Citation: Jiayi Liang, Chunru Wang, Taishan Wang. Studies on the Luminescence Property of Yttrium-Based Metallofullerenes[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220900. doi: 10.14102/j.cnki.0254-5861.2022-0105 shu

Studies on the Luminescence Property of Yttrium-Based Metallofullerenes




  • Author Bio: Jiayi Liang received her B.S. degree from Donghua University in 2019 and is currently studying at the Institute of Chemistry, Chinese Academy of Sciences, with a research interest in the luminescent properties of metallofullerenes
    Chunru Wang received his PhD degree from Dalian Institute of Chemistry Physics, Chinese Academy of Sciences in 1992. Currently, he is a Professor at Institute of Chemistry, Chinese Academy of Sciences. His research interests include the preparation and application of fullerenes
    Taishan Wang received his PHD in Institute of Chemistry, Chinese Academy of Sciences in 2010. Currently, he is a Professor at Institute of Chemistry, Chinese Academy of Sciences. His research interests include the structure and physicochemical properties of metallofullerenes, including the electronic spin, magnetic and optical properties
  • Corresponding author: Taishan Wang, wangtais@iccas.ac.cn
  • Received Date: 1 May 2022
    Accepted Date: 27 May 2022
    Available Online: 13 June 2022

Figures(8)

  • Endohedral metallofullerenes (EMFs) exhibit various properties due to their multiple combinations between internal metals and outer carbon cages. Among them, yttrium-based metallofullerenes have attracted much attention due to their luminescence properties. For example, Y3N@C80 is distinguished by its photoluminescence (PL) properties with a small energy gap between the lowest singlet states (S1) and the triplet excited states (T1) in Y3N@C80, allowing reverse intersystem crossing (RISC) of T1→S1 and resulting in thermally activated delayed fluorescence (TADF). In addition, the PL intensity, lifetime, and quantum yield (QY) of Y3N@C80 all depend on the molecular structure and surrounding environment. Typically, modulation of the PL properties can be achieved by replacing the yttrium metal inside the carbon cage as well as by modifying the carbon cage externally. Here, we focus on the luminescence properties of yttrium-based metallofullerenes, summarize recent research advances, and predict their future development.
  • 加载中
    1. [1]

      Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. C60-buckminsterfullerene. Nature 1985, 318, 162-163.  doi: 10.1038/318162a0

    2. [2]

      Heath, J. R.; O'Brien, S. C.; Zhang, Q. L.; Liu, Y.; Curl, R. F. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 1985, 107, 7779-7780.  doi: 10.1021/ja00311a102

    3. [3]

      Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. Fullerenes with metals inside. J. Phys. Chem. Lett. 1991, 95, 7564-7568.

    4. [4]

      Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Dorn, H. C. Smallbandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55-57.  doi: 10.1038/43415

    5. [5]

      Popov, A. A.; Yang, S.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989-6113.  doi: 10.1021/cr300297r

    6. [6]

      Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 2017, 46, 915-1016.  doi: 10.1039/C6CS00368K

    7. [7]

      Wolfbeis, O. S. Optical technology until the year 2000: an historical overview. Optical Sensors: Industrial, Environmental and Diagnostic Applications 2004, 1, 1-34.

    8. [8]

      Palit, K. D.; Mittal, P. J. Photophysical and photochemical properties of the fullerenes. Fullerene Sci. Technol. 1995, 3, 643-659.  doi: 10.1080/153638X9508543815

    9. [9]

      BerberanSantos, M. N.; Garcia, J. M. M. Unusually strong delayed fluorescence of C70. J. Am. Chem. Soc. 1996, 118, 9391-9394.  doi: 10.1021/ja961782s

    10. [10]

      Salazar, F. A.; Fedorov, A.; BerberanSantos, M. N. A study of thermally activated delayed fluorescence in C60. Chem. Phys. Lett. 1997, 271, 361-366.  doi: 10.1016/S0009-2614(97)00469-7

    11. [11]

      Dantelle, G.; Tiwari, A.; Rahman, R.; Plant, S. R.; Porfyrakis, K.; Mortier, M.; Taylor, R. A.; Briggs, G. A. D. Optical properties of Er3+ in fullerenes and in beta-PbF2 single-crystals. Opt. Mater. 2009, 32, 251256.  doi: 10.1016/j.optmat.2009.07.021

    12. [12]

      Macfarlane, R. M.; Wittmann, G.; Loosdrecht, P.; Vries, M.; Bethune, D. S.; Stevenson, S.; Dorn, H. C. Measurement of pair Interactions and 1.5 µm emission from Er3+ ions in a C82 fullerene cage. Phys. Rev. Lett. 1997, 79, 1397-1400.  doi: 10.1103/PhysRevLett.79.1397

    13. [13]

      Hoffman, K. R.; Norris, B. J.; Merle, R. B.; Alford, M. Near infrared Er3+ photoluminescence from erbium metallofullerenes. Chem. Phys. Lett. 1998, 284, 171-176.  doi: 10.1016/S0009-2614(97)01419-X

    14. [14]

      Macfarlane, R. M.; Bethune, D. S.; Stevenson, S.; Dorn, H. C. Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3xN@C80 (x = 1-3). Chem. Phys. Lett. 2001, 343, 229-234.  doi: 10.1016/S0009-2614(01)00701-1

    15. [15]

      Ito, Y.; Okazaki, T.; Okubo, S.; Akachi, M.; Shinohara, H. Enhanced 1520 nm photoluminescence from Er3+ ions in di-erbium-carbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 2007, 1, 456-462.  doi: 10.1021/nn700235z

    16. [16]

      Jones, M.; Morton, J.; Taylor, R. A.; Ardavan, A.; Briggs, G. PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys. Status Solidi. 2010, 243, 3037-3041.

    17. [17]

      Jian, W.; Zhao, Y. Y.; Lee, P. H.; Irle, S. Er3+ photoluminescence in Er2@C82 and Er2C2@C82 metallofullerenes elucidated by density functional theory. Inorg. Chem. 2017, 56, 6576-6583.  doi: 10.1021/acs.inorgchem.7b00695

    18. [18]

      Wang, Z.; Izumi, N.; Nakanishi, Y.; Koyama, T.; Sugai, T.; Tange, M.; Okazaki, T.; Shinohara, H. Near-infrared photoluminescence properties of endohedral monoand dithulium metallofullerenes. ACS Nano 2016, 10, 4282-4287.  doi: 10.1021/acsnano.5b07780

    19. [19]

      Wang, Y.; Morales-Martínez, R.; Zhang, X.; Yang, W.; Wang, Y.; Rodríguez-Fortea, A.; Poblet, J. M.; Feng, L.; Wang, S.; Chen, N. Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage, complete structural characterization of Th@C3v(8)-C82. J. Am. Chem. Soc. 2017, 139, 5110-5116.  doi: 10.1021/jacs.6b13383

    20. [20]

      Zhang, X.; Wang, Y.; Morales-Martínez, R.; Zhong, J.; Graaf, C. D.; Rodríguez-Fortea, A.; Poblet, J. M.; Echegoyen, L.; Lai, F.; Ning, C. U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J. Am. Chem. Soc. 2018, 140, 39073915.  doi: 10.1021/jacs.7b10865

    21. [21]

      Zalibera, M.; Krylov, D. S.; Karagiannis, D.; Will, P. A.; Ziegs, F.; Schiemenz, S.; Lubitz, W.; Reineke, S.; Savitsky, A.; Popov, A. A. Thermally-activated delayed fluorescence in Y3N@C80 endohedral fullerene: time resolved luminescence and electron paramagnetic resonance studies. Angew. Chem. Int. Ed. 2017, 57, 277-281.

    22. [22]

      Dias, F. B.; Penfold, T. J.; Monkman, A. P. Photophysics of thermally activated delayed fluorescence molecules. Methods Appl. Fluores. 2017, 5, 012001.  doi: 10.1088/2050-6120/aa537e

    23. [23]

      Dunsch, L.; Yang, S. Endohedral clusterfullerenes–playing with cluster and cage sizes. Phys. Chem. Chem. Phys. 2007, 9, 3067-3081.  doi: 10.1039/B704143H

    24. [24]

      Zhang, J.; Stevenson, S.; Dorn, H. C. Trimetallic nitride template endohedral metallofullerenes: discovery, structural characterization, reactivity, and applications. Accounts Chem. Res. 2013, 46, 1548-1557.  doi: 10.1021/ar300301v

    25. [25]

      Dunsch, L.; Krause, M.; Noack, J.; Georgi, P. Endohedral nitride cluster fullerenes – formation and spectroscopic analysis of L3-xMxN@C2n (0 ≤ x ≤ 3; N = 39, 40). J. Phys. Chem. Solids 2004, 65, 309-315.  doi: 10.1016/j.jpcs.2003.03.002

    26. [26]

      Parker, C. A.; Hatchard, C. G. Triplet-singlet emission in fluid solutions phosphorescence of eosin. Trans. Faraday Soc. 1961, 57, 1894.  doi: 10.1039/tf9615701894

    27. [27]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234.  doi: 10.1038/nature11687

    28. [28]

      Volz, D. Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays. J. Photonics Energy 2016, 6, 020901.  doi: 10.1117/1.JPE.6.020901

    29. [29]

      Baleizao, C.; Berberan-Santos, M. N. Thermally activated delayed fluorescence in fullerenes. Ann. NY. Acad. Sci. 2008, 1130, 224-234.

    30. [30]

      Sun, Y. P. Photophysics and photochemistry of fullerene materials. Org. Photochem. 1997.

    31. [31]

      Zalibera, M.; Ziegs, F.; Schiemenz, S.; Dubrovin, V.; Lubitz, W.; Savitsky, A.; Deng, S. H. M.; Wang, X. -B.; Avdoshenko, S. M.; Popov, A. A. Metallofullerene photoswitches driven by photoinduced fullerene-to-metal electron transfer. Chem. Sci. 2021, 12, 7818-7838.

    32. [32]

      Bharadwaj, P.; Novotny, L. Plasmon-enhanced photoemission from a single Y3N@C80 fullerene. J. Phys. Chem. C 2010, 114, 7444-7447.

    33. [33]

      Nie, M.; Liang, J.; Zhao, C.; Lu, Y.; Zhang, J.; Li, W.; Wang, C.; Wang, T. Single-molecule magnet with thermally activated delayed fluorescence based on a metallofullerene integrated by dysprosium and yttrium ions. ACS Nano 2021, 15, 19080-19088.

    34. [34]

      Toth, K.; Molloy, J. K.; Matta, M.; Heinrich, B.; Guillon, D.; Bergamini, G.; Zerbetto, F.; Donnio, B.; Ceroni, P.; Felder-Flesch, D. A strongly emitting liquid-crystalline derivative of Y3N@C80: bright and long-lived near-IR luminescence from a charge transfer state. Angew. Chem. Int. Ed. 2013, 52, 12303-12307.

    35. [35]

      Zhao, C.; Meng, H.; Nie, M.; Wang, X.; Wang, T. Supramolecular complexes of C80-based metallofullerenes with [12]cycloparaphenylene nanoring and altered property in a confined space. J. Phys. Chem. C 2019, 123, 12514-12520.

    36. [36]

      Zhou, W.; Chen, Y.; Lin, W.; Yu. L. Luminescent lanthanide-macrocycle supramolecular assembly. Chem. Commun. 2021, 57, 11443-11456.

    37. [37]

      Li, X.; Shen, S.; Zhang, C.; Liu, M.; Lu, J.; Zhu, L. Small-molecule based thermally activated delayed fluorescence materials with dualemission characteristics. Sci. China Chem. 2021, 64, 534-546.

    38. [38]

      Thiele, S.; Balestro, F.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Electrically driven nuclear spin resonance in singlemolecule magnets. Science 2014, 344, 1135-1138.

    39. [39]

      Gaita-Arino, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301-309.

  • 加载中
    1. [1]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    2. [2]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    3. [3]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    4. [4]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    5. [5]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    6. [6]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    7. [7]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    8. [8]

      Dian-Xue Ma Yu-Wu Zhong . Achieving highly-efficient room-temperature phosphorescence with a nylon matrix. Chinese Journal of Structural Chemistry, 2024, 43(9): 100391-100391. doi: 10.1016/j.cjsc.2024.100391

    9. [9]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    10. [10]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    11. [11]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    12. [12]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    13. [13]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    14. [14]

      Chaohui ZhengJing XiShiyi LongTianpei HeRui ZhaoXinyuan LuoNa ChenQuan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223

    15. [15]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    16. [16]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    17. [17]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    18. [18]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    19. [19]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    20. [20]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

Metrics
  • PDF Downloads(10)
  • Abstract views(405)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return