Citation: Houkui Xiang, Zhijian Wang, Jiazang Chen. Revealing the Role of Elementary Doping in Photocatalytic Phenol Mineralization[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220906. doi: 10.14102/j.cnki.0254-5861.2022-0097 shu

Revealing the Role of Elementary Doping in Photocatalytic Phenol Mineralization

  • Corresponding author: Jiazang Chen, chenjiazang@sxicc.ac.cn
  • Received Date: 28 April 2022
    Accepted Date: 7 May 2022
    Available Online: 11 May 2022

Figures(7)

  • Photocatalytic mineralization of recalcitrant contaminants like phenol in wastewater requires abundant hydroxyl radicals (·OH) to initiate the reaction prior to the ring-opening. We here increase the free energy for adsorption of O* species on TiO2 surface and slightly downshift the band position by tin doping. This can simultaneously promote the generation and suppress the annihilation of ·OH. Besides, tin doping can also facilitate semiconductor-cocatalyst-solution (SCS) interfacial electron transfer by lowering the potential barrier and synergistically enhance the photon utilization. By filming the photocatalyst onto our developed fixed bed reactors, the loss of photons resulting from undesirable absorption by contaminants can be alleviated. By these virtues, trace amount of phenol in wastewater can be efficiently mineralized.
  • 加载中
    1. [1]

      Parvulescu, V. I.; Epron, F.; Garcia, H.; Granger, P. Recent progress and prospects in catalytic water treatment. Chem. Rev. 2022, 122, 2981-3121.  doi: 10.1021/acs.chemrev.1c00527

    2. [2]

      Cheng, Z.; Ling, L.; Shang, C. Near-ultraviolet light-driven photocata-lytic chlorine activation process with novel chlorine activation mechanisms. ACS ES & T Water 2021, 1, 2067-2075.

    3. [3]

      Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobio. C 2013, 15, 1-20.  doi: 10.1016/j.jphotochemrev.2012.10.001

    4. [4]

      Luo, T.; Wang, Z.; Wei, X.; Huang, X.; Bai, S.; Chen, J. Surface enriching promotes decomposition of benzene from air. Catal. Sci. Technol. 2022, 12, 2340-2345.

    5. [5]

      Tao, H. B.; Xu, Y.; Huang, X.; Chen, J.; Pei, L.; Zhang, J.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498-1509.  doi: 10.1016/j.joule.2019.03.012

    6. [6]

      Siahrostami, S.; Li, G. L.; Viswanathan, V.; Nørskov, J. K. One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 2017, 8, 1157-1160.

    7. [7]

      Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.  doi: 10.1021/cr5001892

    8. [8]

      Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.  doi: 10.1021/cr00033a004

    9. [9]

      Malato, S.; Fernández-Ibáñez, P.; Maldonado, M. I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 2009, 147, 1-59.  doi: 10.1016/j.cattod.2009.06.018

    10. [10]

      Awfa, D.; Ateia, M.; Fujii, M.; Yoshimura, C. Photocatalytic degradation of organic micropollutants: inhibition mechanisms by different fractions of natural organic matter. Water Res. 2020, 174, 115643.  doi: 10.1016/j.watres.2020.115643

    11. [11]

      Wang, Z.; Mei, B.; Chen, J. Removing semiconductor-cocatalyst interfacial electron transfer induced bottleneck for efficient photocatalysis: a case study on Pt/CdS photocatalyst. J. Catal. 2022, 408, 270-278.  doi: 10.1016/j.jcat.2022.03.014

    12. [12]

      Xu, Y.; Wang, Z.; Xiang, H.; Yang, D.; Wang, J.; Chen, J. Revealing the role of electronic doping for developing cocatalyst-free semiconducting photocatalysts. J. Phys. Chem. Lett. 2022, 2039-2045.

    13. [13]

      Xiang, H.; Wang, Z.; Chen, J. Revealing and facilitating the rate-determining step for efficient sunlight-driven photocatalysis. J. Phys. Chem. Lett. 2021, 12, 7665-7670.

    14. [14]

      Yang, D.; Wang, Z.; Chen, J. Revealing the role of surface elementary doping in photocatalysis. Catal. Sci. Technol. 2022, 10.1039/d2cy00410k.

    15. [15]

      Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541-6569.

    16. [16]

      Shi, J. L.; Hao, H.; Lang, X. Phenol-TiO2 complex photocatalysis: visible light-driven selective oxidation of amines into imines in air. Sus. Energy Fuels 2019, 3, 488-498.

    17. [17]

      Xu, H.; Shi, J. L.; Lyu, S.; Lang, X. Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. Chin. J. Catal. 2020, 41, 1468-1473.

    18. [18]

      Li, J.; Zeng, H. C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 2007, 129, 15839-15847.

    19. [19]

      Tao, H. B.; Fang, L.; Chen, J.; Yang, H. B.; Gao, J.; Miao, J.; Chen, S.; Liu, B. Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 9978-9985.

    20. [20]

      Nosaka, Y.; Nosaka, A. Understanding hydroxyl radical (·OH) generation processes in photocatalysis. ACS Energy Lett. 2016, 1, 356-359.

    21. [21]

      Chen, J.; Li, B.; Zheng, J.; Zhao, J.; Zhu, Z. Role of carbon nanotubes in dye-sensitized TiO2-based solar cells. J. Phys. Chem. C 2012, 116, 14848-14856.

    22. [22]

      Wang, Z.; Qiao, W.; Yuan, M.; Li, N.; Chen, J. Light-intensity-dependent semiconductor-cocatalyst interfacial electron transfer: a dilemma of sunlight-driven photocatalysis. J. Phys. Chem. Lett. 2020, 11, 2369-2373.

    23. [23]

      Wang, Z.; Xue, N.; Chen, J. Semiconductor-cocatalyst interfacial electron transfer dominates photocatalytic reaction. J. Phys. Chem. C 2019, 123, 24404-24408.

    24. [24]

      Chen, J.; Zhang, L.; Lam, Z.; Tao, H. B.; Zeng, Z.; Yang, H. B.; Luo, J.; Ma, L.; Li, B.; Zheng, J.; Jia, S.; Wang, Z.; Zhu, Z.; Liu, B. Tunneling interlayer for efficient transport of charges in metal oxide electrodes. J. Am. Chem. Soc. 2016, 138, 3183-3189.

    25. [25]

      Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859-864.

    26. [26]

      Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Sero, I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 2004, 126, 13550-13559.

    27. [27]

      Li, R.; Li, C. Chapter one-photocatalytic water splitting on semi-conductor-based photocatalysts. In Advances in Catalysis, Song, C., Ed. Academic Press. 2017, 60, pp 1-57.

    28. [28]

      Luo, J.; Chen, J.; Wu, B.; Goh, T. W.; Qiao, W.; Ku, Z.; Yang, H. B.; Zhang, L.; Sum, T. C.; Liu, B. Surface rutilization of anatase TiO2 for efficient electron extraction and stable Pmax output of perovskite solar cells. Chem 2018, 4, 911-923.

    29. [29]

      Chen, J.; Wei, X.; Xiang, H. Photocatalytic reaction device and method for wastewater treatment. CN 113620375 A 2021.

  • 加载中
    1. [1]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    2. [2]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    3. [3]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    4. [4]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    5. [5]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    6. [6]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    7. [7]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    8. [8]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    9. [9]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    10. [10]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    11. [11]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    12. [12]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    13. [13]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    14. [14]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    15. [15]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    16. [16]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    17. [17]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    18. [18]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    19. [19]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    20. [20]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

Metrics
  • PDF Downloads(17)
  • Abstract views(525)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return