Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat. Commun. 2020, 11, 861.

    24. [24]

      Li, Y.; Wang, K.; Huang, D.; Li, L.; Tao, J.; Ghany, N. A. A.; Jiang, F. CdXZn1-XS/Sb2Se3 thin film photocathode for efficient solar water splitting. Appl. Catal., B 2021, 286, 119872.

    25. [25]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

    26. [26]

      Najaf, Z.; Nguyen, D. L. T.; Chae, S. Y.; Joo, O. -S.; Shah, A. U. H. A.; Vo, D. -V. N.; Nguyen, V. -H.; Le, Q. V.; Rahman, G. Recent trends in development of hematite (α-Fe2O3) as an efficient photoanode for enhancement of photoelectrochemical hydrogen production by solar water splitting. Int. J. Hydrogen Energy 2021, 46, 23334-23357.

    27. [27]

      Zhu, X.; Liang, X.; Wang, P.; Huang, B.; Zhang, Q.; Qin, X.; Zhang, X. Fabrication of large size nanoporous BiVO4 photoanode by a printing-like method for efficient solar water splitting application. Catal. Today 2020, 340, 145-151.

    28. [28]

      Liu, J.; Chen, W.; Sun, Q.; Zhang, Y.; Li, X.; Wang, J.; Wang, C.; Yu, Y.; Wang, L.; Yu, X. Oxygen vacancies enhanced WO3/BiVO4 photoanodes modified by cobalt phosphate for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 2864-2872.

    29. [29]

      Arifin, K.; Yunus, R. M.; Minggu, L. J.; Kassim, M. B. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review. Int. J. Hydrogen Energy 2021, 46, 4998-5024.

    30. [30]

      Li, C.; Fang, T.; Hu, H.; Wang, Y.; Liu, X.; Zhou, S.; Fu, J.; Wang, W. Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation. Ceram. Int. 2021, 47, 11379-11386.

    31. [31]

      Zhu, S. -S.; Zhang, Y.; Zou, Y.; Guo, S. -Y.; Liu, H.; Wang, J. -J.; Braun, A. Cu2S/BiVO4 Heterostructure photoanode with extended wavelength range for efficient water splitting. J. Phys. Chem. C 2021, 125, 15890-15898.

    32. [32]

      Zhang, S.; Liu, Z.; Chen, D.; Yan, W. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal., B 2020, 277, 119197.

    33. [33]

      Fang, G.; Liu, Z.; Han, C.; Wang, P.; Ma, X.; Lv, H.; Huang, C.; Cheng, Z.; Tong, Z. Promising CoFe-NiOOH ternary polymetallic cocatalyst for BiVO4-based photoanodes in photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 3842-3850.

    34. [34]

      Jiao, T.; Lu, C.; Zhang, D.; Feng, K.; Wang, S.; Kang, Z.; Zhong, J. Bi-functional Fe2ZrO5 modified hematite photoanode for efficient solar water splitting. Appl. Catal., B 2020, 269, 118768.

    35. [35]

      Pan, L.; Kim, J. H.; Mayer, M. T.; Son, M. -K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, A.; Luo, J.; Grätzel, M. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 2018, 1, 412-420.

    36. [36]

      Song, A.; Bogdanoff, P.; Esau, A.; Ahmet, I. Y.; Levine, I.; Dittrich, T.; Unold, T.; van de Krol, R.; Berglund, S. P. Assessment of a W: BiVO4-CuBi2O4 tandem photoelectrochemical cell for overall solar water splitting. ACS Appl. Mater. Interfaces 2020, 12, 13959-13970.

    37. [37]

      Ye, S.; Shi, W.; Liu, Y.; Li, D.; Yin, H.; Chi, H.; Luo, Y.; Ta, N.; Fan, F.; Wang, X.; Li, C. Unassisted photoelectrochemical cell with multimediator modulation for solar water splitting exceeding 4% solar-to-hydrogen efficiency. J. Am. Chem. Soc. 2021, 143, 12499-12508.

    38. [38]

      Huang, D.; Wang, K.; Li, L.; Feng, K.; An, N.; Ikeda, S.; Kuang, Y.; Ng, Y.; Jiang, F. 3.17% efficient Cu2ZnSnS4-BiVO4 integrated tandem cell for standalone overall solar water splitting. Energy Environ. Sci. 2021, 14, 1480-1489.

    39. [39]

      Zhou, H.; Feng, M.; Song, K.; Liao, B.; Wang, Y.; Liu, R.; Gong, X.; Zhang, D.; Cao, L.; Chen, S. A highly [001]-textured Sb2Se3 photocathode for efficient photoelectrochemical water reduction. Nanoscale 2019, 11, 22871-22879.

    40. [40]

      Kobayashi, H.; Sato, N.; Orita, M.; Kuang, Y.; Kaneko, H.; Minegishi, T.; Yamada, T.; Domen, K. Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting. Energy Environ. Sci. 2018, 11, 3003-3009.

    41. [41]

      Jang, J. -W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; Guo, J.; Wang, D. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 2015, 6, 7447.
       

    42. [42]

      Hayashi, T.; Niishiro, R.; Ishihara, H.; Yamaguchi, M.; Jia, Q.; Kuang, Y.; Higashi, T.; Iwase, A.; Minegishi, T.; Yamada, T.; Domen, K.; Kudo, A. Powder-based (CuGa1-yIny)1-xZn2xS2 solid solution photocathodes with a largely positive onset potential for solar water splitting. Sust. Energy Fuels 2018, 2, 2016-2024.

    43. [43]

      Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.

    44. [44]

      Ji, J. -M.; Zhou, H.; Eom, Y. K.; Kim, C. H.; Kim, H. K. 14.2% Efficiency dye-sensitized solar cells by Co-sensitizing novel thieno[3, 2-b]indole-based organic dyes with a promising porphyrin sensitizer. Adv. Energy Mater. 2020, 10, 2000124.

    45. [45]

      Zhang, Q.; He, B.; Tang, L.; Zhou, Z.; Kang, L.; Sun, J.; Zhang, T.; Li, Q.; Li, C.; Zhao, J.; Zhang, Z.; Wei, L.; Yao, Y. Fully solar-powered uninterrupted overall water-splitting systems. Adv. Funct. Mater. 2019, 29, 1808889.

    46. [46]

      Sun, Z.; Wang, G.; Koh, S. W.; Ge, J.; Zhao, H.; Hong, W.; Fei, J.; Zhao, Y.; Gao, P.; Miao, H.; Li, H. Solar-driven alkaline water electrolysis with multifunctional catalysts. Adv. Funct. Mater. 2020, 30, 2002138.

    47. [47]

      Pham, D. P.; Lee, S.; Le, A. H. T.; Cho, E. -C.; Hyun Cho, Y.; Yi, J. Monocrystalline silicon-based tandem configuration for solar-to-hydrogen conversion. Inorg. Chem. Commun. 2020, 116, 107926.

    48. [48]

      Lee, M.; Ding, X.; Banerjee, S.; Krause, F.; Smirnov, V.; Astakhov, O.; Merdzhanova, T.; Klingebiel, B.; Kirchartz, T.; Finger, F.; Rau, U.; Haas, S. Bifunctional CoFeVOx catalyst for solar water splitting by using multijunction and heterojunction silicon solar cells. Adv. Mater. Technol. 2020, 5, 2000592.

    49. [49]

      Wang, S.; Ma, Z.; Liu, B.; Wu, W.; Zhu, Y.; Ma, R.; Wang, C. High-performance perovskite solar cells with large grain-size obtained by using the lewis acid-base adduct of thiourea. Sol. RRL 2018, 2, 1800034.

    50. [50]

      Qian, F.; Yuan, S.; Cai, Y.; Han, Y.; Zhao, H.; Sun, J.; Liu, Z.; Liu, S. Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 2019, 3, 1900072.

    51. [51]

      Yu, Y.; Zhang, F.; Yu, H. Self-healing perovskite solar cells. Sol. Energy 2020, 209, 408-414.

    52. [52]

      Kim, J. Y.; Lee, J. -W.; Jung, H. S.; Shin, H.; Park, N. -G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867-7918.

    53. [53]

      Tang, G.; You, P.; Tai, Q.; Wu, R.; Yan, F. Performance enhancement of perovskite solar cells induced by lead acetate as an additive. Sol. RRL 2018, 2, 1800066.

    54. [54]

      Parvin, S.; Chaudhary, D. K.; Ghosh, A.; Bhattacharyya, S. Attuning the electronic properties of two-dimensional Co-Fe-O for accelerating water electrolysis and photolysis. ACS Appl. Mater. Interfaces 2019, 11, 30682-30693.

    55. [55]

      Liang, J.; Han, X.; Qiu, Y.; Fang, Q.; Zhang, B.; Wang, W.; Zhang, J.; Ajayan, P. M.; Lou, J. A low-cost and high-efficiency integrated device toward solar-driven water splitting. ACS Nano 2020, 14, 5426-5434.

    56. [56]

      Park, H.; Park, I. J.; Lee, M. G.; Kwon, K. C.; Hong, S. -P.; Kim, D. H.; Lee, S. A.; Lee, T. H.; Kim, C.; Moon, C. W.; Son, D. -Y.; Jung, G. H.; Yang, H. S.; Lee, J. R.; Lee, J.; Park, N. -G.; Kim, S. Y.; Kim, J. Y.; Jang, H. W. Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed Ni-based electrocatalysts and perovskite/Si tandem solar cell. ACS Appl. Mater. Interfaces 2019, 11, 33835-33843.

    57. [57]

      Venkatraman, V.; Raju, R.; Oikonomopoulos, S. P.; Alsberg, B. K. The dye-sensitized solar cell database. J. Cheminf. 2018, 10, 18.

    58. [58]

      Cheema, H.; Watson, J.; Shinde, P. S.; Rodrigues, R. R.; Pan, S.; Delcamp, J. H. Precious metal-free solar-to-fuel generation: SSM-DSCs powering water splitting with NanoCOT and NiMoZn electrocatalysts. Chem. Commun. 2020, 56, 1569-1572.

    59. [59]

      Wang, M.; Ge, H.; Jin, Z.; Wang, Y.; Zhang, M.; Zheng, G.; Wang, Z. -S. Hollow NiCo2Se4 microspheres composed of nanoparticles as multifunctional electrocatalysts for unassisted artificial photosynthesis. Electrochim. Acta 2018, 283, 628-637.

    60. [60]

      Wang, M.; Li, Y.; Feng, C.; Zhao, G.; Wang, Z. -S. Quaternary iron nickel cobalt selenide as an efficient electrocatalyst for both quasi-solid-state dye-sensitized solar cells and water splitting. Chem. -Asian J. 2019, 14, 1034-1041.

    61. [61]

      Si, F.; Wei, M.; Li, M.; Xie, X.; Gao, Q.; Cai, X.; Zhang, S.; Peng, F.; Fang, Y.; Yang, S. Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam. J. Power Sources 2022, 538, 231536.

    62. [62]

      Sun, P.; Zhou, Y.; Li, H.; Zhang, H.; Feng, L.; Cao, Q.; Liu, S.; Wågberg, T.; Hu, G. Round-the-clock bifunctional honeycomb-like nitrogendoped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency. Appl. Catal., B 2022, 310, 121354.

    63. [63]

      Riyajuddin, S.; Pahuja, M.; Sachdeva, P. K.; Azmi, K.; Kumar, S.; Afshan, M.; Ali, F.; Sultana, J.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic leaflike Sn4P3 on the porous seamless graphene-carbon nanotube heterostructure as an efficient electrocatalyst for solar-driven overall water splitting. ACS Nano 2022, 16, 4861-4875.

    64. [64]

      Kwan, T. H.; Wu, X. Power and mass optimization of the hybrid solar panel and thermoelectric generators. Appl. Energy 2016, 165, 297-307.

    65. [65]

      Telkes, M. Solar thermoelectric generators. J. Appl. Phys. 1954, 25, 765-777.

    66. [66]

      Zhao, L.; Yang, Z.; Cao, Q.; Yang, L.; Zhang, X.; Jia, J.; Sang, Y.; Wu, H. -J.; Zhou, W.; Liu, H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting. Nano Energy 2019, 56, 563-570.

    67. [67]

      Yuan, H.; Liu, F.; Xue, G.; Liu, H.; Wang, Y.; Zhao, Y.; Liu, X.; Zhang, X.; Zhao, L.; Liu, Z.; Liu, H.; Zhou, W. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl. Catal., B 2021, 283, 119647.

    68. [68]

      Hao, W.; Wu, R.; Yang, H.; Guo, Y. Photothermal coupling electrolysis on Ni-W-B toward practical overall water splitting. J. Mater. Chem. A 2019, 7, 12440-12445.

    69. [69]

      Wang, C.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Pyroelectric catalysis. Nano Energy 2020, 78, 105371.

    70. [70]

      Zhang, D.; Wu, H.; Bowen, C. R.; Yang, Y. Recent advances in pyroelectric materials and applications. Small 2021, 17, 2103960.

    71. [71]

      Sun, S.; Song, L.; Zhang, S.; Sun, H.; Wei, J. Pyroelectric hydrogen production performance of silicon carbide. Ceram. Int. 2021, 47, 20486-20493.

    72. [72]

      Zhang, M.; Hu, Q.; Ma, K.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

    73. [73]

      Li, M.; Sun, J.; Chen, G.; Yao, S.; Cong, B.; Liu, P. Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity. Appl. Catal., B 2021, 298, 120573.

    74. [74]

      Xu, X.; Xiao, L.; Jia, Y.; Wu, Z.; Wang, F.; Wang, Y.; Haugen, N. O.; Huang, H. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature. Energy Environ. Sci. 2018, 11, 2198-2207.

    75. [75]

      Hinchet, R.; Khan, U.; Falconi, C.; Kim, S. -W. Piezoelectric properties in two-dimensional materials: simulations and experiments. Mater. Today 2018, 21, 611-630.

    76. [76]

      Feng, W.; Yuan, J.; Gao, F.; Weng, B.; Hu, W.; Lei, Y.; Huang, X.; Yang, L.; Shen, J.; Xu, D.; Zhang, X.; Liu, P.; Zhang, S. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 2020, 75, 104990.

    77. [77]

      Yu, J.; Guo, H.; Feng, W.; Guo, X.; Zhu, Y.; Thomas, T.; Jiang, C.; Liu, S.; Yang, M. Co4N-WNX composite for efficient piezocatalytic hydrogen evolution. Dalton Trans. 2022, 51, 7127-7134.

    78. [78]

      Wang, B.; Zhang, Q.; He, J.; Huang, F.; Li, C.; Wang, M. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. J. Energy Chem. 2022, 65, 304-311.

    79. [79]

      Karuturi, S. K.; Shen, H.; Sharma, A.; Beck, F. J.; Varadhan, P.; Duong, T.; Narangari, P. R.; Zhang, D.; Wan, Y.; He, J. -H.; Tan, H. H.; Jagadish, C.; Catchpole, K. Over 17% Efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers. Adv. Energy Mater. 2020, 10, 2000772.

    80. [80]

      Chen, Y.; Feng, X.; Liu, Y.; Guan, X.; Burda, C.; Guo, L. Metal oxide-based tandem cells for self-biased photoelectrochemical water splitting. ACS Energy Lett. 2020, 5, 844-866.

    81. [81]

      Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248-2252.

    82. [82]

      Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem. Soc. Rev. 2017, 46, 4645-4660.

    83. [83]

      Li, X.; Jia, M.; Lu, Y.; Li, N.; Zheng, Y. -Z.; Tao, X.; Huang, M. Co(OH)2/BiVO4 photoanode in tandem with a carbon-based perovskite solar cell for solar-driven overall water splitting. Electrochim. Acta 2020, 330, 135183.

    84. [84]

      Zhou, J.; Hou, J.; Tao, X.; Meng, X.; Yang, S. Solution-processed electron transport layer of N-doped fullerene for efficient and stable all carbon based perovskite solar cells. J. Mater. Chem. A 2019, 7, 7710-7716.

    85. [85]

      Lee, S. A.; Park, I. J.; Yang, J. W.; Park, J.; Lee, T. H.; Kim, C.; Moon, J.; Kim, J. Y.; Jang, H. W. Electrodeposited heterogeneous nickel-based catalysts on silicon for efficient sunlight-assisted water splitting. Cell Rep. Phys. Sci. 2020, 1, 100219.

    86. [86]

      Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316, 495-500.

    87. [87]

      Zhang, K.; Ma, M.; Li, P.; Wang, D. H.; Park, J. H. Water splitting progress in tandem devices: moving photolysis beyond electrolysis. Adv. Energy Mater. 2016, 6, 1600602.

    88. [88]

      Kang, Y.; Chen, R.; Zhen, C.; Wang, L.; Liu, G.; Cheng, H. -M. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Sci. Bull. 2020, 65, 1163-1169.

    89. [89]

      Hu, X.; Huang, J.; Zhao, F.; Yi, P.; He, B.; Wang, Y.; Chen, T.; Chen, Y.; Li, Z.; Liu, X. Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes. J. Mater. Chem. A 2020, 8, 14915-14920.

    90. [90]

      Zhang, S.; Chen, D.; Liu, Z.; Ruan, M.; Guo, Z. Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal., B 2021, 284, 119686.

    91. [91]

      Zhang, J.; Wang, C.; Bowen, C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014, 6, 13314-13327.
       

    92. [92]

      Zhang, S.; Zhang, B.; Chen, D.; Guo, Z.; Ruan, M.; Liu, Z. Promising pyro-photo-electric catalysis in NaNbO3 via integrating solar and cold-hot alternation energy in pyroelectric-assisted photoelectrochemical system. Nano Energy 2021, 79, 105485.
       

    93. [93]

      Shi, J.; Starr, M. B.; Xiang, H.; Hara, Y.; Anderson, M. A.; Seo, J. -H.; Ma, Z.; Wang, X. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 2011, 11, 5587-5593.

    94. [94]

      Zhang, S.; Liu, Z.; Ruan, M.; Guo, Z.; E, L.; Zhao, W.; Zhao, D.; Wu, X.; Chen, D. Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl. Catal., B 2020, 262, 118279.

    95. [95]

      Chen, Y.; Wang, L.; Gao, R.; Zhang, Y. -C.; Pan, L.; Huang, C.; Liu, K.; Chang, X. -Y.; Zhang, X.; Zou, J. -J. Polarization-enhanced direct Z-scheme ZnO-WO3-x nanorod arrays for efficient piezoelectric-photoelectrochemical water splitting. Appl. Catal., B 2019, 259, 118079.

    96. [96]

      Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920-4935.
       

    97. [97]

      Kumar, D.; Sharma, S.; Khare, N. Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity. Renew. Energy 2021, 163, 1569-1579.

    98. [98]

      Fan, F. -R.; Tian, Z. -Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328-334.
       

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    3. [3]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    4. [4]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    5. [5]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    6. [6]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    7. [7]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    8. [8]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    9. [9]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    10. [10]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    11. [11]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    16. [16]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    20. [20]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

Metrics
  • PDF Downloads(3)
  • Abstract views(352)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return