-
[1]
Caglar, A.; Duzenli, D.; Onal, I.; Tersevin, I.; Sahin, O.; Kivrak, H. A comparative experimental and density functional study of glucose adsorption and electrooxidation on the Au-graphene and Pt-graphene electrodes. Int. J. Hydrogen Energy 2020, 45, 490-500.
doi: 10.1016/j.ijhydene.2019.10.163
-
[2]
Martinaiou, I.; Videla, A. H. A. M.; Weidler, N.; Kuebler, M.; Wallace, W. D. Z.; Paul, S.; Wagner, S.; Shahraei, A.; Stark, R. W.; Specchia, S.; Kramm, U. I. Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC). Appl. Catal., B 2020, 262, 118217.
doi: 10.1016/j.apcatb.2019.118217
-
[3]
Miao, B. Q.; Liu, Y. C.; Ding, Y.; Jin, P. J.; Chen, P.; Chen, Y. Rhodium nanodendrites catalyzed alkaline methanol oxidation reaction in direct methanol fuel cells. Sustain. Mater. Technol. 2022, 31, e00379.
-
[4]
Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M.; Zhong, J.; Jin, C. H.; Li, Y. G.; Lee, S. T.; Dai, H. J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.
doi: 10.1038/ncomms10035
-
[5]
Zhao, Y.; Liu, Y.; Miao, B.; Ding, Y.; Jin, P.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2204040-2204045.
-
[6]
Brandon, N. P.; Skinner, S.; Steele, B. C. H. Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 2003, 33, 183-213.
doi: 10.1146/annurev.matsci.33.022802.094122
-
[7]
Qin, C. L.; Fan, A. X.; Zhang, X.; Dai, X. P.; Sun, H.; Ren, D. H.; Dong, Z.; Wang, Y.; Luan, C. L.; Ye, J. Y.; Sun, S. G. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061-9075.
doi: 10.1039/C8NR10231G
-
[8]
Jin, Y. X.; Han, D. M.; Jia, W. P.; Li, F.; Chen, X. Y.; Huang, G. B.; Zhang, D. WO3 modified graphene supported Pt electrocatalysts with enhanced performance for oxygen reduction reaction. Int. J. Electrochem. Sci. 2017, 12, 6535-6544.
-
[9]
Yu, Y.; You, S. J.; Du, J. N.; Xing, Z. P.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N. Q.; Zou, J. L. ZIF-67-derived CoO (tetrahedral Co2+) @nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Appl. Catal., B 2019, 259, 118043.
doi: 10.1016/j.apcatb.2019.118043
-
[10]
Deng, K.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Dai, Z. C.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Chem. A 2019, 7, 9791-9797.
doi: 10.1039/C9TA00928K
-
[11]
Parthibavarman, M.; Karthik, M.; Prabhakaran, S. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 2018, 155, 224-232.
doi: 10.1016/j.vacuum.2018.06.021
-
[12]
Wei, L. J.; Zhang, H. M.; Cao, J. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity. Mater. Lett. 2019, 236, 171-174.
doi: 10.1016/j.matlet.2018.10.088
-
[13]
Kuang, W. D.; Meng, X. J.; Wang, C. H.; Talluri, B.; Thomas, T.; Jiang, C. J.; Liu, S. Q.; Yang, M. H. Nitridation of CoWO4/CdS nanocomposite formed metal nitrides assisting efficiently photocatalytic hydrogen evolution. ACS Omega 2020, 5, 9969-9976.
doi: 10.1021/acsomega.0c00288
-
[14]
Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interface Sci. 2020, 569, 34-49.
doi: 10.1016/j.jcis.2020.02.052
-
[15]
Huang, B. R.; Hung, S. C.; Lin, C. Y.; Chen, Y. J. Effect of gas enhanced metal-semiconductor-metal UV photodetectors based on thermal annealing tungsten oxide thin film prepared by sol-gel method. J. Mater. Sci. : Mater. Electron. 2014, 25, 408-413.
doi: 10.1007/s10854-013-1602-7
-
[16]
Zhang, C. Y.; Dai, Y.; Chen, H.; Ma, Y. Y.; Jing, B. J.; Cai, Z.; Duan, Y. Q.; Tang, B.; Zou, J. L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions. J. Mater. Chem. A 2018, 6, 22636-22644.
doi: 10.1039/C8TA08285E
-
[17]
Guan, X. H.; Zhang, Z. W.; Yang, L.; Wang, G. S. One-pot hydrothermal synthesis of hexagonal WO3 nanorods/graphene composites as high-performance electrodes for supercapacitors. Chempluschem 2017, 82, 1174-1181.
doi: 10.1002/cplu.201700288
-
[18]
Xu, X. W.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23-34.
doi: 10.1016/j.electacta.2014.10.139
-
[19]
Qu, F. D.; Zhang, N.; Zhang, S. D.; Zhao, R. Y.; Yao, D.; Ruan, S. P.; Yang, M. H. Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sens. Actuat., B 2020, 309, 127711.
doi: 10.1016/j.snb.2020.127711
-
[20]
Zhao, Y. M.; Ikram, M.; Wang, J. Z.; Liu, Z.; Du, L. J.; Zhou, J.; Kan, K.; Zhang, W. J.; Li, L.; Shi, K. Y. Ultrafast NH3 sensing properties of WO3@CoWO4 heterojunction nanofibres at room temperature. Aust. J. Chem. 2018, 71, 87-94.
doi: 10.1071/CH17354
-
[21]
Ferrari, P.; Molina, L. M.; Kaydashev, V. E.; Alonso, J. A.; Lievens, P.; Janssens, E. Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew. Chem. Int. Ed. 2016, 55, 11059-11063.
doi: 10.1002/anie.201604269
-
[22]
Wang, A. L.; Liang, C. L.; Lu, X. F.; Tong, Y. X.; Li, G. R. Pt-MoO3-RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation. J. Mater. Chem. A 2016, 4, 1923-1930.
doi: 10.1039/C5TA08585C
-
[23]
Xia, B. Y.; Wu, H. B.; Chen, J. S.; Wang, Z.; Wang, X.; Lou, X. W. Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Phys. Chem. Chem. Phys. 2012, 14, 473-476.
doi: 10.1039/C1CP23367J
-
[24]
Georgieva, J.; Sotiropoulos, S.; Valova, E.; Armyanov, S.; Hubin, A.; Steenhaut, O.; Raes, M.; Papaderakis, A. Pt-doped TiO2/WO3 bi-layer catalysts on graphite substrates with enhanced photoelectrocatalytic activity for methanol oxidation under visible light, J. Photochem. Photobiol., A 2017, 346, 70-76.
doi: 10.1016/j.jphotochem.2017.05.049
-
[25]
Saha, M. S.; Banis, M. N.; Zhang, Y.; Li, R.; Sun, X.; Cai, M.; Wagner, F. T. Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J. Power Sources 2009, 192, 330-335.
doi: 10.1016/j.jpowsour.2009.03.011
-
[26]
Ye, J. L.; Liu, J. G.; Zou, Z. G.; Gu, J.; Yu, T. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method. J. Power Sources 2010, 195, 2633-2637.
doi: 10.1016/j.jpowsour.2009.11.055
-
[27]
Wu, Q.; Sheng, M.; Shi, J.; Zhou, Q.; Liao, F.; Lv, F. CoWO4/CoP2 nanoflakes grown on carbon nanotube film as an efficient electrocatalyst for water splitting in alkaline media. Appl. Surf. Sci. 2020, 514, 145919.
doi: 10.1016/j.apsusc.2020.145919
-
[28]
Duan, Y. Q.; Sun, Y.; Wang, L.; Dai, Y.; Chen, B.; Pan, S. Y.; Zou, J. L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts. J. Mater. Chem. A 2016, 4, 7674-7682.
doi: 10.1039/C6TA01319H
-
[29]
Saha, M.; Ghosh, S.; De, S. K. Nanoscale Kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr (Ⅵ) reduction. Catal. Today 2020, 340, 253-267.
doi: 10.1016/j.cattod.2018.11.027
-
[30]
Yi, Q. N.; Hu, C. G.; Yang, R. S.; Liu, H.; Wan, B. Y.; Zhang, Y. Preparation of WO3 network squares for ultrasensitive photodetectors. J. Alloys Compd. 2011, 509, L255-L261.
doi: 10.1016/j.jallcom.2011.04.066
-
[31]
Lei, Y.; Yang, F. W.; Si, Y. J.; Guo, C. Z.; Liu, J.; Li, M. J.; Xiong, Z. P. Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Appl. Surf. Sci. 2020, 499, 143844.
doi: 10.1016/j.apsusc.2019.143844
-
[32]
Han, Y. J.; Choi, K.; Oh, H.; Kim, C.; Jeon, D.; Lee, C.; Lee, J. H.; Ryu, J. Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation. J. Catal. 2018, 367, 212-220.
doi: 10.1016/j.jcat.2018.09.011
-
[33]
Xiao, E. C.; Liu, M.; Ren, Q.; Cao, Z.; Guo, M.; Dou, G.; Qi, Z. M.; Shi, F. Phonon characteristics and dielectric properties of a phase pure CoWO4 ceramic. Ceram. Int. 2020, 46, 15705-15708.
doi: 10.1016/j.ceramint.2020.03.049
-
[34]
Zhang, M. C.; Fan, H. Q.; Zhao, N.; Peng, H. J.; Ren, X. H.; Wang, W. J.; Li, H.; Chen, G. Y.; Zhu, Y. N.; Jiang, X. B.; Wu, P. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 2018, 347, 291-300.
doi: 10.1016/j.cej.2018.04.113
-
[35]
Xue, M. R.; Bao, X. L.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. A novel pathway toward efficient and stable C3N4-based photocatalyst for light driven H-2 evolution: the synergistic effect between Pt and CoWO4. Int. J. Hydrogen Energy 2019, 44, 28113-28122.
doi: 10.1016/j.ijhydene.2019.09.092
-
[36]
Siller-Ceniceros, A. A.; Sanchez-Castro, M. E.; Morales-Acosta, D.; Torres-Lubian, J. R.; Martinez G, E.; Rodriguez-Varela, F. J. Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Appl. Catal., B 2017, 209, 455-467.
doi: 10.1016/j.apcatb.2017.03.023
-
[37]
Prabavathi, S. L.; Govindan, K.; Saravanakumar, K.; Jang, A.; Muthuraj, V. Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J. Ind. Eng. Chem. 2019, 80, 558-567.
doi: 10.1016/j.jiec.2019.08.035
-
[38]
Bock, D. C.; Ou, N. C.; Bonsu, R. O.; Anghel, C. T.; Su, X.; McElwee-White, L. Synthesis of tungsten oxo fluoroalkoxide complexes WO(OR)3L as precursors for growth of WOx nanomaterials by aerosol-assisted chemical vapor deposition. Solid State Ionics 2018, 315, 77-84.
doi: 10.1016/j.ssi.2017.11.030
-
[39]
Zhang, W. M.; Yue, Z. W.; Wang, Q. M.; Zeng, X. X.; Fu, C. C.; Li, Q.; Li, X. T.; Fang, L. D.; Li, L. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122548.
doi: 10.1016/j.cej.2019.122548
-
[40]
Chen, H.; You, S. J.; Ma, Y. Y.; Zhang, C. Y.; Jing, B. J.; Cai, Z.; Tang, B.; Ren, N. Q.; Zou, J. L. Carbon thin-layer-protected active sites for ZIF-8-derived nitrogen-enriched carbon frameworks/expanded graphite as metal-free catalysts for oxygen reduction in acidic media. Chem. Mater. 2018, 30, 6014-6025.
doi: 10.1021/acs.chemmater.8b02275
-
[41]
Dong, H. F.; Zhao, Y.; Tang, Y. F.; Burkert, S. C.; Star, A. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups. ACS Appl. Mater. Interfaces 2015, 7, 10734-10741.
doi: 10.1021/acsami.5b00447
-
[42]
Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322-12329.
doi: 10.1039/C7TA02999C
-
[43]
Zhong, H. X.; Wang, J.; Zhang, Q.; Meng, F.; Bao, D.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Yan, J. M.; Zhang, X. B. In situ coupling FeM (M = Ni, Co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery. Adv. Sustain. Syst. 2017, 1, 2366-7486.
-
[44]
Jeyakanthan, M.; Subramanian, U.; Tangsali, R. B.; Ramesh, A. AC conductivity, electrochemical and magnetic studies of CoWO4/PbWO4 nanocomposites. Phys. B 2020, 586, 412151.
doi: 10.1016/j.physb.2020.412151
-
[45]
Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E. W. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J. Phys. Chem. B 2005, 109, 22958-66.
doi: 10.1021/jp053053h
-
[46]
Mohamed, M. M.; Khairy, M.; Eid, S. Polyethylene glycol assisted one-pot hydrothermal synthesis of NiWO4/WO3 heterojunction for direct methanol fuel cells. Electrochim. Acta 2018, 263, 286-298.
doi: 10.1016/j.electacta.2018.01.063
-
[47]
Li, J. H.; You, S. J.; Liu, M. Y.; Zhang, P.; Dai, Y.; Yu, Y.; Ren, N. Q.; Zou, J. L. ZIF-8-derived carbon-thin-layer protected WC/W24O68 micro-sized rods with enriched oxygen vacancies as efficient Pt co-catalysts for methanol oxidation and oxygen reduction. Appl. Catal., B 2020, 265, 0926-3373.
-
[48]
Yoon, D.; Manthiram, A. Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy Environ. Sci. 2014, 7, 3069-3076.
doi: 10.1039/C4EE01455C
-
[49]
Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2016, 4, 1579-1585.
doi: 10.1039/C5TA09261B
-
[50]
Li, F.; Gong, H. Y.; Wang, Y.; Zhang, H.; Wang, Y. Z.; Liu, S. N.; Wang, S.; Sun, C. W. Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a sub-stoichiometric tungsten oxide W18O49 support. J. Mater. Chem. A 2014, 2, 20154-20163.
doi: 10.1039/C4TA04220D
-
[51]
Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535-2558.
doi: 10.1039/C3EE43886D
-
[52]
Jassal, A. K.; Mudsainiyan, R. K.; Shankar, R. A rational assembly of paradodecatungstate anions from clusters to morphology-controlled nanomaterials. Mater. Chem. Front. 2021, 5, 1090-1125.
doi: 10.1039/D0QM00646G
-
[53]
Calderona, J. C.; Garcia, G.; Calvillo, L.; Rodriguez, J. L.; Lazaro, M. J.; Pastor, E. Electrochemical oxidation of CO and methanol on Pt-Ru catalysts supported on carbon nanofibers: the influence of synthesis method. Appl. Catal., B 2015, 165, 676-686.
doi: 10.1016/j.apcatb.2014.10.077
-
[54]
Kim, I. T.; Choi, M.; Lee, H. K.; Shim, J. Characterization of methanol-tolerant Pd-WO3 and Pd-SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. J. Ind. Eng. Chem. 2013, 19, 813-818.
doi: 10.1016/j.jiec.2012.10.022
-
[55]
Zhao, Z. G.; Yao, Z. J.; Zhang, J.; Zhu, R.; Jin, Y.; Li, Q. W. Rational design of galvanically replaced Pt-anchored electrospun WO3 nanofibers as efficient electrode materials for methanol oxidation. J. Mater. Chem. 2012, 22, 16514-16519.
doi: 10.1039/c2jm32769d
-
[56]
Wang, W. C.; Li, X.; He, T. O.; Liu, Y. M.; Jin, M. S. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett. 2019, 19, 1743-1748.
doi: 10.1021/acs.nanolett.8b04735
-
[57]
Yu, Y.; You, S. J.; Du, J.; Zhang, P.; Dai, Y.; Liu, M. Y.; Jiang, B. J.; Ren, N. Q.; Zou, J. L. Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chem. Eng. J. 2021, 403, 126441.
doi: 10.1016/j.cej.2020.126441
-
[58]
Ganguly, A.; Anjaneyulu, O.; Ojha, K.; Ganguli, A. K. Oxide-based nanostructures for photocatalytic and electrocatalytic applications. Crystengcomm 2015, 17, 8978-9001.
doi: 10.1039/C5CE01343G
-
[59]
Song, D. H.; Shin, J.; Lee, Y. J.; Kwon, Y.; Lim, J.; Kim, E. J.; Oh, S.; Kim, M.; Cho, E. Thin nickel layer with embedded WC nanoparticles for efficient oxygen evolution. ACS Appl. Energy Mater. 2019, 2, 3452-3460.
doi: 10.1021/acsaem.9b00258
-
[60]
Rajpurohit, A. S.; Punde, N. S.; Rawool, C. R.; Srivastava, A. K. Fabrication of high energy density symmetric supercapacitor based on cobalt-nickel bimetallic tungstate nanoparticles decorated phosphorus-sulphur co-doped graphene nanosheets with extended voltage. Chem. Eng. J. 2019, 371, 679-692.
doi: 10.1016/j.cej.2019.04.100
-
[61]
Liu, J. F.; Zhang, Z. F.; Wang, Z.; Tang, M. Y.; Li, J. Q.; Yi, J. H.; Zuo, T. Y.; Wu, Y. F.; Ma, Q. B. Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. J. Alloys Compd. 2017, 727, 107-113.
doi: 10.1016/j.jallcom.2017.08.057
-
[62]
Elrouby, M.; Abd El-Lateef, H. M.; Sadek, M. Electrodeposited Pt nanorods on a novel flowered-like nanostructured Ni-Co alloy as an electrocatalyst for methanol oxidation. Int. J. Hydrogen Energy 2019, 44, 13820-13834.
doi: 10.1016/j.ijhydene.2019.03.261
-
[63]
Yang, C.; van der Laak, N. K.; Chan, K. Y.; Zhang, X. Microwave-assisted microemulsion synthesis of carbon supported Pt-WO3 nanoparticles as an electrocatalyst for methanol oxidation. Electrochim. Acta 2012, 75, 262-272.
doi: 10.1016/j.electacta.2012.04.107
-
[64]
Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; Wang, D.; Peng, Q.; Chen, C.; Li, Y. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.