Advances of PtRu-Based Electrocatalysts for Methanol Oxidation
- Corresponding author: Ligang Feng, ligang.feng@yzu.edu.cn, fenglg11@gmail.com
Citation:
Wei Qiao, Xingyu Huang, Ligang Feng. Advances of PtRu-Based Electrocatalysts for Methanol Oxidation[J]. Chinese Journal of Structural Chemistry,
;2022, 41(7): 220701.
doi:
10.14102/j.cnki.0254-5861.2022-0098
Liu, E.; Jiao, L.; Li, J.; Stracensky, T.; Sun, Q.; Mukerjee, S.; Jia, Q. Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energ. Environ. Sci. 2020, 13, 3064-3074.
doi: 10.1039/D0EE01754J
Hamo, E. R.; Singh, R. K.; Douglin, J. C.; Chen, S.; Hassine, M. B.; Carbo-Argibay, E.; Lu, S.; Wang, H.; Ferreira, P. J.; Rosen, B. A.; Dekel, D. R. Carbide-supported PtRu catalysts for hydrogen oxidation reaction in alkaline electrolyte. ACS Catal. 2021, 11, 932-947.
doi: 10.1021/acscatal.0c03973
Zhang, Z.; Liu, J.; Wang, J.; Wang, Q.; Wang, Y.; Wang, K.; Wang, Z.; Gu, M.; Tang, Z.; Lim, J.; Zhao, T.; Ciucci, F. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 2021, 12, 5235.
doi: 10.1038/s41467-021-25562-y
Jiang, B.; Li, C.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575-1581.
doi: 10.1039/C5SC03779D
Fang, B.; Liu, Z.; Bao, Y.; Feng, L. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259-2262.
doi: 10.1016/j.cclet.2020.02.045
Zhou, Y.; Liu, D.; Qiao, W.; Liu, Z.; Yang, J.; Feng, L. Ternary synergistic catalyst system of Pt-Cu-Mo2C with high activity and durability for alcohol oxidation. Mater. Today Phys. 2021, 17, 100357.
doi: 10.1016/j.mtphys.2021.100357
Zhan, X.; Zhan, Y.; Du, C.; Li, C.; Yu, H.; Lin, C. Electrochemical catalytic properties of Pt/FeSnO(OH)5 towards methanol oxidation. Chin. J. Struct. Chem. 2018, 37, 1585-1595.
Jiang, B.; Li, C.; Tang, J.; Takei, T.; Kim, J.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 10037-10041.
doi: 10.1002/anie.201603967
Tang, J.; Zhang, X.; Yu, S.; Wang, S.; Sun, G. Performance and mechanism of PtxCuy/C electrocatalyst for methanol oxidation. J. Electrochem. 2021, 27, 508-517.
Zhang, Y.; Li, J.; Zhao, L.; Sui, X.; Zhou, Q.; Gong, X.; Cai, J.; Li, J.; Gu, D.; Wang, Z. Nitrogen doped carbon coated Mo modified TiO2 nanowires (NC@MTNWs-FI) with functionalized interfacial as advanced PtRu catalyst support for methanol electrooxidation. Electrochim. Acta 2020, 331, 135410.
doi: 10.1016/j.electacta.2019.135410
Lee, D.; Choi, D.; Lee, M.; Jin, H.; Lee, S.; Jang, I.; Park, H.; Jang, J.; Kim, H.; Lee, K.; Yoo, S. Tailoring of Pt island RuO2/C catalysts by galvanic replacement to achieve superior hydrogen oxidation reaction and CO poisoning resistance. ACS Appl. Energ. Mater. 2021, 4, 8098-8107.
doi: 10.1021/acsaem.1c01397
Bai, X.; Geng, J.; Zhao, S.; Li, H.; Li, F. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046-23050.
doi: 10.1021/acsami.0c06460
Yang, T.; Qin, F.; Zhang, S.; Rong, H.; Chen, W.; Zhang, J. Atomically dispersed Ru in Pt3Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chem. Commun. 2021, 57, 2164-2167.
doi: 10.1039/D0CC08210D
Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z.; Sheng, W.; Chen, J. G.; Yan, Y. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal. 2015, 5, 1468-1474.
doi: 10.1021/cs501449y
Lu, S.; Eid, K.; Ge, D.; Guo, J.; Wang, L.; Wang, H.; Gu, H. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033-1039.
doi: 10.1039/C6NR08895C
Xiao, M.; Feng, L.; Zhu, J.; Liu, C.; Xing, W. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale 2015, 7, 9467-9471.
doi: 10.1039/C5NR00639B
Moura, A. S.; Fajín, J. L. C.; Mandado, M.; Cordeiro, M. N. D. S. Ruthenium-platinum catalysts and direct methanol fuel Cells (DMFC): a review of theoretical and experimental breakthroughs. Catalysts 2017, 7, 47.
doi: 10.3390/catal7020047
Petrii, O. A. Pt-Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem. 2008, 12, 609.
doi: 10.1007/s10008-007-0500-4
Tolmachev, Y. V.; Petrii, O. A. Pt-Ru electrocatalysts for fuel cells: developments in the last decade. J. Solid State Electrochem. 2017, 21, 613-639.
doi: 10.1007/s10008-016-3382-5
Yuda, A.; Ashok, A.; Kumar, A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. 2022, 64, 126-228.
doi: 10.1080/01614940.2020.1802811
Ding, X.; Li, M.; Jin, J.; Huang, X.; Wu, X.; Feng, L. Graphene aerogel supported Pt-Ni alloy as efficient electrocatalysts for alcohol fuel oxidation. Chin. Chem. Lett. 2022, 33, 2687-2691.
doi: 10.1016/j.cclet.2021.09.076
Tritsaris, G. A.; Rossmeisl, J. Methanol oxidation on model elemental and bimetallic transition metal surfaces. J. Phys. Chem. C 2012, 116, 11980-11986.
doi: 10.1021/jp209506d
Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381-14389.
doi: 10.1021/ja904010u
Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cells. Energ. Environ. Sci. 2012, 5, 8335-8342.
doi: 10.1039/c2ee21455e
Ferrin, P.; Nilekar, A. U.; Greeley, J.; Mavrikakis, M.; Rossmeisl, J. Reactivity descriptors for direct methanol fuel cell anode catalysts. Surf. Sci. 2008, 602, 3424-3431.
doi: 10.1016/j.susc.2008.08.011
Lee, M.; Kang, J.; Kang, Y.; Chung, D.; Shin, H.; Ahn, C.; Park, S.; Kim, M.; Kim, S.; Lee, K.; Sung, Y. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 2016, 6, 2398-2407.
doi: 10.1021/acscatal.5b02580
Ravichandran, S.; Bhuvanendran, N.; Xu, Q.; Maiyalagan, T.; Su, H. Improved methanol electrooxidation catalyzed by ordered mesoporous Pt-Ru-Ir alloy nanostructures with trace Ir content. Electrochim. Acta 2021, 394, 139148.
doi: 10.1016/j.electacta.2021.139148
Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 275-283.
doi: 10.1016/S0022-0728(75)80262-2
Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅱ. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 267-273.
doi: 10.1016/S0022-0728(75)80261-0
Tong, Y.; Yan, X.; Liang, J.; Dou, S. Metal-based electrocatalysts for methanol electro-oxidation: progress, opportunities, and challenges. Small 2021, 17, 1904126.
doi: 10.1002/smll.201904126
Zhou, Y.; Chen, Y.; Jiang, K.; Liu, Z.; Mao, Z.; Zhang, W.; Lin, W.; Cai, W. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Appl. Catal. B: Environ. 2021, 280, 119393.
doi: 10.1016/j.apcatb.2020.119393
Huttunen, P. K.; Labadini, D.; Hafiz, S. S.; Gokalp, S.; Wolff, E. P.; Martell, S. M.; Foster, M. DRIFTS investigation of methanol oxidation on CeO2 nanoparticles. Appl. Surf. Sci. 2021, 554, 149518.
doi: 10.1016/j.apsusc.2021.149518
Zhang, J.; Qu, X.; Han, Y.; Shen, L.; Yin, S.; Li, G.; Jiang, Y.; Sun, S. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance. Appl. Catal. B: Environ. 2020, 263, 118345.
doi: 10.1016/j.apcatb.2019.118345
Liu, H.; Tian, N.; Brandon, M. P.; Zhou, Z.; Lin, J.; Hardacre, C.; Lin, W.; Sun, S. Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation. ACS Catal. 2012, 2, 708-715.
doi: 10.1021/cs200686a
Scott, F. J.; Roth, C.; Ramaker, D. E. Kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando X-ray absorption near edge spectroscopy. J. Phys. Chem. C 2007, 111, 11403-11413.
doi: 10.1021/jp072698+
Pelliccione, C. J.; Timofeeva, E. V.; Katsoudas, J. P.; Segre, C. U. In situ Ru K-edge X-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst. J. Phys. Chem. C 2013, 117, 18904-18912.
doi: 10.1021/jp404342z
Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338-12376.
doi: 10.1039/D1CS00590A
Yan, D.; Kristoffersen, H. H.; Pedersen, J. K.; Rossmeisl, J. Rationally tailoring catalysts for the CO oxidation reaction by using DFT calculations. ACS Catal. 2022, 12, 116-125.
doi: 10.1021/acscatal.1c04331
Baz, A.; Holewinski, A. Understanding the interplay of bifunctional and electronic effects: microkinetic modeling of the CO electro-oxidation reaction. J. Catal. 2020, 384, 1-13.
doi: 10.1016/j.jcat.2020.02.003
Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M.; Shao, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.
doi: 10.1038/s41929-021-00663-5
He, Q.; Zhou, Y.; Shou, H.; Wang, X.; Zhang, P.; Xu, W.; Qiao, S.; Wu, C.; Liu, H.; Liu, D.; Chen, S.; Long, R.; Qi, Z.; Wu, X.; Song, L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, n/a, 2110604.
Du, X.; Lang, Y.; Cao, K.; Yang, J.; Cai, J.; Shan, B.; Chen, R. Bifunctionally faceted Pt/Ru nanoparticles for preferential oxidation of CO in H2. J. Catal. 2021, 396, 148-156.
doi: 10.1016/j.jcat.2021.02.010
Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; Cheong, S.; Tan, X.; Lei, H.; Tahini, H. A.; Henson, A.; Subhash, B.; Bedford, N. M.; Miller, B. K.; O'Mara, P. B.; Benedetti, T. M.; Huber, D. L.; Zhang, W.; Smith, S. C.; Gooding, J. J.; Schuhmann, W.; Tilley, R. D. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231-237.
doi: 10.1038/s41929-022-00756-9
Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154-9196.
doi: 10.1039/D0CS00575D
Damte, J. Y.; Lyu, S. L.; Leggesse, E. G.; Jiang, J. C. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst. Phys. Chem. Chem. Phys. 2018, 20, 9355-9363.
doi: 10.1039/C7CP07618E
Ding, Q.; Xu, W.; Sang, P.; Xu, J.; Zhao, L.; He, X.; Guo, W. Insight into the reaction mechanisms of methanol on PtRu/Pt(111): a density functional study. Appl. Surf. Sci. 2016, 369, 257-266.
doi: 10.1016/j.apsusc.2015.11.104
Ou, H.; Wang, D.; Li, Y. How to select effective electrocatalysts: nano or single atom? Nano Select. 2021, 2, 492-511.
doi: 10.1002/nano.202000239
Fang, B.; Feng, L. PtCo-NC catalyst derived from the pyrolysis of Pt-incorporated ZIF-67 for alcohols fuel electrooxidation. Acta Phys. -Chim. Sin. 2020, 36, 1905023.
doi: 10.3866/PKU.WHXB201905023
Han, J.; Yang, L.; Yang, L.; Jiang, W.; Luo, X.; Luo, S. PtRu nanoalloys loaded on graphene and TiO2 nanotubes co-modified Ti wire as an active and stable methanol oxidation electrocatalyst. Int. J. Hydrogen Energy 2018, 43, 7338-7346.
doi: 10.1016/j.ijhydene.2018.02.176
Zhu, X.; Hu, Z.; Huang, M.; Zhao, Y.; Qu, J.; Hu, S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction. Chin. Chem. Lett. 2021, 32, 2033-2037.
doi: 10.1016/j.cclet.2020.11.071
Huang, L.; Zaman, S.; Tian, X.; Wang, Z.; Fang, W.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311-322.
doi: 10.1021/acs.accounts.0c00488
Yang, X.; Xue, J.; Feng, L. Pt nanoparticles anchored over Te nanorods as a novel and promising catalyst for methanol oxidation reaction. Chem. Commun. 2019, 55, 11247-11250.
doi: 10.1039/C9CC06004A
Xue, J.; Wu, X.; Feng, L. Pt/Mn3O4 cubes with high anti-poisoning ability for C1 and C2 alcohol fuel oxidation. Chem. Commun. 2022, 58, 2371-2374.
doi: 10.1039/D2CC00105E
Zha, M.; Liu, Z.; Wang, Q.; Hu, G.; Feng, L. Efficient alcohol fuel oxidation catalyzed by a novel Pt/Se catalyst. Chem. Commun. 2021, 57, 199-202.
doi: 10.1039/D0CC06386J
Li, J.; Chang, Y.; Li, D.; Feng, L.; Zhang, B. Efficient synergism of V2O5 and Pd for alkaline methanol electrooxidation. Chem. Commun. 2021, 57, 7035-7038.
doi: 10.1039/D1CC02934G
Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808-1825.
doi: 10.1039/C6TA08580F
Hillenbrand, L. J.; Lacksonen, J. W. The platinum-on-carbon catalyst system for hydrogen anodes. J. Electrochem. Soc. 1965, 112, 249.
doi: 10.1149/1.2423517
Baruah, B.; Deb, P. Performance and application of carbon-based electrocatalysts in direct methanol fuel cell. Mater. Adv. 2021, 2, 5344-5364.
doi: 10.1039/D1MA00503K
Li, D.; Zha, M.; Feng, L.; Hu, G.; Hu, C.; Wu, X.; Wang, X. Increased crystallinity of RuSe2/carbon nanotubes for enhanced electrochemical hydrogen generation performance. Nanoscale 2022, 14, 790-796.
doi: 10.1039/D1NR07254D
Lan, G.; Yang, J.; Ye, R.; Boyjoo, Y.; Liang, J.; Liu, X.; Li, Y.; Liu, J.; Qian, K. Sustainable carbon materials toward emerging applications. Small Methods 2021, 5, 2001250.
doi: 10.1002/smtd.202001250
Zhang, X.; Ma, J.; Yan, R.; Cheng, W.; Zheng, J.; Jin, B. Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation. J. Alloy. Compd. 2021, 867, 159017.
doi: 10.1016/j.jallcom.2021.159017
Zhang, B.; Chen, S.; Wulan, B.; Zhang, J. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.
doi: 10.1016/j.cej.2021.130003
Zhang, K.; Wang, H.; Qiu, J.; Wu, J.; Wang, H.; Shao, J.; Deng, Y.; Yan, L. Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. Chem. Eng. J. 2021, 421, 127786.
doi: 10.1016/j.cej.2020.127786
Peera, S. G.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S. O.; Liu, C.; Sahu, A. K. Carbon nanofibers as potential catalyst support for fuel cell cathodes: a review. Energ. Fuel. 2021, 35, 11761-11799.
doi: 10.1021/acs.energyfuels.1c01439
Wang, G.; Sun, G.; Wang, Q.; Wang, S.; Sun, H.; Xin, Q. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int. J. Hydrogen Energy 2010, 35, 11245-11253.
doi: 10.1016/j.ijhydene.2010.07.045
Park, K. C.; Jang, I. Y.; Wongwiriyapan, W.; Morimoto, S.; Kim, Y. J.; Jung, Y. C.; Toya, T.; Endo, M. Carbon-supported Pt-Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor-support interaction. J. Mater. Chem. 2010, 20, 5345-5354.
doi: 10.1039/b923153f
de la Fuente, J. L. G.; Martínez-Huerta, M. V.; Rojas, S.; Terreros, P. Fierro, J. L. G.; Peña, M. A. Methanol electrooxidation on PtRu nanoparticles supported on functionalised carbon black. Catal. Today 2006, 116, 422-432.
doi: 10.1016/j.cattod.2006.05.083
Wu, G.; Xu, B. Carbon nanotube supported Pt electrodes for methanol oxidation: a comparison between multi- and single-walled carbon nanotubes. J. Power Sources 2007, 174, 148-158.
doi: 10.1016/j.jpowsour.2007.08.024
Zhao, Y.; Fan, L.; Ren, J.; Hong, B. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell. Int. J. Hydrogen Energy 2014, 39, 4544-4557.
doi: 10.1016/j.ijhydene.2013.12.202
Kour, R.; Arya, S.; Young, S.; Gupta, V.; Bandhoria, P.; Khosla, A. Review-recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 2020, 167, 037555.
doi: 10.1149/1945-7111/ab6bc4
Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744-4822.
doi: 10.1021/cr500304f
Cui, Y.; Xu, J.; Wang, M.; Guan, L. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.
Li, W.; Wang, X.; Chen, Z.; Waje, M.; Yan, Y. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J. Phys. Chem. B 2006, 110, 15353-15358.
doi: 10.1021/jp0623443
Wu, B.; Hu, D.; Kuang, Y.; Liu, B.; Zhang, X.; Chen, J. Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew. Chem. Int. Ed. 2009, 48, 4751-4754.
doi: 10.1002/anie.200900899
Zhou, Y.; Yang, G.; Pan, H.; Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Cheng, X.; Yang, J.; Wai, C.; Lin, Y. Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt-Ru nanoparticles for effective methanol oxidation. J. Mater. Chem. A 2015, 3, 8459-8465.
doi: 10.1039/C5TA00695C
Cui, Z.; Liu, C.; Liao, J.; Xing, W. Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation. Electrochim. Acta 2008, 53, 7807-7811.
doi: 10.1016/j.electacta.2008.05.003
Pan, C.; Li, Y.; Ma, Y.; Zhao, X.; Zhang, Q. Platinum-antimony doped tin oxide nanoparticles supported on carbon black as anode catalysts for direct methanol fuel cells. J. Power Sources 2011, 196, 6228-6231.
doi: 10.1016/j.jpowsour.2011.03.027
Xiao, Y.; Zhan, G.; Fu, Z.; Pan, Z.; Xiao, C.; Wu, S.; Chen, C.; Hu, G.; Wei, Z. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochim. Acta 2014, 141, 279-285.
doi: 10.1016/j.electacta.2014.07.070
Kaur, A.; Kaur, G.; Singh, P. P. Kaushal, S. Supported bimetallic nanoparticles as anode catalysts for direct methanol fuel cells: a review. Int. J. Hydrogen Energy 2021, 46, 15820-15849.
doi: 10.1016/j.ijhydene.2021.02.037
Su, H.; Hu, Y. Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 2021, 9, 958-983.
doi: 10.1002/ese3.833
Bao, Y.; Feng, L. Formic acid electro-oxidation catalyzed by PdNi/graphene aerogel. Acta Phys. -Chim. Sin. 2021, 37, 2008031.
Gu, X.; Yang, X.; Feng, L. An efficient RuTe2/graphene catalyst for electrochemical hydrogen evolution reaction in acid electrolyte. Chem. Asian J. 2020, 15, 2886-2891.
doi: 10.1002/asia.202000734
Sun, Y.; Huang, J. Improvement of the selectivity for hydrogen peroxide production via the synergy of TiO2 and graphene. Chin. J. Struct. Chem. 2022, 41, 2203085-2203091.
Dong, L.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781-787.
doi: 10.1016/j.carbon.2009.10.027
Cong, H.; Ren, X.; Yu, S. Controlled synthesis of PtRu/graphene nanocatalysts with enhanced methanol oxidation activity for fuel cells. ChemCatChem. 2012, 4, 1555-1559.
doi: 10.1002/cctc.201200403
Li, H.; Zhang, X.; Pang, H.; Huang, C.; Chen, J. PMo12-functionalized graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J. Solid State Electrochem. 2010, 14, 2267-2274.
doi: 10.1007/s10008-010-1067-z
Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Sun, J.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363-9419.
doi: 10.1021/acs.chemrev.0c00080
Bao, Y.; Zha, M.; Sun, P.; Hu, G.; Feng, L. PdNi/N-doped graphene aerogel with over wide potential activity for formic acid electrooxidation. J. Energy Chem. 2021, 59, 748-754.
doi: 10.1016/j.jechem.2020.12.007
Liu, Z.; Wang, Y.; Feng, L. A facile approach for constructing nitrogen-doped carbon layers over carbon nanotube surface for oxygen reduction reaction. J. Solid State Electrochem. 2018, 22, 3467-3474.
doi: 10.1007/s10008-018-4061-5
Zhang, M.; Yi, J.; Huang, Y.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.
Shu, J.; Li, R.; Lian, Z.; Zhang, W.; Jin, R.; Yang, H.; Li, S. In-situ oxidation of palladium-Iridium nanoalloy anchored on nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation. J. Colloid Interf. Sci. 2022, 605, 44-53.
doi: 10.1016/j.jcis.2021.07.056
Zhang, Q.; Yang, Z.; Ling, Y.; Yu, X.; Zhang, Y.; Cheng, H. Improvement in stability of PtRu electrocatalyst by carbonization of in-situ polymerized polyaniline. Int. J. Hydrogen Energy 2018, 43, 12730-12738.
doi: 10.1016/j.ijhydene.2018.03.160
Zhao, S.; Yin, H.; Du, L.; Yin, G.; Tang, Z.; Liu, S. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.
doi: 10.1039/c3ta14809b
Lv, R.; Cui, T.; Jun, M.; Zhang, Q.; Cao, A.; Su, D. S.; Zhang, Z.; Yoon, S.; Miyawaki, J.; Mochida, I.; Kang, F. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv. Funct. Mater. 2011, 21, 999-1006.
doi: 10.1002/adfm.201001602
La-Torreriveros, L.; Guzmanblas, R.; Méndeztorres, A. E.; Prelas, M.; Tryk, D. A.; Cabrera, C. R. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 2012, 4, 1134-1147.
doi: 10.1021/am2018628
Santos Pereira, V.; da Silva, J. C. M.; Oliveira Neto, A.; Spinacé, E. V. PtRu nanoparticles supported on phosphorous-doped carbon as electrocatalysts for methanol electro-oxidation. Electrocatalysis 2017, 8, 245-251.
doi: 10.1007/s12678-017-0360-3
Shi, Y.; Zhu, W.; Shi, H.; Liao, F.; Fan, Z.; Shao, M. Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction. J. Colloid Interf. Sci. 2019, 557, 729-736.
doi: 10.1016/j.jcis.2019.09.038
Holme, T.; Zhou, Y.; Pasquarelli, R.; O'Hayre, R. First principles study of doped carbon supports for enhanced platinum catalysts. Phys. Chem. Chem. Phys. 2010, 12, 9461-9468.
doi: 10.1039/b927263a
Pei, C.; Ding, R.; Yu, X.; Feng, L. Electrochemical oxygen reduction reaction performance boosted by N, P doped carbon layer over manganese dioxide nanorod. ChemCatChem. 2019, 11, 4617-4623.
doi: 10.1002/cctc.201900886
Zhou, Q.; Wu, J.; Pan, Z.; Kong, X.; Cui, Z.; Wu, D.; Hu, G. Pt supported on boron, nitrogen co-doped carbon nanotubes (BNC NTs) for effective methanol electrooxidation. Int. J. Hydrogen Energy 2020, 45, 33634-33640.
doi: 10.1016/j.ijhydene.2020.09.056
Sun, Y.; Du, C.; Han, G.; Qu, Y.; Du, L.; Wang, Y.; Chen, G.; Gao, Y.; Yin, G. Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochim. Acta 2016, 212, 313-321.
doi: 10.1016/j.electacta.2016.06.168
Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energ. Environ. Sci. 2014, 7, 2535-2558.
doi: 10.1039/C3EE43886D
Gao, Z.; Wang, C.; Li, J.; Zhu, Y.; Zhang, Z.; Hu, W. Conductive metal-organic frameworks for electrocatalysis: achievements, challenges, and opportunities. Acta Phys. -Chim. Sin. 2021, 2010025.
Chen, W.; Xue, J.; Bao, Y.; Feng, L. Surface engineering of nanoceria facet dependent coupling effect on Pt nanocrystals for electro-catalysis of methanol oxidation reaction. Chem. Eng. J. 2020, 381, 122752.
doi: 10.1016/j.cej.2019.122752
Qi, L.; Yin, Y.; Tu, W.; Wu, B.; Wang, Z.; Liu, J.; Gu, J.; Zou, Z. Preparation of Pt-TiO2/graphene composites with high catalytic activity towards methanol oxidation and oxygen reduction reaction. J. Electrochem. 2014, 20, 377-381.
Han, J.; Zhou, Z.; Qiang, W.; Lv, M.; Chen, C.; Sun, S. Preparation of Pt/H-TiO2 catalyst with improved catalytic performance for methanol electrooxidation. J. Electrochem. 2014, 20, 110-115.
Wang, S.; Zhu, J.; Wu, X.; Feng, L. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105-1109.
doi: 10.1016/j.cclet.2021.08.042
Li, J.; Zhao, L.; Li, X.; Hao, S.; Wang, Z. Fabrication of C@MoxTi1−xO2−δ nanocrystalline with functionalized interface as efficient and robust PtRu catalyst support for methanol electrooxidation. J. Energy Chem. 2020, 40, 7-14.
doi: 10.1016/j.jechem.2019.02.004
Chen, K.; Shen, T.; Lu, Y.; Hu, Y.; Wang, J.; Zhang, J.; Wang, D. Engineering titanium oxide-based support for electrocatalysis. J. Energy Chem. 2022, 67, 168-183.
doi: 10.1016/j.jechem.2021.09.048
Yue, X.; Pu, Y.; Zhang, W.; Zhang, T.; Gao, W. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. J. Energy Chem. 2020, 49, 275-282.
doi: 10.1016/j.jechem.2020.02.045
Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170-175.
doi: 10.1021/ja00469a029
Hu, Y.; Zhu, A.; Zhang, C.; Zhang, Q.; Liu, Q. Microwave-assisted synthesis of double-shell PtRu/TiO2 catalyst towards methanol electro-oxidation. Int. J. Hydrogen Energy 2015, 40, 15652-15662.
doi: 10.1016/j.ijhydene.2015.09.094
Chen, G.; Bare, S. R.; Mallouk, T. E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 2002, 149, A1092-A1099.
doi: 10.1149/1.1491237
Fuentes, R. E.; Garcia, B. L.; Weidner, J. W. A Nb-doped TiO2 electrocatalyst for use in direct methanol fuel cells. ECS Trans. 2008, 12, 239-248.
doi: 10.1149/1.2921550
Sekar, A.; Metzger, N.; Rajendran, S.; Elangovan, A.; Cao, Y.; Peng, F.; Li, X.; Li, J. PtRu catalysts on nitrogen-doped carbon nanotubes with conformal hydrogenated TiO2 shells for methanol oxidation. ACS Appl. Nano. Mater. 2022, 5, 3275–3288
doi: 10.1021/acsanm.1c03742
Matsui, T.; Fujiwara, K.; Okanishi, T.; Kikuchi, R.; Takeguchi, T.; Eguchi, K. Electrochemical oxidation of CO over tin oxide supported platinum catalysts. J. Power Sources 2006, 155, 152-156.
doi: 10.1016/j.jpowsour.2005.05.003
Saha, M. S.; Li, R.; Sun, X. Composite of Pt-Ru supported SnO2 nanowires grown on carbon paper for electrocatalytic oxidation of methanol. Electrochem. Commun. 2007, 9, 2229-2234.
doi: 10.1016/j.elecom.2007.06.032
Kakati, N.; Maiti, J.; Jee, S.; Lee, S.; Yoon, Y. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell. J. Alloy. Compd. 2011, 509, 5617-5622.
doi: 10.1016/j.jallcom.2011.02.087
Wang, Q.; Tao, H.; Li, Z.; Chen, C.; Liu, S.; Han, L.; Lu, X. Improving electrochemical activity of PtRu/SnO2/C catalyst by reduction treatment and alkaline etching. J. Energy Chem. 2016, 25, 811-816.
doi: 10.1016/j.jechem.2016.05.003
Park, K.; Lee, Y.; Sung, Y. Nanostructure catalysts prepared by multi-sputtering deposition process for enhanced methanol electrooxidation reaction. Appl. Catal. B: Environ. 2013, 132-133, 237-244.
Hou, Z.; Yi, B.; Yu, H.; Lin, Z.; Zhang, H. CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J. Power Sources 2003, 123, 116-125.
doi: 10.1016/S0378-7753(03)00515-9
Tsiouvaras, N.; Martínez-Huerta, M. V.; Moliner, R.; Lázaro, M. J.; Rodríguez, J. L.; Pastor, E.; Peña, M. A.; Fierro, J. L. G. CO tolerant PtRu-MoOx nanoparticles supported on carbon nanofibers for direct methanol fuel cells. J. Power Sources 2009, 186, 299-304.
doi: 10.1016/j.jpowsour.2008.10.026
Kunitomo, H.; Ishitobi, H.; Nakagawa, N. Optimized CeO2 content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells. J. Power Sources 2015, 297, 400-407.
doi: 10.1016/j.jpowsour.2015.07.002
Wang, Q.; Wang, G.; Sasaki, K.; Takeguchi, T.; Yamanaka, T.; Sadakane, M.; Ueda, W. Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. J. Power Sources 2013, 241, 728-735.
doi: 10.1016/j.jpowsour.2013.06.020
Feng, C.; Takeuchi, T.; Abdelkareem, M. A.; Tsujiguchi, T.; Nakagawa, N. Carbon-CeO2 composite nanofibers as a promising support for a PtRu anode catalyst in a direct methanol fuel cell. J. Power Sources 2013, 242, 57-64.
doi: 10.1016/j.jpowsour.2013.04.157
Wang, S.; Jiang, S. P.; Wang, X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta 2011, 56, 3338-3344.
doi: 10.1016/j.electacta.2011.01.016
Kolla, P.; Smirnova, A. Methanol oxidation on hybrid catalysts: PtRu/C nanostructures promoted with cerium and titanium oxides. Int. J. Hydrogen Energy 2013, 38, 15152-15159.
doi: 10.1016/j.ijhydene.2013.09.096
Bao, Y.; Liu, H.; Liu, Z.; Wang, F.; Feng, L. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation. Appl. Catal. B: Environ. 2020, 274, 119106.
doi: 10.1016/j.apcatb.2020.119106
Li, M.; Feng, L. Advances of phosphide promoter assisted Pt based catalyst for electrooxidation of methanol. J. Electrochem. 2022, 28, 2106211.
Chang, J.; Feng, L.; Liu, C.; Xing, W.; Hu, X. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem. Int. Ed. 2014, 53, 122-126.
doi: 10.1002/anie.201308620
Wang, F.; Xue, H.; Tian, Z.; Xing, W.; Feng, L. Fe2P as a novel efficient catalyst promoter in Pd/C system for formic acid electro-oxidation in fuel cells reaction. J. Power Sources 2018, 375, 37-42.
doi: 10.1016/j.jpowsour.2017.11.055
Wang, F.; Fang, B.; Yu, X.; Feng, L. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation. ACS Appl. Mater. Interfaces 2019, 11, 9496-9503.
doi: 10.1021/acsami.8b18029
Liu, H.; Yang, D.; Bao, Y.; Yu, X.; Feng, L. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction. J. Power Sources 2019, 434, 226754.
doi: 10.1016/j.jpowsour.2019.226754
Feng, L.; Li, K.; Chang, J.; Liu, C.; Xing, W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells. Nano Energy 2015, 15, 462-469.
doi: 10.1016/j.nanoen.2015.05.007
Chang, J.; Feng, L.; Liu, C.; Xing, W. Ni2P makes application of the PtRu catalyst much stronger in direct methanol fuel cells. ChemSusChem. 2015, 8, 3340-3347.
doi: 10.1002/cssc.201500357
Bao, Y.; Wang, F.; Gu, X.; Feng, L. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation. Nanoscale 2019, 11, 18866-18873.
doi: 10.1039/C9NR07158J
Qiao, W.; Yang, X.; Li, M.; Feng, L. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. Nanoscale 2021, 13, 6884-6889.
doi: 10.1039/D1NR01005K
Zhao, X.; Liu, Q.; Li, Q.; Chen, L.; Mao, L.; Wang, H.; Chen, S. Two-dimensional electrocatalysts for alcohol oxidation: a critical review. Chem. Eng. J. 2020, 400, 125744.
doi: 10.1016/j.cej.2020.125744
Huang, L.; Zaman, S.; Wang, Z.; Niu, H.; You, B.; Xia, B. Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. -Chim. Sin. 2021, 37, 2009035.
Li, J.; Wang, S.; Chang, J.; Feng, L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.
doi: 10.1016/j.apmate.2022.01.003
Xu, H.; Shang, H.; Wang, C.; Du, Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.
doi: 10.1002/adfm.202000793
Yang, L.; Liu, Z.; Zhu, S.; Feng, L.; Xing, W. Ni-based layered double hydroxide catalysts for oxygen evolution reaction. Mater. Today Phys. 2021, 16, 100292.
doi: 10.1016/j.mtphys.2020.100292
Wu, Y.; Xie, N.; Li, X.; Fu, Z.; Wu, X.; Zhu, Q. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.
Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M.; Guo, S. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117-10141.
doi: 10.1002/adma.201601909
Kim, Y.; Nam, S.; Shim, H.; Ahn, H.; Anand, M.; Kim, W. Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation. Electrochem. Commun. 2008, 10, 1016-1019.
doi: 10.1016/j.elecom.2008.05.003
Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.
doi: 10.1002/adma.200390087
Ma, S. -Y.; Li, H. -H.; Hu, B. -C.; Cheng, X.; Fu, Q. -Q.; Yu, S. -H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890-5895.
doi: 10.1021/jacs.7b01482
Yin, S.; Wang, H.; Deng, K.; Dai, Z.; Wang, Z.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Ultralong ternary PtRuTe mesoporous nanotubes fabricated by micelle assembly with a self-sacrificial template. Chem. Eur. J. 2019, 25, 5316-5321.
doi: 10.1002/chem.201806382
Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175-6200.
doi: 10.1039/C8CS00113H
Uehara, H.; Okawa, Y.; Sasaki, Y.; Uosaki, K. Monolayer formation of a Pt-Ru dinuclear complex on a gold (111) surface and its conversion to a Pt-Ru two-dimensional nanocomposite having electrocatalytic activity. Chem. Lett. 2009, 38, 148-149.
doi: 10.1246/cl.2009.148
Tian, H.; Yu, Y.; Wang, Q.; Li, J.; Rao, P.; Li, R.; Du, Y.; Jia, C.; Luo, J.; Deng, P.; Shen, Y.; Tian, X. Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction. Int. J. Hydrogen Energy 2021, 46, 31202-31215.
doi: 10.1016/j.ijhydene.2021.07.006
Pan, Y.; Li, H.; Wang, Z.; Han, Y.; Wu, Z.; Zhang, X.; Lai, J.; Wang, L.; Feng, S. High-efficiency methanol oxidation electrocatalysts realized by ultrathin PtRuM-O (M = Ni, Fe, Co) nanosheets. Chem. Commun. 2020, 56, 9028-9031.
doi: 10.1039/D0CC00361A
Liang, W.; Wang, Y.; Zhao, L.; Guo, W.; Li, D.; Qin, W.; Wu, H.; Sun, Y.; Jiang, L. 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 2021, 33, 2100713.
doi: 10.1002/adma.202100713
Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; Zhao, M.; Lu, Q.; Li, B.; Zong, Y.; Yan, C.; Wang, G.; Xu, Z. J.; Zhang, H. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.
doi: 10.1002/adma.201603075
Teng, X.; Maksimuk, S.; Frommer, S.; Yang, H. Three-dimensional PtRu nanostructures. Chem. Mater. 2007, 19, 36-41.
doi: 10.1021/cm061979b
Li, M.; Zheng, H.; Han, G.; Xiao, Y.; Li, Y. Facile synthesis of binary PtRu nanoflowers for advanced electrocatalysts toward methanol oxidation. Catal. Commun. 2017, 92, 95-99.
doi: 10.1016/j.catcom.2017.01.014
Shang, C.; Guo, Y.; Wang, E. Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation. J. Mater. Chem. A 2019, 7, 2547-2552.
doi: 10.1039/C9TA00191C
Jiang, B.; Ataee-Esfahani, H.; Li, C.; Alshehri, S. M.; Ahamad, T.; Henzie, J.; Yamauchi, Y. Mesoporous trimetallic PtPdRu spheres as superior electrocatalysts. Chem. Eur. J. 2016, 22, 7174-7178.
doi: 10.1002/chem.201600774
Ma, J.; Liu, B.; Wang, R.; Sun, Z.; Zhang, Y.; Sun, Y.; Cai, Z.; Li, Y.; Zou, J. Single-Cu-atoms anchored on 3D macro-porous carbon matrix as efficient catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Chin. Chem. Lett. 2022, 33, 2585-2589.
doi: 10.1016/j.cclet.2021.09.108
Tian, H.; Wu, D.; Li, J.; Luo, J.; Jia, C.; Liu, Z.; Huang, W.; Chen, Q.; Shim, C. M.; Deng, P.; Shen, Y.; Tian, X. Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction. J. Energy Chem. 2022, 70, 230-235.
doi: 10.1016/j.jechem.2022.02.021
Sun, H.; Song, S.; Xu, X.; Dai, J.; Yu, J.; Zhou, W.; Shao, Z.; Jung, W. Recent progress on structurally ordered materials for electrocatalysis. Adv. Energy Mater. 2021, 11, 2101937.
doi: 10.1002/aenm.202101937
Liu, D.; Yang, N.; Zeng, Q.; Liu, H.; Chen, D.; Cui, P.; Xu, L.; Hu, C.; Yang, J. Core-shell Ag-Pt nanoparticles: a versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. Chin. Chem. Lett. 2021, 32, 3288-3297.
doi: 10.1016/j.cclet.2021.04.053
Zhao, Y.; Liu, Y.; Miao, B.; Ding, Y.; Jin, P.; Chen, Y. One-dimensional rhodium-nickel alloy assemblies with nano-dendrite subunits for alkaline methanol oxidation. Chin. J. Struct. Chem. 2022, 41, 2204040-2204045.
Zhao, W.; Ni, B.; Yuan, Q.; He, P.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with Sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.
doi: 10.1002/aenm.201601593
Zou, L.; Guo, J.; Liu, J.; Zou, Z.; Akins, D. L.; Yang, H. Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates. J. Power Sources 2014, 248, 356-362.
doi: 10.1016/j.jpowsour.2013.09.086
Thepkaew, J.; Therdthianwong, S.; Therdthianwong, A.; Kucernak, A.; Wongyao, N. Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation. Int. J. Hydrogen Energy 2013, 38, 9454-9463.
doi: 10.1016/j.ijhydene.2012.12.038
Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energ. Environ. Sci. 2015, 8, 350-363.
doi: 10.1039/C4EE02162B
Liang, Y.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. Synthesis and structure-activity relationship exploration of carbon-supported PtRuNi nanocomposite as a CO-tolerant electrocatalyst for proton exchange membrane fuel cells. J. Phys. Chem. B 2006, 110, 7828-7834.
doi: 10.1021/jp0602732
Lee, H.; Park, S.; Kim, H. Preparation of CO-tolerant PtRuNi/C ternary electrocatalyst having a composition gradient shell. Chem. Eng. J. 2021, 414, 128792.
doi: 10.1016/j.cej.2021.128792
Wang, W.; Wang, R.; Wang, H.; Ji, S.; Key, J.; Li, X.; Lei, Z. An advantageous method for methanol oxidation: design and fabrication of a nanoporous PtRuNi trimetallic electrocatalyst. J. Power Sources 2011, 196, 9346-9351.
doi: 10.1016/j.jpowsour.2011.06.101
Li, H.; Pan, Y.; Zhang, D.; Han, Y.; Wang, Z.; Qin, Y.; Lin, S.; Wu, X.; Zhao, H.; Lai, J.; Huang, B.; Wang, L. Surface oxygen-mediated ultrathin PtRuM (Ni, Fe and Co) nanowires boosting methanol oxidation reaction. J. Mater. Chem. A 2020, 8, 2323-2330.
doi: 10.1039/C9TA11745H
Henry, J. B.; Maljusch, A.; Huang, M.; Schuhmann, W.; Bondarenko, A. S. Thin-film Cu-Pt(111) near-surface alloys: active electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 1457-1460.
doi: 10.1021/cs300165t
Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578-7584.
doi: 10.1021/acscatal.8b00366
Huang, M.; Wu, C.; Guan, L. Chemical corrosion of PtRuCu6/C for highly efficient methanol oxidation. J. Power Sources 2016, 306, 489-494.
doi: 10.1016/j.jpowsour.2015.12.072
Jeon, M. K.; Cooper, J. S.; McGinn, P. J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach. J. Power Sources 2008, 185, 913-916.
doi: 10.1016/j.jpowsour.2008.08.058
Wang, D.; Chou, H.; Lin, Y.; Lai, F.; Chen, C.; Lee, J.; Hwang, B.; Chen, C. Simple replacement reaction for the preparation of ternary Fe1-xPtRux nanocrystals with superior catalytic activity in methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 10011-10020.
doi: 10.1021/ja3010754
Zhu, J.; Cheng, F.; Tao, Z.; Chen, J. Electrocatalytic methanol oxidation of Pt0.5Ru0.5-xSnx/C (x = 0-0.5). J. Phys. Chem. C 2008, 112, 6337-6345.
doi: 10.1021/jp8000543
Neburchilov, V.; Wang, H.; Zhang, J. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC. Electrochem. Commun. 2007, 9, 1788-1792.
doi: 10.1016/j.elecom.2007.04.001
Rethinasabapathy, M.; Kang, S.; Haldorai, Y.; Jonna, N.; Jankiraman, M.; Lee, G.; Jang, S.; Natesan, B.; Roh, C.; Huh, Y. Quaternary PtRuFeCo nanoparticles supported N-doped graphene as an efficient bifunctional electrocatalyst for low-temperature fuel cells. J. Ind. Eng. Chem. 2019, 69, 285-294.
doi: 10.1016/j.jiec.2018.09.043
Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. J. Energy Chem. 2022, 68, 721-751.
doi: 10.1016/j.jechem.2021.12.026
Chai, G.; Yu, J. Highly efficient Pt-Ru-Co-W quaternary anode catalysts for methanol electrooxidation discovered by combinatorial analysis. J. Mater. Chem. 2009, 19, 6842-6848.
doi: 10.1039/b823053f
Choi, W. C.; Kim, J. D.; Woo, S. I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry. Catal. Today 2002, 74, 235-240.
doi: 10.1016/S0920-5861(02)00026-3
Gao, F.; Zhang, Y.; You, H.; Li, Z.; Zou, B.; Du, Y. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for Robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.
doi: 10.1002/smll.202101428
Hunt, S. T.; Román-Leshkov, Y. Principles and methods for the rational design of core-shell nanoparticle catalysts with ultralow noble metal loadings. Accounts Chem. Res. 2018, 51, 1054-1062.
doi: 10.1021/acs.accounts.7b00510
Xie, J.; Zhang, Q.; Gu, L.; Xu, S.; Wang, P.; Liu, J.; Ding, Y.; Yao, Y. F.; Nan, C.; Zhao, M.; You, Y.; Zou, Z. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation. Nano Energy 2016, 21, 247-257.
doi: 10.1016/j.nanoen.2016.01.013
Park, Y.; Lee, B.; Kim, C.; Oh, Y.; Nam, S.; Park, B. The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. J. Mater. Res. 2009, 24, 2762-2766.
doi: 10.1557/jmr.2009.0331
Muthuswamy, N.; de la Fuente, J. L. G.; Tran, D. T.; Walmsley, J.; Tsypkin, M.; Raaen, S.; Sunde, S.; Rønning, M.; Chen, D. Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int. J. Hydrogen Energy 2013, 38, 16631-16641.
doi: 10.1016/j.ijhydene.2013.02.056
Zou, J.; Wu, M.; Ning, S.; Huang, L.; Kang, X.; Chen, S. Ru@Pt core-shell nanoparticles: impact of the atomic ordering of the Ru metal core on the electrocatalytic activity of the Pt shell. ACS Sustain. Chem. Eng. 2019, 7, 9007-9016.
doi: 10.1021/acssuschemeng.9b01270
Chen, T.; Lin, T.; Luo, T.; Choi, Y.; Lee, J. Effects of Pt shell thicknesses on the atomic structure of Ru-Pt core-shell nanoparticles for methanol electrooxidation applications. ChemPhysChem. 2010, 11, 2383-2392.
doi: 10.1002/cphc.200901006
Yin, S.; Kumar, R. D.; Yu, H.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Pt@mesoporous PtRu yolk-shell nanostructured electrocatalyst for methanol oxidation reaction. ACS Sustain. Chem. Eng. 2019, 7, 14867-14873.
doi: 10.1021/acssuschemeng.9b02958
Cheng, Y.; Shen, P.; Jiang, S. Enhanced activity and stability of core-shell structured PtRuNix electrocatalysts for direct methanol fuel cells. Int. J. Hydrogen Energy 2016, 41, 1935-1943.
doi: 10.1016/j.ijhydene.2015.10.121
Wang, R.; Li, H.; Feng, H.; Wang, H.; Lei, Z. Preparation of carbon-supported core@shell PdCu@PtRu nanoparticles for methanol oxidation. J. Power Sources 2010, 195, 1099-1102.
doi: 10.1016/j.jpowsour.2009.08.055
Matin, M.; Lee, E.; Kim, H.; Yoon, W.; Kwon, Y. Rational syntheses of core-shell Fe@(PtRu) nanoparticle electrocatalysts for the methanol oxidation reaction with complete suppression of CO-poisoning and highly enhanced activity. J. Mater. Chem. A 2015, 3, 17154.
doi: 10.1039/C5TA03809J
Cheng, Y.; Shen, P.; Saunders, M.; Jiang, S. Core-shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells. Electrochim. Acta 2015, 177, 217-226.
doi: 10.1016/j.electacta.2015.01.137
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Shuaiwen Li , Zihui Chen , Feng Yang , Wanqing Yue . The age of vanadium-based nanozymes: Synthesis, catalytic mechanisms, regulation and biomedical applications. Chinese Chemical Letters, 2024, 35(4): 108793-. doi: 10.1016/j.cclet.2023.108793
Di Wang , Qing-Song Chen , Yi-Ran Lin , Yun-Xin Hou , Wei Han , Juan Yang , Xin Li , Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243