Citation: Wei Qiao, Xingyu Huang, Ligang Feng. Advances of PtRu-Based Electrocatalysts for Methanol Oxidation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220701. doi: 10.14102/j.cnki.0254-5861.2022-0098 shu

Advances of PtRu-Based Electrocatalysts for Methanol Oxidation




  • Author Bio: Wei Qiao received his B.S. degree at the Inner Mongolia University of Technology in 2015. He is currently an M.S. candidate in the School of Chemistry and Chemical Engineering, Yangzhou University, supervised by Prof. Ligang Feng. His current research interests include the synthesis of platinum-based catalysts and electrochemistry for water splitting reactions and small molecule oxidation
    Xingyu Huang received her B.S. degree in pharmaceutical engineering from Xiangnan University in 2021. Now she is pursuing a master's degree supervised by Prof. Ligang Feng, at the School of Chemistry and Chemical Engineering, Yangzhou University. Her current research interests are focusing on non-noble metal-based catalysts for electrochemical applications
    Ligang Feng, Professor, obtained his Ph.D. degree from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2011. After performing postdoctoral research at Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Chalmers University of Technology from 2012 to 2016, he started a professorship in April 2016 at Yangzhou University. His research interests focus on energy conversion and storage, particularly novel and cost-effective catalyst material from earth-abundant materials and their applications in fuel cells and water splitting
  • Corresponding author: Ligang Feng, ligang.feng@yzu.edu.cn, fenglg11@gmail.com
  • Received Date: 29 April 2022
    Accepted Date: 10 May 2022
    Available Online: 24 May 2022

Figures(9)

  • Platinum-Ruthenium (PtRu)-based materials are considered the "holy grail" of electrocatalysts for methanol oxidation reaction (MOR) in the fuel cells technique. However, to the best of our knowledge, the exhaustive review report on the advance of PtRu materials for methanol oxidation is rarely summarized for the recent novel achievements. Herein, we summarize and discuss the latest progress of PtRu-based catalysts in MOR. The reaction mechanism of MOR is firstly introduced, and the promotion mechanism is revealed by the relevant activity descriptor, the in-situ spectroscopic analysis and the theoretical calculation. Subsequently, some advanced regulation strategies of PtRu-based catalysts are concluded, including support engineering, morphology design and surface interface regulation. Finally, the challenges and opportunities to improve the MOR performance of PtRu-based electrocatalysts are prospected to further promote the widespread application of PtRu-based catalysts in electrocatalytic systems. It is concluded that many efforts are still required to decipher the atomic scale structure-activity relationship and the structural changes of atoms and electrons in the reaction process by advanced strategies and characterization methods. Hopefully, this review can be helpful for novel PtRu-based catalyst development and understanding their correlation to the structure and performance of energy-relevant electrocatalysis.
  • 加载中
    1. [1]

      Liu, E.; Jiao, L.; Li, J.; Stracensky, T.; Sun, Q.; Mukerjee, S.; Jia, Q. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energ. Environ. Sci. 2020, 13, 3064-3074.  doi: 10.1039/D0EE01754J

    2. [2]

      Hamo, E. R.; Singh, R. K.; Douglin, J. C.; Chen, S.; Hassine, M. B.; Carbo-Argibay, E.; Lu, S.; Wang, H.; Ferreira, P. J.; Rosen, B. A.; Dekel, D. R. Carbide-supported PtRu catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal. 2021, 11, 932-947.  doi: 10.1021/acscatal.0c03973

    3. [3]

      Zhang, Z.; Liu, J.; Wang, J.; Wang, Q.; Wang, Y.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z.; Lim, J.; Zhao, T.; Ciucci, F. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 2021, 12, 5235.  doi: 10.1038/s41467-021-25562-y

    4. [4]

      Jiang, B.; Li, C.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575-1581.  doi: 10.1039/C5SC03779D

    5. [5]

      Fang, B.; Liu, Z.; Bao, Y.; Feng, L. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259-2262.  doi: 10.1016/j.cclet.2020.02.045

    6. [6]

      Zhou, Y.; Liu, D.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.  doi: 10.1016/j.mtphys.2021.100357

    7. [7]

      Zhan, X.; Zhan, Y.; Du, C.; Li, C.; Yu, H.; Lin, C. Electrochemical catalytic properties of Pt/FeSnO(OH)5 towards methanol oxidation. Chin. J. Struct. Chem. 2018, 37, 1585-1595.

    8. [8]

      Jiang, B.; Li, C.; Tang, J.; Takei, T.; Kim, J.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 10037-10041.  doi: 10.1002/anie.201603967

    9. [9]

      Tang, J.; Zhang, X.; Yu, S.; Wang, S.; Sun, G. Performance and mechanism of PtxCuy/C electrocatalyst for methanol oxidation. J. Electrochem. 2021, 27, 508-517.

    10. [10]

      Zhang, Y.; Li, J.; Zhao, L.; Sui, X.; Zhou, Q.; Gong, X.; Cai, J.; Li, J.; Gu, D.; Wang, Z. Nitrogen doped carbon coated Mo modified TiO2 nanowires (NC@MTNWs-FI) with functionalized interfacial as advanced PtRu catalyst support for methanol electrooxidation. Electrochim. Acta 2020, 331, 135410.  doi: 10.1016/j.electacta.2019.135410

    11. [11]

      Lee, D.; Choi, D.; Lee, M.; Jin, H.; Lee, S.; Jang, I.; Park, H.; Jang, J.; Kim, H.; Lee, K.; Yoo, S. Tailoring of Pt island RuO2/C catalysts by galvanic replacement to achieve superior hydrogen oxidation reaction and CO poisoning resistance. ACS Appl. Energ. Mater. 2021, 4, 8098-8107.  doi: 10.1021/acsaem.1c01397

    12. [12]

      Bai, X.; Geng, J.; Zhao, S.; Li, H.; Li, F. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046-23050.  doi: 10.1021/acsami.0c06460

    13. [13]

      Yang, T.; Qin, F.; Zhang, S.; Rong, H.; Chen, W.; Zhang, J. Atomically dispersed Ru in Pt3Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chem. Commun. 2021, 57, 2164-2167.  doi: 10.1039/D0CC08210D

    14. [14]

      Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z.; Sheng, W.; Chen, J. G.; Yan, Y. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal. 2015, 5, 1468-1474.  doi: 10.1021/cs501449y

    15. [15]

      Lu, S.; Eid, K.; Ge, D.; Guo, J.; Wang, L.; Wang, H.; Gu, H. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033-1039.  doi: 10.1039/C6NR08895C

    16. [16]

      Xiao, M.; Feng, L.; Zhu, J.; Liu, C.; Xing, W. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale 2015, 7, 9467-9471.  doi: 10.1039/C5NR00639B

    17. [17]

      Moura, A. S.; Fajín, J. L. C.; Mandado, M.; Cordeiro, M. N. D. S. Ruthenium-platinum catalysts and direct methanol fuel Cells (DMFC): a review of theoretical and experimental breakthroughs. Catalysts 2017, 7, 47.  doi: 10.3390/catal7020047

    18. [18]

      Petrii, O. A. Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem. 2008, 12, 609.  doi: 10.1007/s10008-007-0500-4

    19. [19]

      Tolmachev, Y. V.; Petrii, O. A. Pt-Ru electrocatalysts for fuel cells: developments in the last decade. J. Solid State Electrochem. 2017, 21, 613-639.  doi: 10.1007/s10008-016-3382-5

    20. [20]

      Yuda, A.; Ashok, A.; Kumar, A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. 2022, 64, 126-228.  doi: 10.1080/01614940.2020.1802811

    21. [21]

      Ding, X.; Li, M.; Jin, J.; Huang, X.; Wu, X.; Feng, L. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022, 33, 2687-2691.  doi: 10.1016/j.cclet.2021.09.076

    22. [22]

      Tritsaris, G. A.; Rossmeisl, J. Methanol oxidation on model elemental and bimetallic transition metal surfaces. J. Phys. Chem. C 2012, 116, 11980-11986.  doi: 10.1021/jp209506d

    23. [23]

      Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381-14389.  doi: 10.1021/ja904010u

    24. [24]

      Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cells. Energ. Environ. Sci. 2012, 5, 8335-8342.  doi: 10.1039/c2ee21455e

    25. [25]

      Ferrin, P.; Nilekar, A. U.; Greeley, J.; Mavrikakis, M.; Rossmeisl, J. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 2008, 602, 3424-3431.  doi: 10.1016/j.susc.2008.08.011

    26. [26]

      Lee, M.; Kang, J.; Kang, Y.; Chung, D.; Shin, H.; Ahn, C.; Park, S.; Kim, M.; Kim, S.; Lee, K.; Sung, Y. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 2016, 6, 2398-2407.  doi: 10.1021/acscatal.5b02580

    27. [27]

      Ravichandran, S.; Bhuvanendran, N.; Xu, Q.; Maiyalagan, T.; Su, H. Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content. Electrochim. Acta 2021, 394, 139148.  doi: 10.1016/j.electacta.2021.139148

    28. [28]

      Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 275-283.  doi: 10.1016/S0022-0728(75)80262-2

    29. [29]

      Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅱ. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 267-273.  doi: 10.1016/S0022-0728(75)80261-0

    30. [30]

      Tong, Y.; Yan, X.; Liang, J.; Dou, S. Metal-based electrocatalysts for methanol electro-oxidation: progress, opportunities, and challenges. Small 2021, 17, 1904126.  doi: 10.1002/smll.201904126

    31. [31]

      Zhou, Y.; Chen, Y.; Jiang, K.; Liu, Z.; Mao, Z.; Zhang, W.; Lin, W.; Cai, W. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Appl. Catal. B: Environ. 2021, 280, 119393.  doi: 10.1016/j.apcatb.2020.119393

    32. [32]

      Huttunen, P. K.; Labadini, D.; Hafiz, S. S.; Gokalp, S.; Wolff, E. P.; Martell, S. M.; Foster, M. DRIFTS investigation of methanol oxidation on CeO2 nanoparticles. Appl. Surf. Sci. 2021, 554, 149518.  doi: 10.1016/j.apsusc.2021.149518

    33. [33]

      Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Jiang, Y.; Sun, S. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance. Appl. Catal. B: Environ. 2020, 263, 118345.  doi: 10.1016/j.apcatb.2019.118345

    34. [34]

      Liu, H.; Tian, N.; Brandon, M. P.; Zhou, Z.; Lin, J.; Hardacre, C.; Lin, W.; Sun, S. Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation. ACS Catal. 2012, 2, 708-715.  doi: 10.1021/cs200686a

    35. [35]

      Scott, F. J.; Roth, C.; Ramaker, D. E. Kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando X-ray absorption near edge spectroscopy. J. Phys. Chem. C 2007, 111, 11403-11413.  doi: 10.1021/jp072698+

    36. [36]

      Pelliccione, C. J.; Timofeeva, E. V.; Katsoudas, J. P.; Segre, C. U. In situ Ru K-edge X-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst. J. Phys. Chem. C 2013, 117, 18904-18912.  doi: 10.1021/jp404342z

    37. [37]

      Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338-12376.  doi: 10.1039/D1CS00590A

    38. [38]

      Yan, D.; Kristoffersen, H. H.; Pedersen, J. K.; Rossmeisl, J. Rationally tailoring catalysts for the CO oxidation reaction by using DFT calculations. ACS Catal. 2022, 12, 116-125.  doi: 10.1021/acscatal.1c04331

    39. [39]

      Baz, A.; Holewinski, A. Understanding the interplay of bifunctional and electronic effects: microkinetic modeling of the CO electro-oxidation reaction. J. Catal. 2020, 384, 1-13.  doi: 10.1016/j.jcat.2020.02.003

    40. [40]

      Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; Shao, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.  doi: 10.1038/s41929-021-00663-5

    41. [41]

      He, Q.; Zhou, Y.; Shou, H.; Wang, X.; Zhang, P.; Xu, W.; Qiao, S.; Wu, C.; Liu, H.; Liu, D.; Chen, S.; Long, R.; Qi, Z.; Wu, X.; Song, L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, n/a, 2110604.

    42. [42]

      Du, X.; Lang, Y.; Cao, K.; Yang, J.; Cai, J.; Shan, B.; Chen, R. Bifunctionally faceted Pt/Ru nanoparticles for preferential oxidation of CO in H2. J. Catal. 2021, 396, 148-156.  doi: 10.1016/j.jcat.2021.02.010

    43. [43]

      Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M.; Miller, B. K.; O'Mara, P. B.; Benedetti, T. M.; Huber, D. L.; Zhang, W.; Smith, S. C.; Gooding, J. J.; Schuhmann, W.; Tilley, R. D. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231-237.  doi: 10.1038/s41929-022-00756-9

    44. [44]

      Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154-9196.  doi: 10.1039/D0CS00575D

    45. [45]

      Damte, J. Y.; Lyu, S. L.; Leggesse, E. G.; Jiang, J. C. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst. Phys. Chem. Chem. Phys. 2018, 20, 9355-9363.  doi: 10.1039/C7CP07618E

    46. [46]

      Ding, Q.; Xu, W.; Sang, P.; Xu, J.; Zhao, L.; He, X.; Guo, W. Insight into the reaction mechanisms of methanol on PtRu/Pt(111): a density functional study. Appl. Surf. Sci. 2016, 369, 257-266.  doi: 10.1016/j.apsusc.2015.11.104

    47. [47]

      Ou, H.; Wang, D.; Li, Y. How to select effective electrocatalysts: nano or single atom? Nano Select. 2021, 2, 492-511.  doi: 10.1002/nano.202000239

    48. [48]

      Fang, B.; Feng, L. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.  doi: 10.3866/PKU.WHXB201905023

    49. [49]

      Han, J.; Yang, L.; Yang, L.; Jiang, W.; Luo, X.; Luo, S. PtRu nanoalloys loaded on graphene and TiO2 nanotubes co-modified Ti wire as an active and stable methanol oxidation electrocatalyst. Int. J. Hydrogen Energy 2018, 43, 7338-7346.  doi: 10.1016/j.ijhydene.2018.02.176

    50. [50]

      Zhu, X.; Hu, Z.; Huang, M.; Zhao, Y.; Qu, J.; Hu, S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction. Chin. Chem. Lett. 2021, 32, 2033-2037.  doi: 10.1016/j.cclet.2020.11.071

    51. [51]

      Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311-322.  doi: 10.1021/acs.accounts.0c00488

    52. [52]

      Yang, X.; Xue, J.; Feng, L. Pt nanoparticles anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. 2019, 55, 11247-11250.  doi: 10.1039/C9CC06004A

    53. [53]

      Xue, J.; Wu, X.; Feng, L. Pt/Mn3O4 cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chem. Commun. 2022, 58, 2371-2374.  doi: 10.1039/D2CC00105E

    54. [54]

      Zha, M.; Liu, Z.; Wang, Q.; Hu, G.; Feng, L. Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem. Commun. 2021, 57, 199-202.  doi: 10.1039/D0CC06386J

    55. [55]

      Li, J.; Chang, Y.; Li, D.; Feng, L.; Zhang, B. Efficient synergism of V2O5 and Pd for alkaline methanol electrooxidation. Chem. Commun. 2021, 57, 7035-7038.  doi: 10.1039/D1CC02934G

    56. [56]

      Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808-1825.  doi: 10.1039/C6TA08580F

    57. [57]

      Hillenbrand, L. J.; Lacksonen, J. W. The platinum-on-carbon catalyst system for hydrogen anodes. J. Electrochem. Soc. 1965, 112, 249.  doi: 10.1149/1.2423517

    58. [58]

      Baruah, B.; Deb, P. Performance and application of carbon-based electrocatalysts in direct methanol fuel cell. Mater. Adv. 2021, 2, 5344-5364.  doi: 10.1039/D1MA00503K

    59. [59]

      Li, D.; Zha, M.; Feng, L.; Hu, G.; Hu, C.; Wu, X.; Wang, X. Increased crystallinity of RuSe2/carbon nanotubes for enhanced electrochemical hydrogen generation performance. Nanoscale 2022, 14, 790-796.  doi: 10.1039/D1NR07254D

    60. [60]

      Lan, G.; Yang, J.; Ye, R.; Boyjoo, Y.; Liang, J.; Liu, X.; Li, Y.; Liu, J.; Qian, K. Sustainable carbon materials toward emerging applications. Small Methods 2021, 5, 2001250.  doi: 10.1002/smtd.202001250

    61. [61]

      Zhang, X.; Ma, J.; Yan, R.; Cheng, W.; Zheng, J.; Jin, B. Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation. J. Alloy. Compd. 2021, 867, 159017.  doi: 10.1016/j.jallcom.2021.159017

    62. [62]

      Zhang, B.; Chen, S.; Wulan, B.; Zhang, J. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.  doi: 10.1016/j.cej.2021.130003

    63. [63]

      Zhang, K.; Wang, H.; Qiu, J.; Wu, J.; Wang, H.; Shao, J.; Deng, Y.; Yan, L. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. Chem. Eng. J. 2021, 421, 127786.  doi: 10.1016/j.cej.2020.127786

    64. [64]

      Peera, S. G.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S. O.; Liu, C.; Sahu, A. K. Carbon nanofibers as potential catalyst support for fuel cell cathodes: a review. Energ. Fuel. 2021, 35, 11761-11799.  doi: 10.1021/acs.energyfuels.1c01439

    65. [65]

      Wang, G.; Sun, G.; Wang, Q.; Wang, S.; Sun, H.; Xin, Q. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int. J. Hydrogen Energy 2010, 35, 11245-11253.  doi: 10.1016/j.ijhydene.2010.07.045

    66. [66]

      Park, K. C.; Jang, I. Y.; Wongwiriyapan, W.; Morimoto, S.; Kim, Y. J.; Jung, Y. C.; Toya, T.; Endo, M. Carbon-supported Pt-Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor-support interaction. J. Mater. Chem. 2010, 20, 5345-5354.  doi: 10.1039/b923153f

    67. [67]

      de la Fuente, J. L. G.; Martínez-Huerta, M. V.; Rojas, S.; Terreros, P. Fierro, J. L. G.; Peña, M. A. Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catal. Today 2006, 116, 422-432.  doi: 10.1016/j.cattod.2006.05.083

    68. [68]

      Wu, G.; Xu, B. Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi- and single-walled carbon nanotubes. J. Power Sources 2007, 174, 148-158.  doi: 10.1016/j.jpowsour.2007.08.024

    69. [69]

      Zhao, Y.; Fan, L.; Ren, J.; Hong, B. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell. Int. J. Hydrogen Energy 2014, 39, 4544-4557.  doi: 10.1016/j.ijhydene.2013.12.202

    70. [70]

      Kour, R.; Arya, S.; Young, S.; Gupta, V.; Bandhoria, P.; Khosla, A. Review-recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 037555.  doi: 10.1149/1945-7111/ab6bc4

    71. [71]

      Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744-4822.  doi: 10.1021/cr500304f

    72. [72]

      Cui, Y.; Xu, J.; Wang, M.; Guan, L. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.

    73. [73]

      Li, W.; Wang, X.; Chen, Z.; Waje, M.; Yan, Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J. Phys. Chem. B 2006, 110, 15353-15358.  doi: 10.1021/jp0623443

    74. [74]

      Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed. 2009, 48, 4751-4754.  doi: 10.1002/anie.200900899

    75. [75]

      Zhou, Y.; Yang, G.; Pan, H.; Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Cheng, X.; Yang, J.; Wai, C.; Lin, Y. Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt-Ru nanoparticles for effective methanol oxidation. J. Mater. Chem. A 2015, 3, 8459-8465.  doi: 10.1039/C5TA00695C

    76. [76]

      Cui, Z.; Liu, C.; Liao, J.; Xing, W. Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation. Electrochim. Acta 2008, 53, 7807-7811.  doi: 10.1016/j.electacta.2008.05.003

    77. [77]

      Pan, C.; Li, Y.; Ma, Y.; Zhao, X.; Zhang, Q. Platinum-antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells. J. Power Sources 2011, 196, 6228-6231.  doi: 10.1016/j.jpowsour.2011.03.027

    78. [78]

      Xiao, Y.; Zhan, G.; Fu, Z.; Pan, Z.; Xiao, C.; Wu, S.; Chen, C.; Hu, G.; Wei, Z. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochim. Acta 2014, 141, 279-285.  doi: 10.1016/j.electacta.2014.07.070

    79. [79]

      Kaur, A.; Kaur, G.; Singh, P. P. Kaushal, S. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: a review. Int. J. Hydrogen Energy 2021, 46, 15820-15849.  doi: 10.1016/j.ijhydene.2021.02.037

    80. [80]

      Su, H.; Hu, Y. Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 2021, 9, 958-983.  doi: 10.1002/ese3.833

    81. [81]

      Bao, Y.; Feng, L. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. -Chim. Sin. 2021, 37, 2008031.

    82. [82]

      Gu, X.; Yang, X.; Feng, L. An efficient RuTe2/graphene catalyst for electrochemical hydrogen evolution reaction in acid electrolyte. Chem. Asian J. 2020, 15, 2886-2891.  doi: 10.1002/asia.202000734

    83. [83]

      Sun, Y.; Huang, J. Improvement of the selectivity for hydrogen peroxide production via the synergy of TiO2 and graphene. Chin. J. Struct. Chem. 2022, 41, 2203085-2203091.

    84. [84]

      Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781-787.  doi: 10.1016/j.carbon.2009.10.027

    85. [85]

      Cong, H.; Ren, X.; Yu, S. Controlled synthesis of PtRu/graphene nanocatalysts with enhanced methanol oxidation activity for fuel cells. ChemCatChem. 2012, 4, 1555-1559.  doi: 10.1002/cctc.201200403

    86. [86]

      Li, H.; Zhang, X.; Pang, H.; Huang, C.; Chen, J. PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 2010, 14, 2267-2274.  doi: 10.1007/s10008-010-1067-z

    87. [87]

      Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Sun, J.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363-9419.  doi: 10.1021/acs.chemrev.0c00080

    88. [88]

      Bao, Y.; Zha, M.; Sun, P.; Hu, G.; Feng, L. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748-754.  doi: 10.1016/j.jechem.2020.12.007

    89. [89]

      Liu, Z.; Wang, Y.; Feng, L. A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction. J. Solid State Electrochem. 2018, 22, 3467-3474.  doi: 10.1007/s10008-018-4061-5

    90. [90]

      Zhang, M.; Yi, J.; Huang, Y.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    91. [91]

      Shu, J.; Li, R.; Lian, Z.; Zhang, W.; Jin, R.; Yang, H.; Li, S. In-situ oxidation of palladium-Iridium nanoalloy anchored on nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation. J. Colloid Interf. Sci. 2022, 605, 44-53.  doi: 10.1016/j.jcis.2021.07.056

    92. [92]

      Zhang, Q.; Yang, Z.; Ling, Y.; Yu, X.; Zhang, Y.; Cheng, H. Improvement in stability of PtRu electrocatalyst by carbonization of in-situ polymerized polyaniline. Int. J. Hydrogen Energy 2018, 43, 12730-12738.  doi: 10.1016/j.ijhydene.2018.03.160

    93. [93]

      Zhao, S.; Yin, H.; Du, L.; Yin, G.; Tang, Z.; Liu, S. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.  doi: 10.1039/c3ta14809b

    94. [94]

      Lv, R.; Cui, T.; Jun, M.; Zhang, Q.; Cao, A.; Su, D. S.; Zhang, Z.; Yoon, S.; Miyawaki, J.; Mochida, I.; Kang, F. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 2011, 21, 999-1006.  doi: 10.1002/adfm.201001602

    95. [95]

      La-Torreriveros, L.; Guzmanblas, R.; Méndeztorres, A. E.; Prelas, M.; Tryk, D. A.; Cabrera, C. R. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2012, 4, 1134-1147.  doi: 10.1021/am2018628

    96. [96]

      Santos Pereira, V.; da Silva, J. C. M.; Oliveira Neto, A.; Spinacé, E. V. PtRu nanoparticles supported on phosphorous-doped carbon as electrocatalysts for methanol electro-oxidation. Electrocatalysis 2017, 8, 245-251.  doi: 10.1007/s12678-017-0360-3

    97. [97]

      Shi, Y.; Zhu, W.; Shi, H.; Liao, F.; Fan, Z.; Shao, M. Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction. J. Colloid Interf. Sci. 2019, 557, 729-736.  doi: 10.1016/j.jcis.2019.09.038

    98. [98]

      Holme, T.; Zhou, Y.; Pasquarelli, R.; O'Hayre, R. First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 2010, 12, 9461-9468.  doi: 10.1039/b927263a

    99. [99]

      Pei, C.; Ding, R.; Yu, X.; Feng, L. Electrochemical oxygen reduction reaction performance boosted by N, P doped carbon layer over manganese dioxide nanorod. ChemCatChem. 2019, 11, 4617-4623.  doi: 10.1002/cctc.201900886

    100. [100]

      Zhou, Q.; Wu, J.; Pan, Z.; Kong, X.; Cui, Z.; Wu, D.; Hu, G. Pt supported on boron, nitrogen co-doped carbon nanotubes (BNC NTs) for effective methanol electrooxidation. Int. J. Hydrogen Energy 2020, 45, 33634-33640.  doi: 10.1016/j.ijhydene.2020.09.056

    101. [101]

      Sun, Y.; Du, C.; Han, G.; Qu, Y.; Du, L.; Wang, Y.; Chen, G.; Gao, Y.; Yin, G. Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochim. Acta 2016, 212, 313-321.  doi: 10.1016/j.electacta.2016.06.168

    102. [102]

      Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energ. Environ. Sci. 2014, 7, 2535-2558.  doi: 10.1039/C3EE43886D

    103. [103]

      Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Conductive metal-organic frameworks for electrocatalysis: achievements, challenges, and opportunities. Acta Phys. -Chim. Sin. 2021, 2010025.

    104. [104]

      Chen, W.; Xue, J.; Bao, Y.; Feng, L. Surface engineering of nanoceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem. Eng. J. 2020, 381, 122752.  doi: 10.1016/j.cej.2019.122752

    105. [105]

      Qi, L.; Yin, Y.; Tu, W.; Wu, B.; Wang, Z.; Liu, J.; Gu, J.; Zou, Z. Preparation of Pt-TiO2/graphene composites with high catalytic activity towards methanol oxidation and oxygen reduction reaction. J. Electrochem. 2014, 20, 377-381.

    106. [106]

      Han, J.; Zhou, Z.; Qiang, W.; Lv, M.; Chen, C.; Sun, S. Preparation of Pt/H-TiO2 catalyst with improved catalytic performance for methanol electrooxidation. J. Electrochem. 2014, 20, 110-115.

    107. [107]

      Wang, S.; Zhu, J.; Wu, X.; Feng, L. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105-1109.  doi: 10.1016/j.cclet.2021.08.042

    108. [108]

      Li, J.; Zhao, L.; Li, X.; Hao, S.; Wang, Z. Fabrication of C@MoxTi1−xO2−δ nanocrystalline with functionalized interface as efficient and robust PtRu catalyst support for methanol electrooxidation. J. Energy Chem. 2020, 40, 7-14.  doi: 10.1016/j.jechem.2019.02.004

    109. [109]

      Chen, K.; Shen, T.; Lu, Y.; Hu, Y.; Wang, J.; Zhang, J.; Wang, D. Engineering titanium oxide-based support for electrocatalysis. J. Energy Chem. 2022, 67, 168-183.  doi: 10.1016/j.jechem.2021.09.048

    110. [110]

      Yue, X.; Pu, Y.; Zhang, W.; Zhang, T.; Gao, W. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 2020, 49, 275-282.  doi: 10.1016/j.jechem.2020.02.045

    111. [111]

      Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170-175.  doi: 10.1021/ja00469a029

    112. [112]

      Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q. Microwave-assisted synthesis of double-shell PtRu/TiO2 catalyst towards methanol electro-oxidation. Int. J. Hydrogen Energy 2015, 40, 15652-15662.  doi: 10.1016/j.ijhydene.2015.09.094

    113. [113]

      Chen, G.; Bare, S. R.; Mallouk, T. E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 2002, 149, A1092-A1099.  doi: 10.1149/1.1491237

    114. [114]

      Fuentes, R. E.; Garcia, B. L.; Weidner, J. W. A Nb-doped TiO2 electrocatalyst for use in direct methanol fuel cells. ECS Trans. 2008, 12, 239-248.  doi: 10.1149/1.2921550

    115. [115]

      Sekar, A.; Metzger, N.; Rajendran, S.; Elangovan, A.; Cao, Y.; Peng, F.; Li, X.; Li, J. PtRu catalysts on nitrogen-doped carbon nanotubes with conformal hydrogenated TiO2 shells for methanol oxidation. ACS Appl. Nano. Mater. 2022, 5, 3275–3288  doi: 10.1021/acsanm.1c03742

    116. [116]

      Matsui, T.; Fujiwara, K.; Okanishi, T.; Kikuchi, R.; Takeguchi, T.; Eguchi, K. Electrochemical oxidation of CO over tin oxide supported platinum catalysts. J. Power Sources 2006, 155, 152-156.  doi: 10.1016/j.jpowsour.2005.05.003

    117. [117]

      Saha, M. S.; Li, R.; Sun, X. Composite of Pt-Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochem. Commun. 2007, 9, 2229-2234.  doi: 10.1016/j.elecom.2007.06.032

    118. [118]

      Kakati, N.; Maiti, J.; Jee, S.; Lee, S.; Yoon, Y. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell. J. Alloy. Compd. 2011, 509, 5617-5622.  doi: 10.1016/j.jallcom.2011.02.087

    119. [119]

      Wang, Q.; Tao, H.; Li, Z.; Chen, C.; Liu, S.; Han, L.; Lu, X. Improving electrochemical activity of PtRu/SnO2/C catalyst by reduction treatment and alkaline etching. J. Energy Chem. 2016, 25, 811-816.  doi: 10.1016/j.jechem.2016.05.003

    120. [120]

      Park, K.; Lee, Y.; Sung, Y. Nanostructure catalysts prepared by multi-sputtering deposition process for enhanced methanol electrooxidation reaction. Appl. Catal. B: Environ. 2013, 132-133, 237-244.

    121. [121]

      Hou, Z.; Yi, B.; Yu, H.; Lin, Z.; Zhang, H. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J. Power Sources 2003, 123, 116-125.  doi: 10.1016/S0378-7753(03)00515-9

    122. [122]

      Tsiouvaras, N.; Martínez-Huerta, M. V.; Moliner, R.; Lázaro, M. J.; Rodríguez, J. L.; Pastor, E.; Peña, M. A.; Fierro, J. L. G. CO tolerant PtRu-MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. J. Power Sources 2009, 186, 299-304.  doi: 10.1016/j.jpowsour.2008.10.026

    123. [123]

      Kunitomo, H.; Ishitobi, H.; Nakagawa, N. Optimized CeO2 content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells. J. Power Sources 2015, 297, 400-407.  doi: 10.1016/j.jpowsour.2015.07.002

    124. [124]

      Wang, Q.; Wang, G.; Sasaki, K.; Takeguchi, T.; Yamanaka, T.; Sadakane, M.; Ueda, W. Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. J. Power Sources 2013, 241, 728-735.  doi: 10.1016/j.jpowsour.2013.06.020

    125. [125]

      Feng, C.; Takeuchi, T.; Abdelkareem, M. A.; Tsujiguchi, T.; Nakagawa, N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. J. Power Sources 2013, 242, 57-64.  doi: 10.1016/j.jpowsour.2013.04.157

    126. [126]

      Wang, S.; Jiang, S. P.; Wang, X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta 2011, 56, 3338-3344.  doi: 10.1016/j.electacta.2011.01.016

    127. [127]

      Kolla, P.; Smirnova, A. Methanol oxidation on hybrid catalysts: PtRu/C nanostructures promoted with cerium and titanium oxides. Int. J. Hydrogen Energy 2013, 38, 15152-15159.  doi: 10.1016/j.ijhydene.2013.09.096

    128. [128]

      Bao, Y.; Liu, H.; Liu, Z.; Wang, F.; Feng, L. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B: Environ. 2020, 274, 119106.  doi: 10.1016/j.apcatb.2020.119106

    129. [129]

      Li, M.; Feng, L. Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol. J. Electrochem. 2022, 28, 2106211.

    130. [130]

      Chang, J.; Feng, L.; Liu, C.; Xing, W.; Hu, X. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem. Int. Ed. 2014, 53, 122-126.  doi: 10.1002/anie.201308620

    131. [131]

      Wang, F.; Xue, H.; Tian, Z.; Xing, W.; Feng, L. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 2018, 375, 37-42.  doi: 10.1016/j.jpowsour.2017.11.055

    132. [132]

      Wang, F.; Fang, B.; Yu, X.; Feng, L. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation. ACS Appl. Mater. Interfaces 2019, 11, 9496-9503.  doi: 10.1021/acsami.8b18029

    133. [133]

      Liu, H.; Yang, D.; Bao, Y.; Yu, X.; Feng, L. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J. Power Sources 2019, 434, 226754.  doi: 10.1016/j.jpowsour.2019.226754

    134. [134]

      Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462-469.  doi: 10.1016/j.nanoen.2015.05.007

    135. [135]

      Chang, J.; Feng, L.; Liu, C.; Xing, W. Ni2P makes application of the PtRu catalyst much stronger in direct methanol fuel cells. ChemSusChem. 2015, 8, 3340-3347.  doi: 10.1002/cssc.201500357

    136. [136]

      Bao, Y.; Wang, F.; Gu, X.; Feng, L. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation. Nanoscale 2019, 11, 18866-18873.  doi: 10.1039/C9NR07158J

    137. [137]

      Qiao, W.; Yang, X.; Li, M.; Feng, L. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. Nanoscale 2021, 13, 6884-6889.  doi: 10.1039/D1NR01005K

    138. [138]

      Zhao, X.; Liu, Q.; Li, Q.; Chen, L.; Mao, L.; Wang, H.; Chen, S. Two-dimensional electrocatalysts for alcohol oxidation: a critical review. Chem. Eng. J. 2020, 400, 125744.  doi: 10.1016/j.cej.2020.125744

    139. [139]

      Huang, L.; Zaman, S.; Wang, Z.; Niu, H.; You, B.; Xia, B. Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. -Chim. Sin. 2021, 37, 2009035.

    140. [140]

      Li, J.; Wang, S.; Chang, J.; Feng, L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.  doi: 10.1016/j.apmate.2022.01.003

    141. [141]

      Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.  doi: 10.1002/adfm.202000793

    142. [142]

      Yang, L.; Liu, Z.; Zhu, S.; Feng, L.; Xing, W. Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater. Today Phys. 2021, 16, 100292.  doi: 10.1016/j.mtphys.2020.100292

    143. [143]

      Wu, Y.; Xie, N.; Li, X.; Fu, Z.; Wu, X.; Zhu, Q. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.

    144. [144]

      Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M.; Guo, S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117-10141.  doi: 10.1002/adma.201601909

    145. [145]

      Kim, Y.; Nam, S.; Shim, H.; Ahn, H.; Anand, M.; Kim, W. Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation. Electrochem. Commun. 2008, 10, 1016-1019.  doi: 10.1016/j.elecom.2008.05.003

    146. [146]

      Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.  doi: 10.1002/adma.200390087

    147. [147]

      Ma, S. -Y.; Li, H. -H.; Hu, B. -C.; Cheng, X.; Fu, Q. -Q.; Yu, S. -H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.  doi: 10.1021/jacs.7b01482

    148. [148]

      Yin, S.; Wang, H.; Deng, K.; Dai, Z.; Wang, Z.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Ultralong ternary PtRuTe mesoporous nanotubes fabricated by micelle assembly with a self-sacrificial template. Chem. Eur. J. 2019, 25, 5316-5321.  doi: 10.1002/chem.201806382

    149. [149]

      Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175-6200.  doi: 10.1039/C8CS00113H

    150. [150]

      Uehara, H.; Okawa, Y.; Sasaki, Y.; Uosaki, K. Monolayer formation of a Pt-Ru dinuclear complex on a gold (111) surface and its conversion to a Pt-Ru two-dimensional nanocomposite having electrocatalytic activity. Chem. Lett. 2009, 38, 148-149.  doi: 10.1246/cl.2009.148

    151. [151]

      Tian, H.; Yu, Y.; Wang, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Luo, J.; Deng, P.; Shen, Y.; Tian, X. Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction. Int. J. Hydrogen Energy 2021, 46, 31202-31215.  doi: 10.1016/j.ijhydene.2021.07.006

    152. [152]

      Pan, Y.; Li, H.; Wang, Z.; Han, Y.; Wu, Z.; Zhang, X.; Lai, J.; Wang, L.; Feng, S. High-efficiency methanol oxidation electrocatalysts realized by ultrathin PtRuM-O (M = Ni, Fe, Co) nanosheets. Chem. Commun. 2020, 56, 9028-9031.  doi: 10.1039/D0CC00361A

    153. [153]

      Liang, W.; Wang, Y.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H.; Sun, Y.; Jiang, L. 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.  doi: 10.1002/adma.202100713

    154. [154]

      Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; Zhao, M.; Lu, Q.; Li, B.; Zong, Y.; Yan, C.; Wang, G.; Xu, Z. J.; Zhang, H. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.  doi: 10.1002/adma.201603075

    155. [155]

      Teng, X.; Maksimuk, S.; Frommer, S.; Yang, H. Three-dimensional PtRu nanostructures. Chem. Mater. 2007, 19, 36-41.  doi: 10.1021/cm061979b

    156. [156]

      Li, M.; Zheng, H.; Han, G.; Xiao, Y.; Li, Y. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation. Catal. Commun. 2017, 92, 95-99.  doi: 10.1016/j.catcom.2017.01.014

    157. [157]

      Shang, C.; Guo, Y.; Wang, E. Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation. J. Mater. Chem. A 2019, 7, 2547-2552.  doi: 10.1039/C9TA00191C

    158. [158]

      Jiang, B.; Ataee-Esfahani, H.; Li, C.; Alshehri, S. M.; Ahamad, T.; Henzie, J.; Yamauchi, Y. Mesoporous trimetallic PtPdRu spheres as superior electrocatalysts. Chem. Eur. J. 2016, 22, 7174-7178.  doi: 10.1002/chem.201600774

    159. [159]

      Ma, J.; Liu, B.; Wang, R.; Sun, Z.; Zhang, Y.; Sun, Y.; Cai, Z.; Li, Y.; Zou, J. Single-Cu-atoms anchored on 3D macro-porous carbon matrix as efficient catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Chin. Chem. Lett. 2022, 33, 2585-2589.  doi: 10.1016/j.cclet.2021.09.108

    160. [160]

      Tian, H.; Wu, D.; Li, J.; Luo, J.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Shim, C. M.; Deng, P.; Shen, Y.; Tian, X. Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction. J. Energy Chem. 2022, 70, 230-235.  doi: 10.1016/j.jechem.2022.02.021

    161. [161]

      Sun, H.; Song, S.; Xu, X.; Dai, J.; Yu, J.; Zhou, W.; Shao, Z.; Jung, W. Recent progress on structurally ordered materials for electrocatalysis. Adv. Energy Mater. 2021, 11, 2101937.  doi: 10.1002/aenm.202101937

    162. [162]

      Liu, D.; Yang, N.; Zeng, Q.; Liu, H.; Chen, D.; Cui, P.; Xu, L.; Hu, C.; Yang, J. Core-shell Ag-Pt nanoparticles: a versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. Chin. Chem. Lett. 2021, 32, 3288-3297.  doi: 10.1016/j.cclet.2021.04.053

    163. [163]

      Zhao, Y.; Liu, Y.; Miao, B.; Ding, Y.; Jin, P.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2204040-2204045.

    164. [164]

      Zhao, W.; Ni, B.; Yuan, Q.; He, P.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with Sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.  doi: 10.1002/aenm.201601593

    165. [165]

      Zou, L.; Guo, J.; Liu, J.; Zou, Z.; Akins, D. L.; Yang, H. Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates. J. Power Sources 2014, 248, 356-362.  doi: 10.1016/j.jpowsour.2013.09.086

    166. [166]

      Thepkaew, J.; Therdthianwong, S.; Therdthianwong, A.; Kucernak, A.; Wongyao, N. Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation. Int. J. Hydrogen Energy 2013, 38, 9454-9463.  doi: 10.1016/j.ijhydene.2012.12.038

    167. [167]

      Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energ. Environ. Sci. 2015, 8, 350-363.  doi: 10.1039/C4EE02162B

    168. [168]

      Liang, Y.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J. Phys. Chem. B 2006, 110, 7828-7834.  doi: 10.1021/jp0602732

    169. [169]

      Lee, H.; Park, S.; Kim, H. Preparation of CO-tolerant PtRuNi/C ternary electrocatalyst having a composition gradient shell. Chem. Eng. J. 2021, 414, 128792.  doi: 10.1016/j.cej.2021.128792

    170. [170]

      Wang, W.; Wang, R.; Wang, H.; Ji, S.; Key, J.; Li, X.; Lei, Z. An advantageous method for methanol oxidation: design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst. J. Power Sources 2011, 196, 9346-9351.  doi: 10.1016/j.jpowsour.2011.06.101

    171. [171]

      Li, H.; Pan, Y.; Zhang, D.; Han, Y.; Wang, Z.; Qin, Y.; Lin, S.; Wu, X.; Zhao, H.; Lai, J.; Huang, B.; Wang, L. Surface oxygen-mediated ultrathin PtRuM (Ni, Fe and Co) nanowires boosting methanol oxidation reaction. J. Mater. Chem. A 2020, 8, 2323-2330.  doi: 10.1039/C9TA11745H

    172. [172]

      Henry, J. B.; Maljusch, A.; Huang, M.; Schuhmann, W.; Bondarenko, A. S. Thin-film Cu-Pt(111) near-surface alloys: active electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 1457-1460.  doi: 10.1021/cs300165t

    173. [173]

      Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578-7584.  doi: 10.1021/acscatal.8b00366

    174. [174]

      Huang, M.; Wu, C.; Guan, L. Chemical corrosion of PtRuCu6/C for highly efficient methanol oxidation. J. Power Sources 2016, 306, 489-494.  doi: 10.1016/j.jpowsour.2015.12.072

    175. [175]

      Jeon, M. K.; Cooper, J. S.; McGinn, P. J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach. J. Power Sources 2008, 185, 913-916.  doi: 10.1016/j.jpowsour.2008.08.058

    176. [176]

      Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C. Simple replacement reaction for the preparation of ternary Fe1-xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 10011-10020.  doi: 10.1021/ja3010754

    177. [177]

      Zhu, J.; Cheng, F.; Tao, Z.; Chen, J. Electrocatalytic methanol oxidation of Pt0.5Ru0.5-xSnx/C (x = 0-0.5). J. Phys. Chem. C 2008, 112, 6337-6345.  doi: 10.1021/jp8000543

    178. [178]

      Neburchilov, V.; Wang, H.; Zhang, J. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC. Electrochem. Commun. 2007, 9, 1788-1792.  doi: 10.1016/j.elecom.2007.04.001

    179. [179]

      Rethinasabapathy, M.; Kang, S.; Haldorai, Y.; Jonna, N.; Jankiraman, M.; Lee, G.; Jang, S.; Natesan, B.; Roh, C.; Huh, Y. Quaternary PtRuFeCo nanoparticles supported N-doped graphene as an efficient bifunctional electrocatalyst for low-temperature fuel cells. J. Ind. Eng. Chem. 2019, 69, 285-294.  doi: 10.1016/j.jiec.2018.09.043

    180. [180]

      Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. J. Energy Chem. 2022, 68, 721-751.  doi: 10.1016/j.jechem.2021.12.026

    181. [181]

      Chai, G.; Yu, J. Highly efficient Pt-Ru-Co-W quaternary anode catalysts for methanol electrooxidation discovered by combinatorial analysis. J. Mater. Chem. 2009, 19, 6842-6848.  doi: 10.1039/b823053f

    182. [182]

      Choi, W. C.; Kim, J. D.; Woo, S. I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry. Catal. Today 2002, 74, 235-240.  doi: 10.1016/S0920-5861(02)00026-3

    183. [183]

      Gao, F.; Zhang, Y.; You, H.; Li, Z.; Zou, B.; Du, Y. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for Robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.  doi: 10.1002/smll.202101428

    184. [184]

      Hunt, S. T.; Román-Leshkov, Y. Principles and methods for the rational design of core-shell nanoparticle catalysts with ultralow noble metal loadings. Accounts Chem. Res. 2018, 51, 1054-1062.  doi: 10.1021/acs.accounts.7b00510

    185. [185]

      Xie, J.; Zhang, Q.; Gu, L.; Xu, S.; Wang, P.; Liu, J.; Ding, Y.; Yao, Y. F.; Nan, C.; Zhao, M.; You, Y.; Zou, Z. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 2016, 21, 247-257.  doi: 10.1016/j.nanoen.2016.01.013

    186. [186]

      Park, Y.; Lee, B.; Kim, C.; Oh, Y.; Nam, S.; Park, B. The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. J. Mater. Res. 2009, 24, 2762-2766.  doi: 10.1557/jmr.2009.0331

    187. [187]

      Muthuswamy, N.; de la Fuente, J. L. G.; Tran, D. T.; Walmsley, J.; Tsypkin, M.; Raaen, S.; Sunde, S.; Rønning, M.; Chen, D. Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int. J. Hydrogen Energy 2013, 38, 16631-16641.  doi: 10.1016/j.ijhydene.2013.02.056

    188. [188]

      Zou, J.; Wu, M.; Ning, S.; Huang, L.; Kang, X.; Chen, S. Ru@Pt core-shell nanoparticles: impact of the atomic ordering of the Ru metal core on the electrocatalytic activity of the Pt shell. ACS Sustain. Chem. Eng. 2019, 7, 9007-9016.  doi: 10.1021/acssuschemeng.9b01270

    189. [189]

      Chen, T.; Lin, T.; Luo, T.; Choi, Y.; Lee, J. Effects of Pt shell thicknesses on the atomic structure of Ru-Pt core-shell nanoparticles for methanol electrooxidation applications. ChemPhysChem. 2010, 11, 2383-2392.  doi: 10.1002/cphc.200901006

    190. [190]

      Yin, S.; Kumar, R. D.; Yu, H.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Pt@mesoporous PtRu yolk-shell nanostructured electrocatalyst for methanol oxidation reaction. ACS Sustain. Chem. Eng. 2019, 7, 14867-14873.  doi: 10.1021/acssuschemeng.9b02958

    191. [191]

      Cheng, Y.; Shen, P.; Jiang, S. Enhanced activity and stability of core-shell structured PtRuNix electrocatalysts for direct methanol fuel cells. Int. J. Hydrogen Energy 2016, 41, 1935-1943.  doi: 10.1016/j.ijhydene.2015.10.121

    192. [192]

      Wang, R.; Li, H.; Feng, H.; Wang, H.; Lei, Z. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation. J. Power Sources 2010, 195, 1099-1102.  doi: 10.1016/j.jpowsour.2009.08.055

    193. [193]

      Matin, M.; Lee, E.; Kim, H.; Yoon, W.; Kwon, Y. Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 2015, 3, 17154.  doi: 10.1039/C5TA03809J

    194. [194]

      Cheng, Y.; Shen, P.; Saunders, M.; Jiang, S. Core-shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells. Electrochim. Acta 2015, 177, 217-226.  doi: 10.1016/j.electacta.2015.01.137

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    3. [3]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    8. [8]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    9. [9]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    10. [10]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    11. [11]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    12. [12]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Shuaiwen LiZihui ChenFeng YangWanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793

    17. [17]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    18. [18]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    19. [19]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    20. [20]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

Metrics
  • PDF Downloads(5)
  • Abstract views(397)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return