Citation: Jiahuan Li, Jiahao Xie, Xinyu Wang, Ying Dai, Xiaoqin Xu, Jin Liu, Zhuang Cai, Xin Meng, Jinlong Zou. Acid-Stable CoWO4/WO3-Microrod Coated by a Thin Carbon-Layer as Efficient Pt Co-Catalysts for Methanol Oxidation and Oxygen Reduction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220705. doi: 10.14102/j.cnki.0254-5861.2022-0104 shu

Acid-Stable CoWO4/WO3-Microrod Coated by a Thin Carbon-Layer as Efficient Pt Co-Catalysts for Methanol Oxidation and Oxygen Reduction

Figures(9)

  • Insufficient activity and instability (poisoning) of Pt-based electrocatalysts for methanol oxidation and oxygen reduction reactions (MOR/ORR) impede the development of direct methanol fuel cells. Here, CoWO4 nanoparticles-loaded WO3 microrods coated by a thin carbon-layer are used as Pt-supports/co-catalysts for MOR/ORR. WO3 grows along the (110) crystal plane to form microrod (diameter of ~0.6 um), which is coated by a carbon-layer (~5 nm). Pt-CoWO4/WO3@NCL-mr (850 ℃) shows a higher mass activity (2208 mA mgpt-1) than the commercial Pt/C (659.4 mA mgpt-1). CoWO4/WO3 heterojunction on the microrod surface with abundant oxygen vacancies allows the generation of surface-adsorbed hydroxyl to facilitate CO elimination and regeneration of the occupied Pt active-sites (promising stability). Pt-CoWO4/WO3@NCL-mr (850 ℃) has higher half-wave (0.46 V) and onset (0.54 V) potentials than Pt/C (0.41 and 0.50 V) for ORR. The microrod structure of CoWO4/WO3@NCL facilitates the dispersibility of Pt NPs to increase the utilization of Pt active sites and relieve the self-aggregation of Pt to obtain a promising synergy between Pt and CoWO4 (Co2+) for ORR in acid media. This study provides insights not only into the synthesis of acid-resistant WO3@NCL microrod as active Pt co-catalyst, but also into the effective utilization of surface oxygen vacancies and Co2+ for MOR/ORR.
  • 加载中
    1. [1]

      Caglar, A.; Duzenli, D.; Onal, I.; Tersevin, I.; Sahin, O.; Kivrak, H. A comparative experimental and density functional study of glucose adsorption and electrooxidation on the Au-graphene and Pt-graphene electrodes. Int. J. Hydrogen Energy 2020, 45, 490-500.  doi: 10.1016/j.ijhydene.2019.10.163

    2. [2]

      Martinaiou, I.; Videla, A. H. A. M.; Weidler, N.; Kuebler, M.; Wallace, W. D. Z.; Paul, S.; Wagner, S.; Shahraei, A.; Stark, R. W.; Specchia, S.; Kramm, U. I. Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC). Appl. Catal., B 2020, 262, 118217.  doi: 10.1016/j.apcatb.2019.118217

    3. [3]

      Miao, B. Q.; Liu, Y. C.; Ding, Y.; Jin, P. J.; Chen, P.; Chen, Y. Rhodium nanodendrites catalyzed alkaline methanol oxidation reaction in direct methanol fuel cells. Sustain. Mater. Technol. 2022, 31, e00379.

    4. [4]

      Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M.; Zhong, J.; Jin, C. H.; Li, Y. G.; Lee, S. T.; Dai, H. J. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.  doi: 10.1038/ncomms10035

    5. [5]

      Zhao, Y.; Liu, Y.; Miao, B.; Ding, Y.; Jin, P.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2204040-2204045.

    6. [6]

      Brandon, N. P.; Skinner, S.; Steele, B. C. H. Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 2003, 33, 183-213.  doi: 10.1146/annurev.matsci.33.022802.094122

    7. [7]

      Qin, C. L.; Fan, A. X.; Zhang, X.; Dai, X. P.; Sun, H.; Ren, D. H.; Dong, Z.; Wang, Y.; Luan, C. L.; Ye, J. Y.; Sun, S. G. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061-9075.  doi: 10.1039/C8NR10231G

    8. [8]

      Jin, Y. X.; Han, D. M.; Jia, W. P.; Li, F.; Chen, X. Y.; Huang, G. B.; Zhang, D. WO3 modified graphene supported Pt electrocatalysts with enhanced performance for oxygen reduction reaction. Int. J. Electrochem. Sci. 2017, 12, 6535-6544.

    9. [9]

      Yu, Y.; You, S. J.; Du, J. N.; Xing, Z. P.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N. Q.; Zou, J. L. ZIF-67-derived CoO (tetrahedral Co2+) @nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Appl. Catal., B 2019, 259, 118043.  doi: 10.1016/j.apcatb.2019.118043

    10. [10]

      Deng, K.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Dai, Z. C.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Chem. A 2019, 7, 9791-9797.  doi: 10.1039/C9TA00928K

    11. [11]

      Parthibavarman, M.; Karthik, M.; Prabhakaran, S. Facile and one step synthesis of WO3 nanorods and nanosheets as an efficient photocatalyst and humidity sensing material. Vacuum 2018, 155, 224-232.  doi: 10.1016/j.vacuum.2018.06.021

    12. [12]

      Wei, L. J.; Zhang, H. M.; Cao, J. Electrospinning of Ag/ZnWO4/WO3 composite nanofibers with high visible light photocatalytic activity. Mater. Lett. 2019, 236, 171-174.  doi: 10.1016/j.matlet.2018.10.088

    13. [13]

      Kuang, W. D.; Meng, X. J.; Wang, C. H.; Talluri, B.; Thomas, T.; Jiang, C. J.; Liu, S. Q.; Yang, M. H. Nitridation of CoWO4/CdS nanocomposite formed metal nitrides assisting efficiently photocatalytic hydrogen evolution. ACS Omega 2020, 5, 9969-9976.  doi: 10.1021/acsomega.0c00288

    14. [14]

      Jin, Z. L.; Yan, X.; Hao, X. Q. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. J. Colloid Interface Sci. 2020, 569, 34-49.  doi: 10.1016/j.jcis.2020.02.052

    15. [15]

      Huang, B. R.; Hung, S. C.; Lin, C. Y.; Chen, Y. J. Effect of gas enhanced metal-semiconductor-metal UV photodetectors based on thermal annealing tungsten oxide thin film prepared by sol-gel method. J. Mater. Sci. : Mater. Electron. 2014, 25, 408-413.  doi: 10.1007/s10854-013-1602-7

    16. [16]

      Zhang, C. Y.; Dai, Y.; Chen, H.; Ma, Y. Y.; Jing, B. J.; Cai, Z.; Duan, Y. Q.; Tang, B.; Zou, J. L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions. J. Mater. Chem. A 2018, 6, 22636-22644.  doi: 10.1039/C8TA08285E

    17. [17]

      Guan, X. H.; Zhang, Z. W.; Yang, L.; Wang, G. S. One-pot hydrothermal synthesis of hexagonal WO3 nanorods/graphene composites as high-performance electrodes for supercapacitors. Chempluschem 2017, 82, 1174-1181.  doi: 10.1002/cplu.201700288

    18. [18]

      Xu, X. W.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23-34.  doi: 10.1016/j.electacta.2014.10.139

    19. [19]

      Qu, F. D.; Zhang, N.; Zhang, S. D.; Zhao, R. Y.; Yao, D.; Ruan, S. P.; Yang, M. H. Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sens. Actuat., B 2020, 309, 127711.  doi: 10.1016/j.snb.2020.127711

    20. [20]

      Zhao, Y. M.; Ikram, M.; Wang, J. Z.; Liu, Z.; Du, L. J.; Zhou, J.; Kan, K.; Zhang, W. J.; Li, L.; Shi, K. Y. Ultrafast NH3 sensing properties of WO3@CoWO4 heterojunction nanofibres at room temperature. Aust. J. Chem. 2018, 71, 87-94.  doi: 10.1071/CH17354

    21. [21]

      Ferrari, P.; Molina, L. M.; Kaydashev, V. E.; Alonso, J. A.; Lievens, P.; Janssens, E. Controlling the adsorption of carbon monoxide on platinum clusters by dopant-induced electronic structure modification. Angew. Chem. Int. Ed. 2016, 55, 11059-11063.  doi: 10.1002/anie.201604269

    22. [22]

      Wang, A. L.; Liang, C. L.; Lu, X. F.; Tong, Y. X.; Li, G. R. Pt-MoO3-RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation. J. Mater. Chem. A 2016, 4, 1923-1930.  doi: 10.1039/C5TA08585C

    23. [23]

      Xia, B. Y.; Wu, H. B.; Chen, J. S.; Wang, Z.; Wang, X.; Lou, X. W. Formation of Pt-TiO2-rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Phys. Chem. Chem. Phys. 2012, 14, 473-476.  doi: 10.1039/C1CP23367J

    24. [24]

      Georgieva, J.; Sotiropoulos, S.; Valova, E.; Armyanov, S.; Hubin, A.; Steenhaut, O.; Raes, M.; Papaderakis, A. Pt-doped TiO2/WO3 bi-layer catalysts on graphite substrates with enhanced photoelectrocatalytic activity for methanol oxidation under visible light, J. Photochem. Photobiol., A 2017, 346, 70-76.  doi: 10.1016/j.jphotochem.2017.05.049

    25. [25]

      Saha, M. S.; Banis, M. N.; Zhang, Y.; Li, R.; Sun, X.; Cai, M.; Wagner, F. T. Tungsten oxide nanowires grown on carbon paper as Pt electrocatalyst support for high performance proton exchange membrane fuel cells. J. Power Sources 2009, 192, 330-335.  doi: 10.1016/j.jpowsour.2009.03.011

    26. [26]

      Ye, J. L.; Liu, J. G.; Zou, Z. G.; Gu, J.; Yu, T. Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method. J. Power Sources 2010, 195, 2633-2637.  doi: 10.1016/j.jpowsour.2009.11.055

    27. [27]

      Wu, Q.; Sheng, M.; Shi, J.; Zhou, Q.; Liao, F.; Lv, F. CoWO4/CoP2 nanoflakes grown on carbon nanotube film as an efficient electrocatalyst for water splitting in alkaline media. Appl. Surf. Sci. 2020, 514, 145919.  doi: 10.1016/j.apsusc.2020.145919

    28. [28]

      Duan, Y. Q.; Sun, Y.; Wang, L.; Dai, Y.; Chen, B.; Pan, S. Y.; Zou, J. L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts. J. Mater. Chem. A 2016, 4, 7674-7682.  doi: 10.1039/C6TA01319H

    29. [29]

      Saha, M.; Ghosh, S.; De, S. K. Nanoscale Kirkendall effect driven Au decorated CdS/CdO colloidal nanocomposites for efficient hydrogen evolution, photocatalytic dye degradation and Cr (Ⅵ) reduction. Catal. Today 2020, 340, 253-267.  doi: 10.1016/j.cattod.2018.11.027

    30. [30]

      Yi, Q. N.; Hu, C. G.; Yang, R. S.; Liu, H.; Wan, B. Y.; Zhang, Y. Preparation of WO3 network squares for ultrasensitive photodetectors. J. Alloys Compd. 2011, 509, L255-L261.  doi: 10.1016/j.jallcom.2011.04.066

    31. [31]

      Lei, Y.; Yang, F. W.; Si, Y. J.; Guo, C. Z.; Liu, J.; Li, M. J.; Xiong, Z. P. Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Appl. Surf. Sci. 2020, 499, 143844.  doi: 10.1016/j.apsusc.2019.143844

    32. [32]

      Han, Y. J.; Choi, K.; Oh, H.; Kim, C.; Jeon, D.; Lee, C.; Lee, J. H.; Ryu, J. Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation. J. Catal. 2018, 367, 212-220.  doi: 10.1016/j.jcat.2018.09.011

    33. [33]

      Xiao, E. C.; Liu, M.; Ren, Q.; Cao, Z.; Guo, M.; Dou, G.; Qi, Z. M.; Shi, F. Phonon characteristics and dielectric properties of a phase pure CoWO4 ceramic. Ceram. Int. 2020, 46, 15705-15708.  doi: 10.1016/j.ceramint.2020.03.049

    34. [34]

      Zhang, M. C.; Fan, H. Q.; Zhao, N.; Peng, H. J.; Ren, X. H.; Wang, W. J.; Li, H.; Chen, G. Y.; Zhu, Y. N.; Jiang, X. B.; Wu, P. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 2018, 347, 291-300.  doi: 10.1016/j.cej.2018.04.113

    35. [35]

      Xue, M. R.; Bao, X. L.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. A novel pathway toward efficient and stable C3N4-based photocatalyst for light driven H-2 evolution: the synergistic effect between Pt and CoWO4. Int. J. Hydrogen Energy 2019, 44, 28113-28122.  doi: 10.1016/j.ijhydene.2019.09.092

    36. [36]

      Siller-Ceniceros, A. A.; Sanchez-Castro, M. E.; Morales-Acosta, D.; Torres-Lubian, J. R.; Martinez G, E.; Rodriguez-Varela, F. J. Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Appl. Catal., B 2017, 209, 455-467.  doi: 10.1016/j.apcatb.2017.03.023

    37. [37]

      Prabavathi, S. L.; Govindan, K.; Saravanakumar, K.; Jang, A.; Muthuraj, V. Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J. Ind. Eng. Chem. 2019, 80, 558-567.  doi: 10.1016/j.jiec.2019.08.035

    38. [38]

      Bock, D. C.; Ou, N. C.; Bonsu, R. O.; Anghel, C. T.; Su, X.; McElwee-White, L. Synthesis of tungsten oxo fluoroalkoxide complexes WO(OR)3L as precursors for growth of WOx nanomaterials by aerosol-assisted chemical vapor deposition. Solid State Ionics 2018, 315, 77-84.  doi: 10.1016/j.ssi.2017.11.030

    39. [39]

      Zhang, W. M.; Yue, Z. W.; Wang, Q. M.; Zeng, X. X.; Fu, C. C.; Li, Q.; Li, X. T.; Fang, L. D.; Li, L. Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122548.  doi: 10.1016/j.cej.2019.122548

    40. [40]

      Chen, H.; You, S. J.; Ma, Y. Y.; Zhang, C. Y.; Jing, B. J.; Cai, Z.; Tang, B.; Ren, N. Q.; Zou, J. L. Carbon thin-layer-protected active sites for ZIF-8-derived nitrogen-enriched carbon frameworks/expanded graphite as metal-free catalysts for oxygen reduction in acidic media. Chem. Mater. 2018, 30, 6014-6025.  doi: 10.1021/acs.chemmater.8b02275

    41. [41]

      Dong, H. F.; Zhao, Y.; Tang, Y. F.; Burkert, S. C.; Star, A. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups. ACS Appl. Mater. Interfaces 2015, 7, 10734-10741.  doi: 10.1021/acsami.5b00447

    42. [42]

      Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322-12329.  doi: 10.1039/C7TA02999C

    43. [43]

      Zhong, H. X.; Wang, J.; Zhang, Q.; Meng, F.; Bao, D.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Yan, J. M.; Zhang, X. B. In situ coupling FeM (M = Ni, Co) with nitrogen-doped porous carbon toward highly efficient trifunctional electrocatalyst for overall water splitting and rechargeable Zn-air battery. Adv. Sustain. Syst. 2017, 1, 2366-7486.

    44. [44]

      Jeyakanthan, M.; Subramanian, U.; Tangsali, R. B.; Ramesh, A. AC conductivity, electrochemical and magnetic studies of CoWO4/PbWO4 nanocomposites. Phys. B 2020, 586, 412151.  doi: 10.1016/j.physb.2020.412151

    45. [45]

      Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E. W. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J. Phys. Chem. B 2005, 109, 22958-66.  doi: 10.1021/jp053053h

    46. [46]

      Mohamed, M. M.; Khairy, M.; Eid, S. Polyethylene glycol assisted one-pot hydrothermal synthesis of NiWO4/WO3 heterojunction for direct methanol fuel cells. Electrochim. Acta 2018, 263, 286-298.  doi: 10.1016/j.electacta.2018.01.063

    47. [47]

      Li, J. H.; You, S. J.; Liu, M. Y.; Zhang, P.; Dai, Y.; Yu, Y.; Ren, N. Q.; Zou, J. L. ZIF-8-derived carbon-thin-layer protected WC/W24O68 micro-sized rods with enriched oxygen vacancies as efficient Pt co-catalysts for methanol oxidation and oxygen reduction. Appl. Catal., B 2020, 265, 0926-3373.

    48. [48]

      Yoon, D.; Manthiram, A. Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy Environ. Sci. 2014, 7, 3069-3076.  doi: 10.1039/C4EE01455C

    49. [49]

      Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2016, 4, 1579-1585.  doi: 10.1039/C5TA09261B

    50. [50]

      Li, F.; Gong, H. Y.; Wang, Y.; Zhang, H.; Wang, Y. Z.; Liu, S. N.; Wang, S.; Sun, C. W. Enhanced activity, durability and anti-poisoning property of Pt/W18O49 for methanol oxidation with a sub-stoichiometric tungsten oxide W18O49 support. J. Mater. Chem. A 2014, 2, 20154-20163.  doi: 10.1039/C4TA04220D

    51. [51]

      Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535-2558.  doi: 10.1039/C3EE43886D

    52. [52]

      Jassal, A. K.; Mudsainiyan, R. K.; Shankar, R. A rational assembly of paradodecatungstate anions from clusters to morphology-controlled nanomaterials. Mater. Chem. Front. 2021, 5, 1090-1125.  doi: 10.1039/D0QM00646G

    53. [53]

      Calderona, J. C.; Garcia, G.; Calvillo, L.; Rodriguez, J. L.; Lazaro, M. J.; Pastor, E. Electrochemical oxidation of CO and methanol on Pt-Ru catalysts supported on carbon nanofibers: the influence of synthesis method. Appl. Catal., B 2015, 165, 676-686.  doi: 10.1016/j.apcatb.2014.10.077

    54. [54]

      Kim, I. T.; Choi, M.; Lee, H. K.; Shim, J. Characterization of methanol-tolerant Pd-WO3 and Pd-SnO2 electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells. J. Ind. Eng. Chem. 2013, 19, 813-818.  doi: 10.1016/j.jiec.2012.10.022

    55. [55]

      Zhao, Z. G.; Yao, Z. J.; Zhang, J.; Zhu, R.; Jin, Y.; Li, Q. W. Rational design of galvanically replaced Pt-anchored electrospun WO3 nanofibers as efficient electrode materials for methanol oxidation. J. Mater. Chem. 2012, 22, 16514-16519.  doi: 10.1039/c2jm32769d

    56. [56]

      Wang, W. C.; Li, X.; He, T. O.; Liu, Y. M.; Jin, M. S. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett. 2019, 19, 1743-1748.  doi: 10.1021/acs.nanolett.8b04735

    57. [57]

      Yu, Y.; You, S. J.; Du, J.; Zhang, P.; Dai, Y.; Liu, M. Y.; Jiang, B. J.; Ren, N. Q.; Zou, J. L. Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chem. Eng. J. 2021, 403, 126441.  doi: 10.1016/j.cej.2020.126441

    58. [58]

      Ganguly, A.; Anjaneyulu, O.; Ojha, K.; Ganguli, A. K. Oxide-based nanostructures for photocatalytic and electrocatalytic applications. Crystengcomm 2015, 17, 8978-9001.  doi: 10.1039/C5CE01343G

    59. [59]

      Song, D. H.; Shin, J.; Lee, Y. J.; Kwon, Y.; Lim, J.; Kim, E. J.; Oh, S.; Kim, M.; Cho, E. Thin nickel layer with embedded WC nanoparticles for efficient oxygen evolution. ACS Appl. Energy Mater. 2019, 2, 3452-3460.  doi: 10.1021/acsaem.9b00258

    60. [60]

      Rajpurohit, A. S.; Punde, N. S.; Rawool, C. R.; Srivastava, A. K. Fabrication of high energy density symmetric supercapacitor based on cobalt-nickel bimetallic tungstate nanoparticles decorated phosphorus-sulphur co-doped graphene nanosheets with extended voltage. Chem. Eng. J. 2019, 371, 679-692.  doi: 10.1016/j.cej.2019.04.100

    61. [61]

      Liu, J. F.; Zhang, Z. F.; Wang, Z.; Tang, M. Y.; Li, J. Q.; Yi, J. H.; Zuo, T. Y.; Wu, Y. F.; Ma, Q. B. Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. J. Alloys Compd. 2017, 727, 107-113.  doi: 10.1016/j.jallcom.2017.08.057

    62. [62]

      Elrouby, M.; Abd El-Lateef, H. M.; Sadek, M. Electrodeposited Pt nanorods on a novel flowered-like nanostructured Ni-Co alloy as an electrocatalyst for methanol oxidation. Int. J. Hydrogen Energy 2019, 44, 13820-13834.  doi: 10.1016/j.ijhydene.2019.03.261

    63. [63]

      Yang, C.; van der Laak, N. K.; Chan, K. Y.; Zhang, X. Microwave-assisted microemulsion synthesis of carbon supported Pt-WO3 nanoparticles as an electrocatalyst for methanol oxidation. Electrochim. Acta 2012, 75, 262-272.  doi: 10.1016/j.electacta.2012.04.107

    64. [64]

      Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; Wang, D.; Peng, Q.; Chen, C.; Li, Y. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.

  • 加载中
    1. [1]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    2. [2]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    5. [5]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

    6. [6]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    7. [7]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    8. [8]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    9. [9]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    10. [10]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    11. [11]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    12. [12]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    13. [13]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    14. [14]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    15. [15]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    16. [16]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    17. [17]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    18. [18]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    19. [19]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    20. [20]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

Metrics
  • PDF Downloads(2)
  • Abstract views(254)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return