Citation: Yan Hu, Xibao Li, Weiwei Wang, Fang Deng, Lu Han, Xiaoming Gao, Zhijun Feng, Zhi Chen, Juntong Huang, Fanyan Zeng, Fan Dong. Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220606. doi: 10.14102/j.cnki.0254-5861.2022-0103 shu

Bi and S Co-doping g-C3N4 to Enhance Internal Electric Field for Robust Photocatalytic Degradation and H2 Production

Figures(11)

  • By adjusting the type and proportion of doping elements in the g-C3N4-based photocatalyst, the internal electric field (IEF) strength of the semiconductor can be regulated. This can effectively enhance the driving force of charge separation in the photocatalytic process. It is found that the introduction of appropriate concentration of Bi and S into the skeleton structure of g-C3N4 can achieve efficient degradation of tetracycline (TC) and other pollutants in the liquid environment and excellent photocatalytic H2 evolution performance (1139 μmol·L-1·h-1). Since the prepared samples have similar crystal structures, the relative strength of IEF can be calculated. It can be used as the basis for adjusting the IEF strength of g-C3N4-based semiconductor by element doping. In addition, the Bi and S co-doped g-C3N4 samples after solvothermal reflux show good chemical stability and can reduce the nanostructure defects caused by co-doping of heteroatoms, thus it provides a novel solution for the construction of g-C3N4-based dual-function photocatalyst with high activity and stability.
  • 加载中
    1. [1]

      Jing, J. F.; Yang, J.; Zhang, Z. J.; Zhu, Y. F. Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv. Energy Mater. 2021, 11, 2101392.  doi: 10.1002/aenm.202101392

    2. [2]

      Yan, T.; Zhang, X. J.; Liu, H.; Jin, Z. L. CeO2 Particles anchored to Ni2P nanoplate for efficient photo-catalytic hydrogen evolution. Chin. J. Struct. Chem. 2022, 41, 2201047-2201053.

    3. [3]

      Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059-4064.  doi: 10.1002/adma.201600301

    4. [4]

      Liu, Y.; Yu, F. B.; Wang, F.; Bai, S. J.; He, G. W. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    5. [5]

      Li, X. B.; Wang, W. W.; Dong, F.; Zhang, Z. Q.; Han, L.; Luo, X. D.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Jia, G. H.; Zhang, T. R. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catal. 2021, 11, 4739-4769.  doi: 10.1021/acscatal.0c05354

    6. [6]

      Guo, L.; Chen, Y.; Ren, Z.; Li, X.; Zhang, Q.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Fu, Y.; Ma, J. Morphology engineering of type-II heterojunction nanoarrays for improved sonophotocatalytic capability. Ultrason. Sonochem. 2021, 81, 105849.  doi: 10.1016/j.ultsonch.2021.105849

    7. [7]

      Dai, B. Y.; Fang, J. J.; Yu, Y. R.; Sun, M. L.; Huang, H. M.; Lu, C. H.; Kou, J. H.; Zhao, Y. J.; Xu, Z. Z. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2020, 32, 1906316.

    8. [8]

      Guo, Y.; Shi, W. X.; Zhu, Y. F.; Xu, Y. P.; Cui, F. Y. Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Appl. Catal. B-Environ. 2020, 262, 118262.  doi: 10.1016/j.apcatb.2019.118262

    9. [9]

      Fu, Y. M.; Ren, Z. Q.; Wu, J. Z.; Li, Y. Q.; Liu, W. L.; Li, P.; Xing, L. L.; Ma, J.; Wang, H.; Xue, X. Y. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Appl. Catal. B-Environ. 2021, 285, 119785.  doi: 10.1016/j.apcatb.2020.119785

    10. [10]

      Wang, Z. L.; Cheng, B.; Zhang, L. Y.; Yu, J. G.; Tan, H. Y. BiOBr/NiO S-scheme heterojunction photocatalyst for CO2 photoreduction. Sol. RRL. 2022, 6, 2100587.  doi: 10.1002/solr.202100587

    11. [11]

      Zhang, H. M.; Li, D. F.; Byun, W. J.; Wang, X. L.; Shin, T. J.; Jeong, H. Y.; Han, H. X.; Li, C.; Lee, J. S. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nat. Commun. 2020, 11, 4622.  doi: 10.1038/s41467-020-18484-8

    12. [12]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.  doi: 10.1002/adma.202107668

    13. [13]

      Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme S-v-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.  doi: 10.1038/s41467-021-24511-z

    14. [14]

      Dong, S. Y.; Cui, L. F.; Tian, Y. J.; Xia, L. J.; Wu, Y. H.; Yu, J. J.; Bagley, D. M.; Sun, J. H.; Fan, M. H. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020, 399, 123017.  doi: 10.1016/j.jhazmat.2020.123017

    15. [15]

      Guo, Y.; Shi, W. X.; Zhu, Y. F. Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat. 2019, 1, 12007.

    16. [16]

      Xia, B. H.; Deng, F.; Zhang, S. Q.; Hua, L.; Luo, X. B.; Ao, M. Y. Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation. J. Hazard. Mater. 2020, 392, 122345.  doi: 10.1016/j.jhazmat.2020.122345

    17. [17]

      Dong, S. Y.; Xia, L. J.; Chen, X. Y.; Cui, L. F.; Zhu, W.; Lu, Z. S.; Sun, J. H.; Fan, M. H. Interfacial and electronic band structure optimization for the adsorption and visible-light photocatalytic activity of macroscopic ZnSnO3/graphene aerogel. Compos. Part. B-Eng. 2021, 215, 108765.  doi: 10.1016/j.compositesb.2021.108765

    18. [18]

      Wageh, S.; Al-Ghamdi, A. A.; Jafer, R.; Li, X.; Zhang, P. A new heterojunction in photocatalysis: S-scheme heterojunction. Chin. J. Catal. 2021, 42, 667-669.  doi: 10.1016/S1872-2067(20)63705-6

    19. [19]

      Wang, W. W.; Li, X. B.; Deng, F.; Liu, J. Y.; Gao, X. M.; Huang, J. T.; Xu, J. L.; Feng, Z. J.; Chen, Z.; Han, L. Novel organic/inorganic PDI-Urea/BiOBr S-scheme heterojunction for improved photocatalytic antibiotic degradation and H2O2 production. Chin. Chem. Lett. 2022, 10.1016/j. cclet. 2022.01. 058.

    20. [20]

      Xiong, J.; Li, X. B.; Huang, J. T.; Gao, X. M.; Chen, Z.; Liu, J. Y.; Li, H.; Kang, B. B.; Yao, W. Q.; Zhu, Y. F. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B-Environ. 2020, 266, 118602.  doi: 10.1016/j.apcatb.2020.118602

    21. [21]

      Yang, J.; Jing, J. F.; Zhu, Y. F. A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv. Mater. 2021, 33, 2101026.  doi: 10.1002/adma.202101026

    22. [22]

      Zhu, B. C.; Tan, H. Y.; Fan, J. J.; Cheng, B.; Yu, J. G.; Ho, W. K. Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. J. Materiomics 2021, 7, 988-997.  doi: 10.1016/j.jmat.2021.02.015

    23. [23]

      Dong, S. Y.; Zhao, Y. L.; Yang, J. Y.; Liu, X. D.; Li, W.; Zhang, L. Y.; Wu, Y. H.; Sun, J. H.; Feng, J. L.; Zhu, Y. F. Visible-light responsive PDI/rGO composite film for the photothermal catalytic degradation of antibiotic wastewater and interfacial water evaporation. Appl. Catal. B-Environ. 2021, 291, 120127.  doi: 10.1016/j.apcatb.2021.120127

    24. [24]

      Xu, Q. L.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. Design principle of S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 2022, 124, 171-173.  doi: 10.1016/j.jmst.2022.02.016

    25. [25]

      Wang, H.; Wu, Y.; Feng, M. B.; Tu, W. G.; Xiao, T.; Xiong, T.; Ang, H. X.; Yuan, X. Z.; Chew, J. W. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 2018, 144, 215-225.  doi: 10.1016/j.watres.2018.07.025

    26. [26]

      Rahman, M.; Tian, H. N.; Edvinsson, T. Revisiting the limiting factors for overall water-splitting on organic photocatalysts. Angew. Chem. Int. Ed. 2020, 59, 16278-16293.  doi: 10.1002/anie.202002561

    27. [27]

      Zhang, H. J.; Chen, X. J.; Zhang, Z. J.; Yu, K. Y.; Zhu, W.; Zhu, Y. F. Highly-crystalline triazine-PDI polymer with an enhanced built-in electric field for full-spectrum photocatalytic phenol mineralization. Appl. Catal. B-Environ. 2021, 287, 119957.  doi: 10.1016/j.apcatb.2021.119957

    28. [28]

      Wang, P.; Li, H. T.; Cao, Y. J.; Yu, H. G. Carboxyl-functionalized graphene for highly efficient H2 evolution activity of TiO2 photocatalyst. Acta Phys. -Chim. Sin. 2021, 37, 2008047.

    29. [29]

      Liu, M. R.; Lin, Y. P.; Wang, K.; Chen, S. M.; Wang, F.; Zhou, T. H. Hierarchical cobalt phenylphosphonate nanothorn flowers for enhanced electrocatalytic water oxidation at neutral pH. Chin. J. Catal. 2020, 41, 1654-1662.  doi: 10.1016/S1872-2067(19)63513-8

    30. [30]

      Wang, H.; Zhang, J. J.; Yuan, X. Z.; Jiang, L. B.; Xia, Q.; Chen, H. Y. Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately polymeric carbon nitride framework. Chem. Eng. J. 2020, 392, 123638.  doi: 10.1016/j.cej.2019.123638

    31. [31]

      Li, X. B.; Xiong, J.; Gao, X. M.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Zhu, Y. F. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J. Alloy. Compd. 2019, 802, 196-209.  doi: 10.1016/j.jallcom.2019.06.185

    32. [32]

      Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.  doi: 10.1002/aenm.201701503

    33. [33]

      Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. Design of C3N4-based hybrid hete- rojunctions for enhanced photocatalytic hydrogen production activity. ChemSusChem. 2020, 13, 876-881.  doi: 10.1002/cssc.201903437

    34. [34]

      Wang, M.; Cheng, J.; Wang, X.; Hong, X.; Yu, H. G. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2 evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37-45.  doi: 10.1016/S1872-2067(20)63633-6

    35. [35]

      Liang, Y. J.; Wu, X.; Liu, X. Y.; Li, C. H.; Liu, S. W. Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Appl. Catal. B Environ. 2021, 304, 120978.

    36. [36]

      Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S. B.; Thakur, V. K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl. Mater. Today 2019, 15, 494-524.  doi: 10.1016/j.apmt.2019.04.003

    37. [37]

      Tasleem, S.; Tahir, M. Constructing LaxCoyO3 perovskite anchored 3D g-C3N4 hollow tube heterojunction with proficient interface charge separation for stimulating photocatalytic H2 production. Energy Fuels 2021, 35, 9727-9746.  doi: 10.1021/acs.energyfuels.1c00512

    38. [38]

      Ong, W. J.; Putri, L. K.; Tan, Y. C.; Tan, L. L.; Li, N.; Ng, Y. H.; Wen, X. M.; Chai, S. P. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Res. 2017, 10, 1673-1696.  doi: 10.1007/s12274-016-1391-4

    39. [39]

      Zhu, B. C.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 2019, 1, 32-56.  doi: 10.1002/cey2.1

    40. [40]

      Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X. S.; Chen, S. M.; Tu, W. G.; Yu, D. S.; Xu, R.; Zhou, T. H.; Zhang, J. Isolated square-planar copper center in boron imidazolate nanocages for photocatalytic reduction of CO2 to CO. Angew. Chem. Int. Ed. 2019, 58, 11752-11756.  doi: 10.1002/anie.201905869

    41. [41]

      Cheng, L.; Yue, X.; Fan, J.; Xiang, Q. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Adv. Mater. 2022, 2200929.

    42. [42]

      Sun, H. R.; Guo, F.; Pan, J. J.; Huang, W.; Wang, K.; Shi, W. L. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 2021, 406, 126844.  doi: 10.1016/j.cej.2020.126844

    43. [43]

      Uddin, A.; Rauf, A.; Wu, T.; Khan, R.; Yu, Y. L.; Tan, L.; Jiang, F.; Chen, H. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: balance of oxygen between metal oxides and doped g-C3N4. J. Colloid Interface Sci. 2021, 602, 261-273.  doi: 10.1016/j.jcis.2021.06.003

    44. [44]

      Lin, Q. C.; Li, Z. S.; Lin, T. J.; Li, B. L.; Liao, X. C.; Yu, H. Q.; Yu, C. L. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production. Chin. J. Chem. Eng. 2020, 28, 2677-2688.  doi: 10.1016/j.cjche.2020.06.037

    45. [45]

      Ge, F. Y.; Huang, S. Q.; Yan, J.; Jing, L. Q.; Chen, F.; Xie, M.; Xu, Y. G.; Xu, H.; Li, H. M. Sulfur promoted n-pi* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 450-459.  doi: 10.1016/S1872-2067(20)63674-9

    46. [46]

      Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L.; Peng, B. L.; Wang, Z. L. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.  doi: 10.1016/j.nanoen.2020.105671

    47. [47]

      Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 iso-type step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033

    48. [48]

      Yan, B.; Du, C.; Yang, G. W. Constructing built-in electric field in ultrathin graphitic carbon nitride nanosheets by N and O codoping for enhanced photocatalytic hydrogen evolution activity. Small 2020, 16, 1905700.  doi: 10.1002/smll.201905700

    49. [49]

      Lu, H.; Li, X. R.; Li, F.; Xu, X. Q.; Zhao, R.; Xiong, C. Y.; Hu, Q.; Miao, Z. Q.; Tian, M. Construction of single-atom Ag embedded O, K co-doped g-C3N4 with enhanced photocatalytic efficiency for tetracycline degradation and Escherichia coli disinfection under visible light. J. Mol. Liq. 2022, 352, 118655.  doi: 10.1016/j.molliq.2022.118655

    50. [50]

      Tasleem, S.; Tahir, M. Synergistically improved charge separation in bimetallic Co-La modified 3D g-C3N4 for enhanced photocatalytic H2 production under UV-visible light. Int. J. Hydrogn Energy 2021, 46, 20995-21012.  doi: 10.1016/j.ijhydene.2021.03.235

    51. [51]

      Jin, Z. L.; Li, Y. B.; Hao, X. Q. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 1912033.

    52. [52]

      Ye, J.; Yang, D. Y.; Dai, J. D.; Li, C. X.; Yan, Y. S.; Wang, Y. Strongly coupled cobalt/oxygen co-doped porous g-C3N4 heterostructure with abundant oxygen vacancies modulated the peroxymonosulfate activation pathway. Chem. Eng. J. 2021, 431, 133972.

    53. [53]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys. -Chim. Sin. 2021, 37, 2010030.

    54. [54]

      Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56-68.  doi: 10.1016/S1872-2067(20)63634-8

    55. [55]

      Wang, J.; Yang, Z.; Yao, W. Q.; Gao, X. X.; Tao, D. P. Defects modified in the exfoliation of g-C3N4 nanosheets via a self-assembly process for improved hydrogen evolution performance. Appl. Catal. B-Environ. 2018, 238, 629-637.  doi: 10.1016/j.apcatb.2018.07.017

    56. [56]

      Li, H.; Deng, F.; Zheng, Y.; Hua, L.; Qu, C. H.; Luo, X. B. Visible-light-driven Z-scheme rGO/Bi2S3-BiOBr heterojunctions with tunable exposed BiOBr (102) facets for efficient synchronous photocatalytic degradation of 2-nitrophenol and Cr(VI) reduction. Environ. Sci. -Nano. 2019, 6, 3670-3683.  doi: 10.1039/C9EN00957D

    57. [57]

      Huang, Y. Y.; Jian, Y. P.; Li, L. H.; Li, D.; Fang, Z. Y.; Dong, W. X.; Lu, Y. H.; Luo, B. F.; Chen, R. J.; Yang, Y. C.; Chen, M.; Shi, W. D. A NIR-responsive phytic acid nickel biomimetic complex anchored on carbon nitride for highly efficient solar hydrogen production. Angew. Chem. Int. Ed. 2021, 60, 5245-5249.  doi: 10.1002/anie.202014317

    58. [58]

      Wang, H.; Bian, Y. R.; Hu, J. T.; Dai, L. M. Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Appl. Catal. B-Environ. 2018, 238, 592-598.  doi: 10.1016/j.apcatb.2018.07.023

    59. [59]

      Liu, Z. F.; Huang, J.; Shao, B. B.; Zhong, H.; Liang, Q. H.; He, Q. Y.; Wu, T.; Pan, Y.; Peng, Z.; Yuan, X. Z.; Liu, Y.; Zhao, C. H. In-situ construction of 2D/1D Bi2O2CO3 nanoflake/S-doped g-C3N4 hollow tube hierarchical heterostructure with enhanced visible-light photocatalytic activity. Chem. Eng. J. 2021, 426, 130767.  doi: 10.1016/j.cej.2021.130767

    60. [60]

      Li, X. B.; Xiong, J.; Gao, X. M.; Ma, J.; Chen, Z.; Kang, B. B.; Liu, J. Y.; Li, H.; Feng, Z. J.; Huang, J. T. Novel BP/BiOBr S-scheme nano-hete- rojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J. Hazard. Mater. 2020, 387, 121690.  doi: 10.1016/j.jhazmat.2019.121690

    61. [61]

      Tahir, B.; Tahir, M. Synergistic effect of Ru embedded 2D Ti3AlC2 binary cocatalyst with porous g-C3N4 to construct 2D/2D Ru-MAX/PCN hete- rojunction for enhanced photocatalytic H2 production. Mater. Res. Bull. 2021, 144, 111493.  doi: 10.1016/j.materresbull.2021.111493

    62. [62]

      Shen, R. C.; He, K. L.; Zhang, A. P.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. In-situ construction of metallic Ni3C@Ni core-shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B-Environ. 2021, 291, 120104.  doi: 10.1016/j.apcatb.2021.120104

    63. [63]

      Mahzoon, S.; Haghighi, M.; Nowee, S. M. Sonoprecipitation fabrication of enhanced electron transfer Cu(OH)2/g-C3N4 nanophotocatalyst with promoted H2 production activity under visible light irradiation. Renew. Energy 2020, 150, 91-100.  doi: 10.1016/j.renene.2019.12.135

    64. [64]

      Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl. Catal. B-Environ. 2021, 281, 119539.  doi: 10.1016/j.apcatb.2020.119539

    65. [65]

      Fang, M.; Qin, Q.; Cai, Q.; Liu, W. Transparent Co3FeOx film passivated BiVO4 photoanode for efficient photoelectrochemical water splitting. Chin. J. Struct. Chem. 2021, 40, 1505-1512.

    66. [66]

      Long, X. Y.; Meng, J. Z.; Gu, J. B.; Ling, L. Q.; Li, Q. W.; Liu, N.; Wang, K. W.; Li, Z. Q. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin. J. Struct. Chem. 2022, 41, 2204046-2204053.

    67. [67]

      Li, X. B.; Luo, Q. N.; Han, L.; Deng, F.; Yang, Y.; Dong, F. Enhanced photocatalytic degradation and H2 evolution performance of NCDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly. J. Mater. Sci. Technol. 2022, 114, 222-232.  doi: 10.1016/j.jmst.2021.10.030

  • 加载中
    1. [1]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    8. [8]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    9. [9]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    10. [10]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    20. [20]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

Metrics
  • PDF Downloads(11)
  • Abstract views(401)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return