Phytate-Coordination Triggered Enrichment of Surface NiOOH Species on Nickel Foam for Efficient Urea Electrooxidation
- Corresponding author: Jiayuan Li, bxdong@yzu.edu.cn # These authors contributed equally to this work.
Citation:
Jiayuan Li, Yuefei Li, Qingyu Xue, Yuchi Gao, Yuanyuan Ma. Phytate-Coordination Triggered Enrichment of Surface NiOOH Species on Nickel Foam for Efficient Urea Electrooxidation[J]. Chinese Journal of Structural Chemistry,
;2022, 41(7): 220703.
doi:
10.14102/j.cnki.0254-5861.2022-0095
Ke, K.; Wang, G.; Cao, D.; Wang, G. Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Electrocatalysis 2020, 41-78.
Yao, S.; Wolfson, S.; Ahn, B.; Liu, C. Anodic oxidation of urea and an electrochemical approach to deureation. Nature 1973, 241, 471-472.
doi: 10.1038/241471a0
Sayed, E. T.; Eisa, T.; Mohamed, H. O.; Abdelkareem, M. A.; Allagui, A.; Alawadhi, H.; Chae, K. -J. Direct urea fuel cells: challenges and opportunities. J. Power Sources 2019, 417, 159-175.
doi: 10.1016/j.jpowsour.2018.12.024
Geng, S. -K.; Zheng, Y.; Li, S. -Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. -B.; Jaroniec, M.; Chen, P.; Liu, Q. -H. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904-912.
doi: 10.1038/s41560-021-00899-2
Senthilkumar, N.; Gnana Kumar, G.; Manthiram, A. 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells. Adv. Energy Mater. 2018, 8, 1702207.
doi: 10.1002/aenm.201702207
Singh, R. K.; Rajavelu, K.; Montag, M.; Schechter, A. Advances in catalytic electrooxidation of urea: a review. Energy Technol. 2021, 9, 2100017.
doi: 10.1002/ente.202100017
Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C. -L.; Huang, Y. -C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem. 2020, 6, 2974-2993.
doi: 10.1016/j.chempr.2020.07.022
Hu, X.; Zhu, J.; Li, J.; Wu, Q. Urea electrooxidation: current development and understanding of Ni-based catalysts. ChemElectroChem 2020, 7, 3211-3228.
doi: 10.1002/celc.202000404
Zhu, B.; Liang, Z.; Zou, R. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.
doi: 10.1002/smll.201906133
Feng, X.; Xiao, Y.; Huang, H. H.; Wang, Q.; Wu, J.; Ke, Z.; Tong, Y.; Zhang, J. Phytic acid-based FeCo bimetallic metal-organic gels for electro-catalytic oxygen evolution reaction. Chem. Asian J. 2021, 16, 3213-3220.
doi: 10.1002/asia.202100700
Chen, X.; Li, P.; Jin, Z.; Meng, Y.; Yuan, H.; Xiao, D. Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electro-catalyst for enhanced overall water splitting. J. Mater. Chem. A 2017, 5, 18786-18792.
doi: 10.1039/C7TA05386J
Li, P. Y.; Hong, W. T.; Liu, W. Fabrication of large scale self-supported WC/Ni(OH)2 electrode for high-current-density hydrogen evolution. Chin. J. Struct. Chem. 2021, 40, 1365-1371.
Wu, Y. L.; Xie, N.; Li, X. F.; Fu, Z. M.; Wu, X. T.; Zhu, Q. L. MOF-derived hierarchical hollow NiRu-C nanohybrid for efficient hydrogen evolution reaction. Chin. J. Struct. Chem. 2021, 40, 1346-1356.
Wu, H. S.; Miao, T. F.; Shi, H. X.; Xu, Y.; Fu, X. L.; Qian, L. Probing photocatalytic hydrogen evolution of cobalt complexes: experimental and theoretical methods. Chin. J. Struct. Chem. 2021, 40, 1696-1709.
Grdeń, M.; Alsabet, M.; Jerkiewicz, G. Surface science and electro-chemical analysis of nickel foams. ACS Appl. Mater. Inter. 2012, 4, 3012-3021.
doi: 10.1021/am300380m
Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A metal-free bifunctional electro-catalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444-452.
doi: 10.1038/nnano.2015.48
Wang, H.; Li, C.; An, J.; Zhuang, Y.; Tao, S. Surface reconstruction of NiCoP for enhanced biomass upgrading. J. Mater. Chem. A 2021, 9, 18421-18430.
doi: 10.1039/D1TA05425B
Hao, P.; Xin, Y.; Wang, Q.; Li, L.; Zhao, Z.; Wen, H.; Xie, J.; Cui, G.; Tang, B. Lanthanum-incorporated β-Ni(OH)2 nanoarrays for robust urea electro-oxidation. Chem. Commun. 2021, 57, 2029-2032.
doi: 10.1039/D0CC07969C
Huang, C.; Huang, Y.; Liu, C.; Yu, Y.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem. Int. Ed. 2019, 58, 12014-12017.
doi: 10.1002/anie.201903327
Sun, H.; Zhang, W.; Li, J. -G.; Li, Z.; Ao, X.; Xue, K. -H.; Ostrikov, K. K.; Tang, J.; Wang, C. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B-Environ. 2021, 284, 119740.
doi: 10.1016/j.apcatb.2020.119740
Sun, H.; Tung, C. -W.; Qiu, Y.; Zhang, W.; Wang, Q.; Li, Z.; Tang, J.; Chen, H. -C.; Wang, C.; Chen, H. M. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1174-1186.
doi: 10.1021/jacs.1c08890
Sun, H.; Yang, J. -M.; Li, J. -G.; Li, Z.; Ao, X.; Liu, Y. -Z.; Zhang, Y.; Li, Y.; Wang, C.; Tang, J. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Appl. Catal. B-Environ. 2020, 272, 118988.
doi: 10.1016/j.apcatb.2020.118988
Zhang, J.; Yu, P.; Zeng, G.; Bao, F.; Yuan, Y.; Huang, H. Boosting HMF oxidation performance via decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands. J. Mater. Chem. A 2021, 9, 9685-9691.
doi: 10.1039/D0TA11678E
Zhou, B.; Li, Y.; Zou, Y.; Chen, W.; Zhou, W.; Song, M.; Wu, Y.; Lu, Y.; Liu, J.; Wang, Y. Platinum modulates redox properties and 5-hydroxy-methylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem. Int. Ed. 2021, 60, 22908-22914.
doi: 10.1002/anie.202109211
Damian, A.; Omanovic, S. Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J. Power Sources 2006, 158, 464-476.
doi: 10.1016/j.jpowsour.2005.09.007
Šimpraga, R.; Tremiliosi-Filho, G.; Qian, S.; Conway, B. In situ determination of the 'real are factor' in H2 evolution electrocatalysis at porous Ni-Fe composite electrodes. J. Electroanal. Chem. 1997, 424, 141-151.
doi: 10.1016/S0022-0728(96)04907-8
Bai, L.; Harrington, D.; Conway, B. Behavior of overpotential —deposited species in faradaic reactions—Ⅱ. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes. Electrochim. Acta 1987, 32, 1713-1731.
doi: 10.1016/0013-4686(87)80006-3
McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.
doi: 10.1021/ja407115p
Garcia, A. C.; Touzalin, T.; Nieuwland, C.; Perini, N.; Koper, M. T. Enhancement of oxygen evolution activity of nickel oxyhydroxide by electrolyte alkali cations. Angew. Chem. Int. Ed. 2019, 58, 12999-13003.
doi: 10.1002/anie.201905501
Michael, J. D.; Demeter, E. L.; Illes, S. M.; Fan, Q.; Boes, J. R.; Kitchin, J. R. Alkaline electrolyte and Fe impurity effects on the performance and active-phase structure of NiOOH thin films for OER catalysis applications. J. Phys. Chem. C 2015, 119, 11475-11481.
doi: 10.1021/acs.jpcc.5b02458
Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639-2645.
doi: 10.1039/C5SC04486C
Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Nati. Acad. Sci. 2011, 108, 937-943.
doi: 10.1073/pnas.1006652108
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100