Soft X-Ray Absorption Spectroscopy of Advanced Two-Dimensional Photo/Electrocatalysts for Water Splitting
- Corresponding author: Jiujun Deng, jjDeng@ujs.edu.cn Jun Zhong, jZhong@suda.edu.cn
Citation: Xiaoxin Lv, Guoqing Li, Gaoteng Zhang, Kun Feng, Jiujun Deng, Jun Zhong. Soft X-Ray Absorption Spectroscopy of Advanced Two-Dimensional Photo/Electrocatalysts for Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(10): 221001. doi: 10.14102/j.cnki.0254-5861.2022-0099
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.
doi: 10.1126/science.1103197
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.
doi: 10.1039/C2CS35266D
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109-2125.
doi: 10.1039/C8CS00542G
Li, Z.; Hu, M.; Wang, P.; Liu, J.; Yao, J.; Li, C. Heterojunction catalyst in electrocatalytic water splitting. Coord. Chem. Rev. 2021, 439, 213953.
doi: 10.1016/j.ccr.2021.213953
Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent advances on water-splitting electrocatalysis mediated by noblemetal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.
doi: 10.1002/aenm.201903120
Yan, Y.; Wang, P.; Lin, J.; Cao, J.; Qi, J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J. Energy Chem. 2021, 58, 446-462.
doi: 10.1016/j.jechem.2020.10.010
Li, C.; Luo, Z.; Wang, T.; Gong, J. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Adv. Mater. 2018, 30, 1707502.
doi: 10.1002/adma.201707502
Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.
doi: 10.1002/aenm.201900624
Zhang, Y.; Wang, D.; Wang, S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 2021, 18, 2104339.
Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585.
doi: 10.1002/aenm.201802585
Di, J.; Yan, C.; Handoko, A. D.; Seh, Z. W.; Li, H.; Liu, Z. Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today 2018, 21, 749-770.
doi: 10.1016/j.mattod.2018.01.034
Zhou, M.; Lou, X. W. D.; Xie, Y. Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 2013, 8, 598-618.
doi: 10.1016/j.nantod.2013.12.002
Deng, D.; Novoselov, K.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
doi: 10.1038/nnano.2015.340
Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T. H.; Choi, W.; Moshfegh, A. Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59-95.
doi: 10.1039/C8EE00886H
Ke, J.; He, F.; Wu, H.; Lyu, S.; Liu, J.; Yang, B.; Li, Z.; Zhang, Q.; Chen, J.; Lei, L. Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 2021, 13, 1-29.
doi: 10.1007/s40820-020-00525-y
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
doi: 10.1021/acsnano.5b05040
Wang, H.; Liu, X.; Niu, P.; Wang, S.; Shi, J.; Li, L. Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter 2020, 2, 1377-1413.
doi: 10.1016/j.matt.2020.04.002
Zhang, Y.; Li, L.; Guo, S. X.; Zhang, X.; Li, F.; Bond, A. M.; Zhang, J. Two-dimensional electrocatalysts for efficient reduction of carbon dioxide. ChemSusChem 2020, 13, 59-77.
doi: 10.1002/cssc.201901794
Yin, T.; Long, L.; Tang, X.; Qiu, M.; Liang, W.; Cao, R.; Zhang, Q.; Wang, D.; Zhang, H. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. 2020, 7, 2001431.
doi: 10.1002/advs.202001431
Qian, W.; Xu, S.; Zhang, X.; Li, C.; Yang, W.; Bowen, C. R.; Yang, Y. Differences and similarities of photocatalysis and electrocatalysis in two-dimensional nanomaterials: strategies, traps, applications and challenges. Nano-Micro Lett. 2021, 13, 1-38.
doi: 10.1007/s40820-020-00525-y
Ling, Z.; Ren, C. E.; Zhao, M. -Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 2014, 111, 16676-16681.
doi: 10.1073/pnas.1414215111
Zhang, X.; Chen, A.; Chen, L.; Zhou, Z. 2D materials bridging experiments and computations for electro/photocatalysis. Adv. Energy Mater. 2022, 12, 2003841.
doi: 10.1002/aenm.202003841
Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623-636.
doi: 10.1039/C4CS00236A
Yi, J.; El-Alami, W.; Song, Y.; Li, H.; Ajayan, P. M.; Xu, H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem. Eng. J. 2020, 382, 122812.
doi: 10.1016/j.cej.2019.122812
Boumeriame, H.; Da Silva, E. S.; Cherevan, A. S.; Chafik, T.; Faria, J. L.; Eder, D. Layered double hydroxide (LDH)-based materials: a minireview on strategies to improve the performance for photocatalytic water splitting. J. Energy Chem. 2022, 64, 406-431.
doi: 10.1016/j.jechem.2021.04.050
Zhao, D.; Wang, Y.; Dong, C. -L.; Huang, Y. -C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388-397.
doi: 10.1038/s41560-021-00795-9
Yuan, Z.; Li, J.; Yang, M.; Fang, Z.; Jian, J.; Yu, D.; Chen, X.; Dai, L. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 4972-4979.
doi: 10.1021/jacs.9b00154
Li, S.; Zhang, Y.; Huang, H. Black phosphorus-based heterostructures for photocatalysis and photoelectrochemical water splitting. J. Energy Chem. 2022, 67, 745-779.
doi: 10.1016/j.jechem.2021.11.023
Luo, C.; Wang, C.; Wu, X.; Zhang, J.; Chu, J. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.
doi: 10.1002/smll.201604259
Fang, L.; Seifert, S.; Winans, R. E.; Li, T. Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small 2022, 18, 2106017.
doi: 10.1002/smll.202106017
Smith, J. W.; Saykally, R. J. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 2017, 117, 13909-13934.
doi: 10.1021/acs.chemrev.7b00213
Timoshenko, J.; Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2020, 121, 882-961.
Zhong, J.; Zhang, H.; Sun, X.; Lee, S. T. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Adv. Mater. 2014, 26, 7786-7806.
doi: 10.1002/adma.201304507
Deng, J.; Zhang, Q.; Lv, X.; Zhang, D.; Xu, H.; Ma, D.; Zhong, J. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 2020, 5, 975-993.
doi: 10.1021/acsenergylett.9b02757
Liu, X.; Weng, T. -C. Synchrotron-based X-ray absorption spectroscopy for energy materials. MRS Bull. 2016, 41, 466-472.
doi: 10.1557/mrs.2016.113
Cho, S.; Jang, J. -W.; Lee, K. -H.; Lee, J. S. Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater. 2014, 2, 010703.
doi: 10.1063/1.4861798
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.
doi: 10.1039/C3CS60378D
Li, P.; Zhao, G.; Cui, P.; Cheng, N.; Lao, M.; Xu, X.; Dou, S. X.; Sun, W. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850.
doi: 10.1016/j.nanoen.2021.105850
Weng, Q.; Kvashnin, D. G.; Wang, X.; Cretu, O.; Yang, Y.; Zhou, M.; Zhang, C.; Tang, D. M.; Sorokin, P. B.; Bando, Y. Tuning of the optical, electronic, and magnetic properties of boron nitride nanosheets with oxygen doping and functionalization. Adv. Mater. 2017, 29, 1700695.
doi: 10.1002/adma.201700695
Wang, B.; Chu, S.; Zheng, L.; Li, X.; Zhang, J.; Zhang, F. Application of X-ray absorption spectroscopy in electrocatalytic water splitting and CO2 reduction. Small Sci. 2021, 1, 2100023.
doi: 10.1002/smsc.202100023
Timoshenko, J.; Cuenya, B. R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 2021, 121, 882-961.
doi: 10.1021/acs.chemrev.0c00396
Chen, M.; Chou, S. L.; Dou, S. X. Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2019, 2, 842-851.
doi: 10.1002/batt.201900054
Nagasaka, M.; Kosugi, N. Soft X-ray absorption spectroscopy for observing element-specific intermolecular interaction in solution chemistry. Chem. Lett. 2021, 50, 956-964.
doi: 10.1246/cl.200938
Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021-3026.
doi: 10.1021/jacs.6b11878
Zhao, J.; Zhang, J. J.; Li, Z. Y.; Bu, X. H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction. Small 2020, 16, 2003916.
doi: 10.1002/smll.202003916
Gong, L.; Yang, H.; Douka, A. I.; Yan, Y.; Xia, B. Y. Recent progress on NiFe-based electrocatalysts for alkaline oxygen evolution. Adv. Sustain. Syst. 2021, 5, 2000136.
doi: 10.1002/adsu.202000136
Stevens, M. B.; Trang, C. D.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.
doi: 10.1021/jacs.7b07117
Ahn, H. S.; Bard, A. J. Surface Interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: kinetics of the "fast" iron sites. J. Am. Chem. Soc. 2016, 138, 313-318.
doi: 10.1021/jacs.5b10977
Louie, M. W.; Bell, A. T. An Investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
doi: 10.1021/ja405351s
Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. -J.; Sokaras, D.; Weng, T. -C.; Alonso-Mori, R. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
doi: 10.1021/ja511559d
Chen, J. Y.; Dang, L.; Liang, H.; Bi, W.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090-15093.
doi: 10.1021/jacs.5b10699
Chen, S.; Kang, Z.; Zhang, X.; Xie, J.; Wang, H.; Shao, W.; Zheng, X.; Yan, W.; Pan, B.; Xie, Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electrocatalytic oxygen evolution. ACS Cent. Sci. 2017, 3, 1221-1227.
doi: 10.1021/acscentsci.7b00424
Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213-226.
doi: 10.1016/j.mattod.2015.10.006
Dionigi, F.; Zhu, J.; Zeng, Z.; Merzdorf, T.; Sarodnik, H.; Gliech, M.; Pan, L.; Li, W. -X.; Greeley, J.; Strasser, P. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides. Angew. Chem. Int. Ed. 2021, 60, 14446-14457.
doi: 10.1002/anie.202100631
Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.
doi: 10.1002/aenm.201703585
Kang, J.; Qiu, X.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wan, C.; Liu, L. -M.; Duan, X.; Guo, L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 2021, 4, 1050-1058.
doi: 10.1038/s41929-021-00715-w
Li, R.; Yang, S.; Zhang, Y.; Yu, G.; Wang, C.; Chen, C.; Wu, G.; Sun, R.; Wang, G.; Zheng, X. Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Rep. Phys. Sci. 2022, 3, 100788.
doi: 10.1016/j.xcrp.2022.100788
Kuai, C.; Zhang, Y.; Han, L.; Xin, H. L.; Sun, C. -J.; Nordlund, D.; Qiao, S.; Du, X. -W.; Lin, F. Creating compressive stress at the NiOOH/ NiO interface for water oxidation. J. Mater. Chem. A 2020, 8, 10747-10754.
doi: 10.1039/D0TA04244G
Rabchinskii, M. K.; Saveliev, S. D.; Stolyarova, D. Y.; Brzhezinskaya, M.; Kirilenko, D. A.; Baidakova, M. V.; Ryzhkov, S. A.; Shnitov, V. V.; Sysoev, V. V.; Brunkov, P. N. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon 2021, 182, 593-604.
doi: 10.1016/j.carbon.2021.06.057
Zhao, B.; Feng, K.; Wang, Y.; Lv, X.; Zheng, H.; Ma, Y.; Yan, W.; Sun, X.; Zhong, J. PtXNi10−XO nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane. Catal. Sci. Technol. 2017, 7, 5135-5142.
doi: 10.1039/C7CY01742A
Yang, H.; Miao, J.; Hung, S.; Chen, J.; Tao, H.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene bifunctional electrocatalysts. Sci. Adv. 2016, 2, e1501122.
doi: 10.1126/sciadv.1501122
Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng, H. -M. Unique electronic structure induced high photoreactivity of sulfurdoped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642-11648.
doi: 10.1021/ja103798k
Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.
Patnaik, S.; Sahoo, D. P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: a review. Carbon 2021, 172, 682-711.
doi: 10.1016/j.carbon.2020.10.073
Gu, J.; Magagula, S.; Zhao, J.; Chen, Z. Boosting ORR/OER activity of graphdiyne by simple heteroatom doping. Small Methods 2019, 3, 1800550.
doi: 10.1002/smtd.201800550
Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-3258.
doi: 10.1039/b922733d
Zhao, Y.; Wan, J.; Yao, H.; Zhang, L.; Lin, K.; Wang, L.; Yang, N.; Liu, D.; Song, L.; Zhu, J. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924-931.
doi: 10.1038/s41557-018-0100-1
Zhao, Y.; Yang, N.; Yao, H.; Liu, D.; Song, L.; Zhu, J.; Li, S.; Gu, L.; Lin, K.; Wang, D. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240-7244.
doi: 10.1021/jacs.8b13695
Chen, X.; Ong, W. -J.; Kong, Z.; Zhao, X.; Li, N. Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Sci. Bull. 2020, 65, 45-54.
doi: 10.1016/j.scib.2019.10.016
Subbaraman, R.; Tripkovic, D.; Chang, K. -C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550-557.
doi: 10.1038/nmat3313
Li, S.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J. Mater. Chem. A 2019, 7, 18674-18707.
doi: 10.1039/C9TA04949E
Huang, Y.; Zhao, X.; Tang, F.; Zheng, X.; Cheng, W.; Che, W.; Hu, F.; Jiang, Y.; Liu, Q.; Wei, S. Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation. J. Mater. Chem. A 2018, 6, 3202-3210.
doi: 10.1039/C7TA09412D
Tufts, B. J.; Abrahams, I. L.; Caley, C. E.; Lunt, S. R.; Miskelly, G. M.; Sailor, M. J.; Santangelo, P. G.; Lewis, N. S.; Roe, A. L.; Hodgson, K. O. XPS and EXAFS studies of the reactions of cobalt (III) ammine complexes with gallium arsenide surfaces. J. Am. Chem. Soc. 1990, 112, 5123-5136.
doi: 10.1021/ja00169a021
Zhao, D.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z.; Li, S.; Guo, L.; Shen, S. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.
doi: 10.1002/adma.201903545
Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S. -Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.
doi: 10.1002/adma.201800128
Chen, J.; Dong, C. -L.; Du, Y.; Zhao, D.; Shen, S. Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion. Adv. Mater. Interfaces 2015, 2, 1500280.
doi: 10.1002/admi.201500280
Zhao, D.; Chen, J.; Dong, C. -L.; Zhou, W.; Huang, Y. -C.; Mao, S. S.; Guo, L.; Shen, S. Interlayer interaction in ultrathin nanosheets of graphitic carbon nitride for efficient photocatalytic hydrogen evolution. J. Catal. 2017, 352, 491-497.
doi: 10.1016/j.jcat.2017.06.020
Chen, J.; Dong, C. -L.; Zhao, D.; Huang, Y. -C.; Wang, X.; Samad, L.; Dang, L.; Shearer, M.; Shen, S.; Guo, L. Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv. Mater. 2017, 29, 1606198.
doi: 10.1002/adma.201606198
Tang, H.; Ju, T.; Dai, Y.; Wang, M.; Wang, M.; Ma, Y.; Zheng, G. Synthesis and photocatalytic performance of BiOCl/graphene composite with tight interfacial contact and highly exposed (001) facets. Appl. Organomet. Chem. 2022, 36, e6526.
Lu, M.; Li, Q.; Zhang, C.; Fan, X.; Li, L.; Dong, Y.; Chen, G.; Shi, H. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342-352.
doi: 10.1016/j.carbon.2020.01.038
Gao, H.; Yang, H.; Xu, J.; Zhang, S.; Li, J. Strongly coupled g-C3N4 nanosheets-Co3O4 quantum dots as 2D/0D heterostructure composite for peroxymonosulfate activation. Small 2018, 14, 1801353.
doi: 10.1002/smll.201801353
Zeng, H.; Li, Z.; Li, G.; Cui, X.; Jin, M.; Xie, T.; Liu, L.; Jiang, M.; Zhong, X.; Zhang, Y.; Zhang, H.; Ba, K.; Yan, Z.; Wang, Y.; Song, S.; Huang, K.; Feng, S. Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765.
doi: 10.1002/aenm.202102765
Xu, H.; She, X.; Fei, T.; Song, Y.; Liu, D.; Li, H.; Yang, X.; Yang, J.; Li, H.; Song, L. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019, 13, 11294-11302.
doi: 10.1021/acsnano.9b04443
Zhu, Y.; Lv, C.; Yin, Z.; Ren, J.; Yang, X.; Dong, C. -L.; Liu, H.; Cai, R.; Huang, Y. -C.; Theis, W.; Shen, S.; Yang, D. A [001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem. Int. Ed. 2020, 59, 868-873.
doi: 10.1002/anie.201911503
Han, C.; Du, L.; Konarova, M.; Qi, D. -C.; Phillips, D. L.; Xu, J. Beyond hydrogen evolution: solar-driven, water-donating transfer hydrogenation over platinum/carbon nitride. ACS Catal. 2020, 10, 9227-9235.
doi: 10.1021/acscatal.0c01932
Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-decorated graphene. Angew. Chem. Int. Ed. 2017, 56, 7121-7125.
doi: 10.1002/anie.201702430
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
doi: 10.1038/nmat3087
Yao, Y.; Zhu, Y.; Pan, C.; Wang, C.; Hu, S.; Xiao, W.; Chi, X.; Fang, Y.; Yang, J.; Deng, H. Interfacial sp C-O-Mo hybridization originated high-current density hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 8720-8730.
doi: 10.1021/jacs.1c02831
Zhong, J.; Wang, J.; Zhou, J. -G.; Mao, B. -H.; Liu, C. -H.; Liu, H. -B.; Li, Y. -L.; Sham, T. -K.; Sun, X. -H.; Wang, S. -D. Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. J. Phys. Chem. C 2013, 117, 5931-5936.
doi: 10.1021/jp310013z
Ketabi, N.; Tolhurst, T. M.; Leedahl, B.; Liu, H.; Li, Y.; Moewes, A. How functional groups change the electronic structure of graphdiyne: theory and experiment. Carbon 2017, 123, 1-6.
doi: 10.1016/j.carbon.2017.07.037
Hu, Y.; Qu, Y.; Zhou, Y.; Wang, Z.; Wang, H.; Yang, B.; Yu, Z.; Wu, Y. Single Pt atom-anchored C3N4: a bridging Pt-N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.
doi: 10.1016/j.cej.2021.128749
Li, N.; Tan, H.; Ding, X.; Duan, H.; Hu, W.; Li, G.; Ji, Q.; Lu, Y.; Wang, Y.; Hu, F.; Wang, C.; Cheng, W.; Sun, Z.; Yan, W. Phase-mediated robust interfacial electron-coupling over core-shell Co@carbon towards superior overall water splitting. Appl. Catal., B 2020, 266, 118621.
doi: 10.1016/j.apcatb.2020.118621
Wang, Y.; Huang, J.; Wang, L.; She, H.; Wang, Q. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
doi: 10.1038/238037a0
Yan, Y.; Zhai, D.; Liu, Y.; Gong, J.; Chen, J.; Zan, P.; Zeng, Z.; Li, S.; Huang, W.; Chen, P. Van Der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 2020, 14, 1185-1195.
doi: 10.1021/acsnano.9b09554
Ji, H.; Shao, S.; Yuan, G.; Lu, C.; Feng, K.; Xia, Y.; Lv, X.; Zhong, J.; Xu, H.; Deng, J. Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. J. Energy Chem. 2021, 52, 147-154.
doi: 10.1016/j.jechem.2020.04.024
Annamalai, A.; Shinde, P. S.; Subramanian, A.; Kim, J. Y.; Kim, J. H.; Choi, S. H.; Lee, J. S.; Jang, J. S. Bifunctional TiO2 underlayer for α-Fe2O3 nanorod based photoelectrochemical cells: enhanced interface and Ti4+ doping. J. Mater. Chem. A 2015, 3, 5007-5013.
doi: 10.1039/C4TA06315E
Shinde, P. S.; Mahadik, M. A.; Lee, S. Y.; Ryu, J.; Choi, S. H.; Jang, J. S. Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2017, 320, 81-92.
doi: 10.1016/j.cej.2017.03.040
Zhang, W.; Albero, J.; Xi, L.; Lange, K. M.; Garcia, H.; Wang, X.; Shalom, M. One-pot synthesis of nickel-modified carbon nitride layers toward efficient photoelectrochemical cells. ACS Appl. Mater. Interfaces 2017, 9, 32667-32677.
doi: 10.1021/acsami.7b08022
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Lu Qi , Zhaoyang Chen , Xiaoyu Luan , Zhiqiang Zheng , Yurui Xue , Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805