Citation: Xiaoxin Lv, Guoqing Li, Gaoteng Zhang, Kun Feng, Jiujun Deng, Jun Zhong. Soft X-Ray Absorption Spectroscopy of Advanced Two-Dimensional Photo/Electrocatalysts for Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221001. doi: 10.14102/j.cnki.0254-5861.2022-0099 shu

Soft X-Ray Absorption Spectroscopy of Advanced Two-Dimensional Photo/Electrocatalysts for Water Splitting







  • Author Bio: Xiaoxin Lv received her Ph.D. degree in 2016 from Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University. Currently, she is a lecturer in Automotive Engineering Research Institute, Jiangsu University. Her primary research interests focus on the design of advanced nanomaterials for photoelectrochemical water splitting and lithium-ion batteries
    Guoqing Li received his B.S. degree in Applied Chemistry from Henan Polytechnic University in 2020. Currently, he is a graduate student in Energy Research Institute in Jiangsu University. His research interests focus on photo/electrocatalysis water splitting
    Gaoteng Zhang received her B.S. degree in Materials and Energy from Southwest University in 2020. Currently, she is a graduate student in Institute of Functional Nano & Soft Materials (FUNSOM) in Soochow University. Her research interests focus on hematite-based photoelectrochemical water splitting
    Kun Feng received his Ph.D. degree in 2020 from Soochow University. Currently, he performs postdoctoral research at the Institute of Functional Nano & Soft Materials (FUNSOM) at Soochow University. His research interests focus on the development of nano-scaled functional materials for electrocatalysis with the investigation of synchrotron radiation techniques
    Jiujun Deng is currently a professor of Institute for Energy Research, Jiangsu University. He received his Ph.D. from the Institute of Functional Nano & Soft Materials (FUNSOM) at Soochow University in 2016. After Ph.D., he worked as a postdoctoral fellow at Institut National de la Recherche Scientifique (INRS), Canada. His research interests focus on the design and synthesis of nanostructured functional materials for energy conversion and storage systems
    Jun Zhong is a full professor at the Institute of Functional Nano & Soft Materials (FUNSOM) at Soochow University. He received his B.E. degree from Tsinghua University in 2002, and his Ph.D. degree in 2007 from the Institute of High Energy Physics, CAS. He was a research scholar in 2006-2007 at ALS, Lawrence Berkeley National Laboratory. He became a research scientist in 2008 at the Institute of High Energy Physics and joined Soochow University in 2010. His research interests focus on the investigation of energy-related nanomaterials with synchrotron radiation techniques
  • Corresponding author: Jiujun Deng, jjDeng@ujs.edu.cn Jun Zhong, jZhong@suda.edu.cn
  • Received Date: 30 April 2022
    Accepted Date: 27 May 2022
    Available Online: 10 June 2022

Figures(10)

  • Photo/electrocatalytic water splitting has been considered as one of the most promising approaches for the clean hydrogen production. Among various photo/electrocatalysts, 2D nanomaterials exhibit great potential because of their conspicuous properties. Meanwhile, synchrotron-based soft X-ray absorption spectroscopy (XAS) as a powerful and element-specific technique has been widely used to explore the electronic structure of 2D photo/electrocatalysts to comprehensively understand their working mechanism for the development of high-performance catalysts. In this work, the recent developments of soft XAS techniques applied in 2D photo/electrocatalysts have been reviewed, mainly focusing on identifying the surface active sites, elucidating the location of heteroatoms, and unraveling the interfacial interaction in the composite. The challenges and outlook in this research field have also been emphasized. The present review provides an in-depth understanding on how soft XAS techniques unravel the correlations between structure and performance in 2D photo/electrocatalysts, which could guide the rational design of highly efficient catalysts for photo/electrocatalytic water splitting.
  • 加载中
    1. [1]

      Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.  doi: 10.1126/science.1103197

    2. [2]

      Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.  doi: 10.1039/C2CS35266D

    3. [3]

      Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109-2125.  doi: 10.1039/C8CS00542G

    4. [4]

      Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.  doi: 10.1016/j.ccr.2021.213953

    5. [5]

      Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent advances on water-splitting electrocatalysis mediated by noblemetal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.  doi: 10.1002/aenm.201903120

    6. [6]

      Yan, Y.; Wang, P.; Lin, J.; Cao, J.; Qi, J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J. Energy Chem. 2021, 58, 446-462.  doi: 10.1016/j.jechem.2020.10.010

    7. [7]

      Li, C.; Luo, Z.; Wang, T.; Gong, J. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Adv. Mater. 2018, 30, 1707502.  doi: 10.1002/adma.201707502

    8. [8]

      Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.  doi: 10.1002/aenm.201900624

    9. [9]

      Zhang, Y.; Wang, D.; Wang, S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 2021, 18, 2104339.

    10. [10]

      Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585.  doi: 10.1002/aenm.201802585

    11. [11]

      Di, J.; Yan, C.; Handoko, A. D.; Seh, Z. W.; Li, H.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today 2018, 21, 749-770.  doi: 10.1016/j.mattod.2018.01.034

    12. [12]

      Zhou, M.; Lou, X. W. D.; Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 2013, 8, 598-618.  doi: 10.1016/j.nantod.2013.12.002

    13. [13]

      Deng, D.; Novoselov, K.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.  doi: 10.1038/nnano.2015.340

    14. [14]

      Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T. H.; Choi, W.; Moshfegh, A. Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59-95.  doi: 10.1039/C8EE00886H

    15. [15]

      Ke, J.; He, F.; Wu, H.; Lyu, S.; Liu, J.; Yang, B.; Li, Z.; Zhang, Q.; Chen, J.; Lei, L. Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 2021, 13, 1-29.  doi: 10.1007/s40820-020-00525-y

    16. [16]

      Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.  doi: 10.1021/acsnano.5b05040

    17. [17]

      Wang, H.; Liu, X.; Niu, P.; Wang, S.; Shi, J.; Li, L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020, 2, 1377-1413.  doi: 10.1016/j.matt.2020.04.002

    18. [18]

      Zhang, Y.; Li, L.; Guo, S. X.; Zhang, X.; Li, F.; Bond, A. M.; Zhang, J. Two-dimensional electrocatalysts for efficient reduction of carbon dioxide. ChemSusChem 2020, 13, 59-77.  doi: 10.1002/cssc.201901794

    19. [19]

      Yin, T.; Long, L.; Tang, X.; Qiu, M.; Liang, W.; Cao, R.; Zhang, Q.; Wang, D.; Zhang, H. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. 2020, 7, 2001431.  doi: 10.1002/advs.202001431

    20. [20]

      Qian, W.; Xu, S.; Zhang, X.; Li, C.; Yang, W.; Bowen, C. R.; Yang, Y. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 2021, 13, 1-38.  doi: 10.1007/s40820-020-00525-y

    21. [21]

      Ling, Z.; Ren, C. E.; Zhao, M. -Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 2014, 111, 16676-16681.  doi: 10.1073/pnas.1414215111

    22. [22]

      Zhang, X.; Chen, A.; Chen, L.; Zhou, Z. 2D materials bridging experiments and computations for electro/photocatalysis. Adv. Energy Mater. 2022, 12, 2003841.  doi: 10.1002/aenm.202003841

    23. [23]

      Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623-636.  doi: 10.1039/C4CS00236A

    24. [24]

      Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P. M.; Xu, H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 2020, 382, 122812.  doi: 10.1016/j.cej.2019.122812

    25. [25]

      Boumeriame, H.; Da Silva, E. S.; Cherevan, A. S.; Chafik, T.; Faria, J. L.; Eder, D. Layered double hydroxide (LDH)-based materials: a minireview on strategies to improve the performance for photocatalytic water splitting. J. Energy Chem. 2022, 64, 406-431.  doi: 10.1016/j.jechem.2021.04.050

    26. [26]

      Zhao, D.; Wang, Y.; Dong, C. -L.; Huang, Y. -C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388-397.  doi: 10.1038/s41560-021-00795-9

    27. [27]

      Yuan, Z.; Li, J.; Yang, M.; Fang, Z.; Jian, J.; Yu, D.; Chen, X.; Dai, L. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 4972-4979.  doi: 10.1021/jacs.9b00154

    28. [28]

      Li, S.; Zhang, Y.; Huang, H. Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting. J. Energy Chem. 2022, 67, 745-779.  doi: 10.1016/j.jechem.2021.11.023

    29. [29]

      Luo, C.; Wang, C.; Wu, X.; Zhang, J.; Chu, J. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.  doi: 10.1002/smll.201604259

    30. [30]

      Fang, L.; Seifert, S.; Winans, R. E.; Li, T. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small 2022, 18, 2106017.  doi: 10.1002/smll.202106017

    31. [31]

      Smith, J. W.; Saykally, R. J. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 2017, 117, 13909-13934.  doi: 10.1021/acs.chemrev.7b00213

    32. [32]

      Timoshenko, J.; Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2020, 121, 882-961.

    33. [33]

      Zhong, J.; Zhang, H.; Sun, X.; Lee, S. T. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Adv. Mater. 2014, 26, 7786-7806.  doi: 10.1002/adma.201304507

    34. [34]

      Deng, J.; Zhang, Q.; Lv, X.; Zhang, D.; Xu, H.; Ma, D.; Zhong, J. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 2020, 5, 975-993.  doi: 10.1021/acsenergylett.9b02757

    35. [35]

      Liu, X.; Weng, T. -C. Synchrotron-based X-ray absorption spectroscopy for energy materials. MRS Bull. 2016, 41, 466-472.  doi: 10.1557/mrs.2016.113

    36. [36]

      Cho, S.; Jang, J. -W.; Lee, K. -H.; Lee, J. S. Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater. 2014, 2, 010703.  doi: 10.1063/1.4861798

    37. [37]

      Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.  doi: 10.1039/C3CS60378D

    38. [38]

      Li, P.; Zhao, G.; Cui, P.; Cheng, N.; Lao, M.; Xu, X.; Dou, S. X.; Sun, W. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850.  doi: 10.1016/j.nanoen.2021.105850

    39. [39]

      Weng, Q.; Kvashnin, D. G.; Wang, X.; Cretu, O.; Yang, Y.; Zhou, M.; Zhang, C.; Tang, D. M.; Sorokin, P. B.; Bando, Y. Tuning of the optical, electronic, and magnetic properties of boron nitride nanosheets with oxygen doping and functionalization. Adv. Mater. 2017, 29, 1700695.  doi: 10.1002/adma.201700695

    40. [40]

      Wang, B.; Chu, S.; Zheng, L.; Li, X.; Zhang, J.; Zhang, F. Application of X-ray absorption spectroscopy in electrocatalytic water splitting and CO2 reduction. Small Sci. 2021, 1, 2100023.  doi: 10.1002/smsc.202100023

    41. [41]

      Timoshenko, J.; Cuenya, B. R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882-961.  doi: 10.1021/acs.chemrev.0c00396

    42. [42]

      Chen, M.; Chou, S. L.; Dou, S. X. Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2019, 2, 842-851.  doi: 10.1002/batt.201900054

    43. [43]

      Nagasaka, M.; Kosugi, N. Soft X-ray absorption spectroscopy for observing element-specific intermolecular interaction in solution chemistry. Chem. Lett. 2021, 50, 956-964.  doi: 10.1246/cl.200938

    44. [44]

      Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021-3026.  doi: 10.1021/jacs.6b11878

    45. [45]

      Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.  doi: 10.1002/smll.202003916

    46. [46]

      Gong, L.; Yang, H.; Douka, A. I.; Yan, Y.; Xia, B. Y. Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 2021, 5, 2000136.  doi: 10.1002/adsu.202000136

    47. [47]

      Stevens, M. B.; Trang, C. D.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.  doi: 10.1021/jacs.7b07117

    48. [48]

      Ahn, H. S.; Bard, A. J. Surface Interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the "fast" iron sites. J. Am. Chem. Soc. 2016, 138, 313-318.  doi: 10.1021/jacs.5b10977

    49. [49]

      Louie, M. W.; Bell, A. T. An Investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.  doi: 10.1021/ja405351s

    50. [50]

      Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. -J.; Sokaras, D.; Weng, T. -C.; Alonso-Mori, R. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.  doi: 10.1021/ja511559d

    51. [51]

      Chen, J. Y.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090-15093.  doi: 10.1021/jacs.5b10699

    52. [52]

      Chen, S.; Kang, Z.; Zhang, X.; Xie, J.; Wang, H.; Shao, W.; Zheng, X.; Yan, W.; Pan, B.; Xie, Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electrocatalytic oxygen evolution. ACS Cent. Sci. 2017, 3, 1221-1227.  doi: 10.1021/acscentsci.7b00424

    53. [53]

      Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213-226.  doi: 10.1016/j.mattod.2015.10.006

    54. [54]

      Dionigi, F.; Zhu, J.; Zeng, Z.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L.; Li, W. -X.; Greeley, J.; Strasser, P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides. Angew. Chem. Int. Ed. 2021, 60, 14446-14457.  doi: 10.1002/anie.202100631

    55. [55]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    56. [56]

      Kang, J.; Qiu, X.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wan, C.; Liu, L. -M.; Duan, X.; Guo, L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 2021, 4, 1050-1058.  doi: 10.1038/s41929-021-00715-w

    57. [57]

      Li, R.; Yang, S.; Zhang, Y.; Yu, G.; Wang, C.; Chen, C.; Wu, G.; Sun, R.; Wang, G.; Zheng, X. Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Rep. Phys. Sci. 2022, 3, 100788.  doi: 10.1016/j.xcrp.2022.100788

    58. [58]

      Kuai, C.; Zhang, Y.; Han, L.; Xin, H. L.; Sun, C. -J.; Nordlund, D.; Qiao, S.; Du, X. -W.; Lin, F. Creating compressive stress at the NiOOH/ NiO interface for water oxidation. J. Mater. Chem. A 2020, 8, 10747-10754.  doi: 10.1039/D0TA04244G

    59. [59]

      Rabchinskii, M. K.; Saveliev, S. D.; Stolyarova, D. Y.; Brzhezinskaya, M.; Kirilenko, D. A.; Baidakova, M. V.; Ryzhkov, S. A.; Shnitov, V. V.; Sysoev, V. V.; Brunkov, P. N. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon 2021, 182, 593-604.  doi: 10.1016/j.carbon.2021.06.057

    60. [60]

      Zhao, B.; Feng, K.; Wang, Y.; Lv, X.; Zheng, H.; Ma, Y.; Yan, W.; Sun, X.; Zhong, J. PtXNi10−XO nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane. Catal. Sci. Technol. 2017, 7, 5135-5142.  doi: 10.1039/C7CY01742A

    61. [61]

      Yang, H.; Miao, J.; Hung, S.; Chen, J.; Tao, H.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene bifunctional electrocatalysts. Sci. Adv. 2016, 2, e1501122.  doi: 10.1126/sciadv.1501122

    62. [62]

      Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng, H. -M. Unique electronic structure induced high photoreactivity of sulfurdoped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642-11648.  doi: 10.1021/ja103798k

    63. [63]

      Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.

    64. [64]

      Patnaik, S.; Sahoo, D. P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 2021, 172, 682-711.  doi: 10.1016/j.carbon.2020.10.073

    65. [65]

      Gu, J.; Magagula, S.; Zhao, J.; Chen, Z. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550.  doi: 10.1002/smtd.201800550

    66. [66]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-3258.  doi: 10.1039/b922733d

    67. [67]

      Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924-931.  doi: 10.1038/s41557-018-0100-1

    68. [68]

      Zhao, Y.; Yang, N.; Yao, H.; Liu, D.; Song, L.; Zhu, J.; Li, S.; Gu, L.; Lin, K.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240-7244.  doi: 10.1021/jacs.8b13695

    69. [69]

      Chen, X.; Ong, W. -J.; Kong, Z.; Zhao, X.; Li, N. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Sci. Bull. 2020, 65, 45-54.  doi: 10.1016/j.scib.2019.10.016

    70. [70]

      Subbaraman, R.; Tripkovic, D.; Chang, K. -C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.  doi: 10.1038/nmat3313

    71. [71]

      Li, S.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J. Mater. Chem. A 2019, 7, 18674-18707.  doi: 10.1039/C9TA04949E

    72. [72]

      Huang, Y.; Zhao, X.; Tang, F.; Zheng, X.; Cheng, W.; Che, W.; Hu, F.; Jiang, Y.; Liu, Q.; Wei, S. Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 3202-3210.  doi: 10.1039/C7TA09412D

    73. [73]

      Tufts, B. J.; Abrahams, I. L.; Caley, C. E.; Lunt, S. R.; Miskelly, G. M.; Sailor, M. J.; Santangelo, P. G.; Lewis, N. S.; Roe, A. L.; Hodgson, K. O. XPS and EXAFS studies of the reactions of cobalt (III) ammine complexes with gallium arsenide surfaces. J. Am. Chem. Soc. 1990, 112, 5123-5136.  doi: 10.1021/ja00169a021

    74. [74]

      Zhao, D.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.  doi: 10.1002/adma.201903545

    75. [75]

      Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S. -Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.  doi: 10.1002/adma.201800128

    76. [76]

      Chen, J.; Dong, C. -L.; Du, Y.; Zhao, D.; Shen, S. Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion. Adv. Mater. Interfaces 2015, 2, 1500280.  doi: 10.1002/admi.201500280

    77. [77]

      Zhao, D.; Chen, J.; Dong, C. -L.; Zhou, W.; Huang, Y. -C.; Mao, S. S.; Guo, L.; Shen, S. Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. J. Catal. 2017, 352, 491-497.  doi: 10.1016/j.jcat.2017.06.020

    78. [78]

      Chen, J.; Dong, C. -L.; Zhao, D.; Huang, Y. -C.; Wang, X.; Samad, L.; Dang, L.; Shearer, M.; Shen, S.; Guo, L. Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv. Mater. 2017, 29, 1606198.  doi: 10.1002/adma.201606198

    79. [79]

      Tang, H.; Ju, T.; Dai, Y.; Wang, M.; Wang, M.; Ma, Y.; Zheng, G. Synthesis and photocatalytic performance of BiOCl/graphene composite with tight interfacial contact and highly exposed (001) facets. Appl. Organomet. Chem. 2022, 36, e6526.

    80. [80]

      Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342-352.  doi: 10.1016/j.carbon.2020.01.038

    81. [81]

      Gao, H.; Yang, H.; Xu, J.; Zhang, S.; Li, J. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small 2018, 14, 1801353.  doi: 10.1002/smll.201801353

    82. [82]

      Zeng, H.; Li, Z.; Li, G.; Cui, X.; Jin, M.; Xie, T.; Liu, L.; Jiang, M.; Zhong, X.; Zhang, Y.; Zhang, H.; Ba, K.; Yan, Z.; Wang, Y.; Song, S.; Huang, K.; Feng, S. Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765.  doi: 10.1002/aenm.202102765

    83. [83]

      Xu, H.; She, X.; Fei, T.; Song, Y.; Liu, D.; Li, H.; Yang, X.; Yang, J.; Li, H.; Song, L. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019, 13, 11294-11302.  doi: 10.1021/acsnano.9b04443

    84. [84]

      Zhu, Y.; Lv, C.; Yin, Z.; Ren, J.; Yang, X.; Dong, C. -L.; Liu, H.; Cai, R.; Huang, Y. -C.; Theis, W.; Shen, S.; Yang, D. A [001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem. Int. Ed. 2020, 59, 868-873.  doi: 10.1002/anie.201911503

    85. [85]

      Han, C.; Du, L.; Konarova, M.; Qi, D. -C.; Phillips, D. L.; Xu, J. Beyond hydrogen evolution: solar-driven, water-donating transfer hydrogenation over platinum/carbon nitride. ACS Catal. 2020, 10, 9227-9235.  doi: 10.1021/acscatal.0c01932

    86. [86]

      Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene. Angew. Chem. Int. Ed. 2017, 56, 7121-7125.  doi: 10.1002/anie.201702430

    87. [87]

      Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.  doi: 10.1038/nmat3087

    88. [88]

      Yao, Y.; Zhu, Y.; Pan, C.; Wang, C.; Hu, S.; Xiao, W.; Chi, X.; Fang, Y.; Yang, J.; Deng, H. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720-8730.  doi: 10.1021/jacs.1c02831

    89. [89]

      Zhong, J.; Wang, J.; Zhou, J. -G.; Mao, B. -H.; Liu, C. -H.; Liu, H. -B.; Li, Y. -L.; Sham, T. -K.; Sun, X. -H.; Wang, S. -D. Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J. Phys. Chem. C 2013, 117, 5931-5936.  doi: 10.1021/jp310013z

    90. [90]

      Ketabi, N.; Tolhurst, T. M.; Leedahl, B.; Liu, H.; Li, Y.; Moewes, A. How functional groups change the electronic structure of graphdiyne: theory and experiment. Carbon 2017, 123, 1-6.  doi: 10.1016/j.carbon.2017.07.037

    91. [91]

      Hu, Y.; Qu, Y.; Zhou, Y.; Wang, Z.; Wang, H.; Yang, B.; Yu, Z.; Wu, Y. Single Pt atom-anchored C3N4: a bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.  doi: 10.1016/j.cej.2021.128749

    92. [92]

      Li, N.; Tan, H.; Ding, X.; Duan, H.; Hu, W.; Li, G.; Ji, Q.; Lu, Y.; Wang, Y.; Hu, F.; Wang, C.; Cheng, W.; Sun, Z.; Yan, W. Phase-mediated robust interfacial electron-coupling over core-shell Co@carbon towards superior overall water splitting. Appl. Catal., B 2020, 266, 118621.  doi: 10.1016/j.apcatb.2020.118621

    93. [93]

      Wang, Y.; Huang, J.; Wang, L.; She, H.; Wang, Q. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.

    94. [94]

      Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.  doi: 10.1038/238037a0

    95. [95]

      Yan, Y.; Zhai, D.; Liu, Y.; Gong, J.; Chen, J.; Zan, P.; Zeng, Z.; Li, S.; Huang, W.; Chen, P. Van Der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 2020, 14, 1185-1195.  doi: 10.1021/acsnano.9b09554

    96. [96]

      Ji, H.; Shao, S.; Yuan, G.; Lu, C.; Feng, K.; Xia, Y.; Lv, X.; Zhong, J.; Xu, H.; Deng, J. Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. J. Energy Chem. 2021, 52, 147-154.  doi: 10.1016/j.jechem.2020.04.024

    97. [97]

      Annamalai, A.; Shinde, P. S.; Subramanian, A.; Kim, J. Y.; Kim, J. H.; Choi, S. H.; Lee, J. S.; Jang, J. S. Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. J. Mater. Chem. A 2015, 3, 5007-5013.  doi: 10.1039/C4TA06315E

    98. [98]

      Shinde, P. S.; Mahadik, M. A.; Lee, S. Y.; Ryu, J.; Choi, S. H.; Jang, J. S. Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2017, 320, 81-92.  doi: 10.1016/j.cej.2017.03.040

    99. [99]

      Zhang, W.; Albero, J.; Xi, L.; Lange, K. M.; Garcia, H.; Wang, X.; Shalom, M. One-pot synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells. ACS Appl. Mater. Interfaces 2017, 9, 32667-32677.  doi: 10.1021/acsami.7b08022

  • 加载中
    1. [1]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    2. [2]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    3. [3]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    6. [6]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    7. [7]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    10. [10]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    14. [14]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    15. [15]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    16. [16]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    17. [17]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    18. [18]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    19. [19]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    20. [20]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

Metrics
  • PDF Downloads(3)
  • Abstract views(271)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return