Revealing the Role of Elementary Doping in Photocatalytic Phenol Mineralization
- Corresponding author: Jiazang Chen, chenjiazang@sxicc.ac.cn
Citation:
Houkui Xiang, Zhijian Wang, Jiazang Chen. Revealing the Role of Elementary Doping in Photocatalytic Phenol Mineralization[J]. Chinese Journal of Structural Chemistry,
;2022, 41(9): 220906.
doi:
10.14102/j.cnki.0254-5861.2022-0097
Parvulescu, V. I.; Epron, F.; Garcia, H.; Granger, P. Recent progress and prospects in catalytic water treatment. Chem. Rev. 2022, 122, 2981-3121.
doi: 10.1021/acs.chemrev.1c00527
Cheng, Z.; Ling, L.; Shang, C. Near-ultraviolet light-driven photocata-lytic chlorine activation process with novel chlorine activation mechanisms. ACS ES & T Water 2021, 1, 2067-2075.
Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobio. C 2013, 15, 1-20.
doi: 10.1016/j.jphotochemrev.2012.10.001
Luo, T.; Wang, Z.; Wei, X.; Huang, X.; Bai, S.; Chen, J. Surface enriching promotes decomposition of benzene from air. Catal. Sci. Technol. 2022, 12, 2340-2345.
Tao, H. B.; Xu, Y.; Huang, X.; Chen, J.; Pei, L.; Zhang, J.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498-1509.
doi: 10.1016/j.joule.2019.03.012
Siahrostami, S.; Li, G. L.; Viswanathan, V.; Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 2017, 8, 1157-1160.
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
doi: 10.1021/cr5001892
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
doi: 10.1021/cr00033a004
Malato, S.; Fernández-Ibáñez, P.; Maldonado, M. I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 2009, 147, 1-59.
doi: 10.1016/j.cattod.2009.06.018
Awfa, D.; Ateia, M.; Fujii, M.; Yoshimura, C. Photocatalytic degradation of organic micropollutants: inhibition mechanisms by different fractions of natural organic matter. Water Res. 2020, 174, 115643.
doi: 10.1016/j.watres.2020.115643
Wang, Z.; Mei, B.; Chen, J. Removing semiconductor-cocatalyst interfacial electron transfer induced bottleneck for efficient photocatalysis: a case study on Pt/CdS photocatalyst. J. Catal. 2022, 408, 270-278.
doi: 10.1016/j.jcat.2022.03.014
Xu, Y.; Wang, Z.; Xiang, H.; Yang, D.; Wang, J.; Chen, J. Revealing the role of electronic doping for developing cocatalyst-free semiconducting photocatalysts. J. Phys. Chem. Lett. 2022, 2039-2045.
Xiang, H.; Wang, Z.; Chen, J. Revealing and facilitating the rate-determining step for efficient sunlight-driven photocatalysis. J. Phys. Chem. Lett. 2021, 12, 7665-7670.
Yang, D.; Wang, Z.; Chen, J. Revealing the role of surface elementary doping in photocatalysis. Catal. Sci. Technol. 2022, 10.1039/d2cy00410k.
Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541-6569.
Shi, J. L.; Hao, H.; Lang, X. Phenol-TiO2 complex photocatalysis: visible light-driven selective oxidation of amines into imines in air. Sus. Energy Fuels 2019, 3, 488-498.
Xu, H.; Shi, J. L.; Lyu, S.; Lang, X. Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. Chin. J. Catal. 2020, 41, 1468-1473.
Li, J.; Zeng, H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 2007, 129, 15839-15847.
Tao, H. B.; Fang, L.; Chen, J.; Yang, H. B.; Gao, J.; Miao, J.; Chen, S.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978-9985.
Nosaka, Y.; Nosaka, A. Understanding hydroxyl radical (·OH) generation processes in photocatalysis. ACS Energy Lett. 2016, 1, 356-359.
Chen, J.; Li, B.; Zheng, J.; Zhao, J.; Zhu, Z. Role of carbon nanotubes in dye-sensitized TiO2-based solar cells. J. Phys. Chem. C 2012, 116, 14848-14856.
Wang, Z.; Qiao, W.; Yuan, M.; Li, N.; Chen, J. Light-intensity-dependent semiconductor-cocatalyst interfacial electron transfer: a dilemma of sunlight-driven photocatalysis. J. Phys. Chem. Lett. 2020, 11, 2369-2373.
Wang, Z.; Xue, N.; Chen, J. Semiconductor-cocatalyst interfacial electron transfer dominates photocatalytic reaction. J. Phys. Chem. C 2019, 123, 24404-24408.
Chen, J.; Zhang, L.; Lam, Z.; Tao, H. B.; Zeng, Z.; Yang, H. B.; Luo, J.; Ma, L.; Li, B.; Zheng, J.; Jia, S.; Wang, Z.; Zhu, Z.; Liu, B. Tunneling interlayer for efficient transport of charges in metal oxide electrodes. J. Am. Chem. Soc. 2016, 138, 3183-3189.
Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859-864.
Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Sero, I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 2004, 126, 13550-13559.
Li, R.; Li, C. Chapter one-photocatalytic water splitting on semi-conductor-based photocatalysts. In Advances in Catalysis, Song, C., Ed. Academic Press. 2017, 60, pp 1-57.
Luo, J.; Chen, J.; Wu, B.; Goh, T. W.; Qiao, W.; Ku, Z.; Yang, H. B.; Zhang, L.; Sum, T. C.; Liu, B. Surface rutilization of anatase TiO2 for efficient electron extraction and stable Pmax output of perovskite solar cells. Chem 2018, 4, 911-923.
Chen, J.; Wei, X.; Xiang, H. Photocatalytic reaction device and method for wastewater treatment. CN 113620375 A 2021.
Yaxuan Jin , Chao Zhang , Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Yu-Yu Tan , Lin-Heng He , Wei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Er-Meng Wang , Ziyi Wang , Xu Ban , Xiaowei Zhao , Yanli Yin , Zhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Tingting Huang , Zhuanlong Ding , Hao Liu , Ping-An Chen , Longfeng Zhao , Yuanyuan Hu , Yifan Yao , Kun Yang , Zebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078