Citation: Ruitao Sun, Qin Liu, Wenzhuo Deng. ZnMn3O7: A New Layered Cathode Material for Fast-Charging Zinc-Ion Batteries[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220508. doi: 10.14102/j.cnki.0254-5861.2022-0092 shu

ZnMn3O7: A New Layered Cathode Material for Fast-Charging Zinc-Ion Batteries

  • Corresponding author: Wenzhuo Deng, wzdeng@fjirsm.ac.cn
  • Received Date: 21 April 2022
    Accepted Date: 12 May 2022

Figures(4)

  • Low-cost and high-energy-density manganese-based compounds are promising cathode materials for rechargeable aqueous zinc-ion batteries (AZIBs), however, they often experience cycling instability issues and inferior rate capability. Herein, we report a new layered manganese-based cathode material, ZnMn3O7 (ZMO), which possesses a large interlayer spacing of 4.8 Å and allows the intercalation of ~1.23 Zn-ions per formula unit (corresponding to a capacity of ~170 mAh/g). Importantly, ZMO exhibits good cycling stability (72.9% capacity retention over 400 cycles), ultrafast-charging capability (73% state of charge in 1.5 min), and an ultrahigh power density (3510 W/kg at 88 Wh/kg). Through kinetic characterization, the favorable diffusion of ions and the dominant capacitor contribution are found to be conducive to the achievement of superior fast charging capability. Furthermore, the charge storage mechanism is revealed by ex-situ XRD and ex-situ XPS. This work may shed light on the design of high-performance electrode materials for AZIBs.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652-657.  doi: 10.1038/451652a

    2. [2]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-935.  doi: 10.1126/science.1212741

    3. [3]

      Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.  doi: 10.1038/nchem.2085

    4. [4]

      Hosenuzzaman, M.; Rahim, N. A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A. B. M. A.; Nahar, A. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sust. Energ. Rev. 2015, 41, 284-297.  doi: 10.1016/j.rser.2014.08.046

    5. [5]

      Liu, T. C.; Pan, F.; Amine, K. Prospect and reality of concentration gradient cathode of lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 11-15.

    6. [6]

      Liu, S.; Kang, L.; Kim, J. M.; Chun, Y. T.; Zhang, J.; Jun, S. C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000477.  doi: 10.1002/aenm.202000477

    7. [7]

      Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540-550.  doi: 10.1038/s41560-019-0405-3

    8. [8]

      Jin, J.; Wu, L.; Huang, S.; Yan, M.; Wang, H.; Chen, L.; Hasan, T.; Li, Y.; Su, B. -L. Hierarchy design in metal oxides as anodes for advanced lithium-ion batteries. Small Methods 2018, 2, 1800171.  doi: 10.1002/smtd.201800171

    9. [9]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480-2501.  doi: 10.1021/acsenergylett.8b01426

    10. [10]

      Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.  doi: 10.1002/adfm.201802564

    11. [11]

      Chen, L. N.; Yan, M. Y.; Mei, Z. W.; Mai, L. Q. Research progress and prospect of aqueous zinc-ion battery. J. Inorg. Mater. 2017, 32, 225.  doi: 10.15541/jim20160192

    12. [12]

      Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58-84.  doi: 10.1016/j.mser.2018.10.002

    13. [13]

      Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z.; Chen, J. A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 2020, 11, 2199.  doi: 10.1038/s41467-020-16039-5

    14. [14]

      Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771-799.  doi: 10.1016/j.joule.2020.03.002

    15. [15]

      Zhu, K.; Wu, T.; Huang, K. NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-Inserted dual-cations and structural water in V3O8 layer. Adv. Energy Mater. 2019, 9, 1901968.  doi: 10.1002/aenm.201901968

    16. [16]

      Shin, J.; Choi, D. S.; Lee, H. J.; Jung, Y.; Choi, J. W. Hydrated intercalation for high-performance aqueous zinc-ion batteries. Adv. Energy Mater. 2019, 9, 1900083.  doi: 10.1002/aenm.201900083

    17. [17]

      Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci. 2018, 11, 3157-3162.  doi: 10.1039/C8EE01651H

    18. [18]

      Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.  doi: 10.1002/adma.201705580

    19. [19]

      Pang, Q.; Sun, C. L.; Yu, Y. H.; Zhao, K. N.; Zhang, Z. Y.; Voyles, P. M.; Chen, G.; Wei, Y. J.; Wang, X. D. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc-ion batteries with high rate capability and large capacity. Adv. Energy Mater. 2018, 8, 1800144.  doi: 10.1002/aenm.201800144

    20. [20]

      Hu, P.; Zhu, T.; Wang, X.; Wei, X.; Yan, M.; Li, J.; Luo, W.; Yang, W.; Zhang, W.; Zhou, L.; Zhou, Z.; Mai, L. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758-1763.  doi: 10.1021/acs.nanolett.7b04889

    21. [21]

      Cai, Y.; Liu, F.; Luo, Z.; Fang, G.; Zhou, J.; Pan, A.; Liang, S. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodiumion battery and aqueous zinc-ion battery cathode. Energy Storage Mater. 2018, 13, 168-174.  doi: 10.1016/j.ensm.2018.01.009

    22. [22]

      Hu, P.; Yan, M.; Zhu, T.; Wang, X.; Wei, X.; Li, J.; Zhou, L.; Li, Z.; Chen, L.; Mai, L. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 2017, 9, 42717-42722.  doi: 10.1021/acsami.7b13110

    23. [23]

      Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.  doi: 10.1038/nenergy.2016.119

    24. [24]

      Li, Q.; Ma, K.; Hong, C.; Yang, Z.; Qi, C.; Yang, G.; Wang, C. High-voltage K/Zn dual-ion battery with 100, 000-cycles life using zero-strain ZnHCF cathode. Energy Storage Mater. 2021, 42, 715-722.  doi: 10.1016/j.ensm.2021.08.017

    25. [25]

      Deng, W. J.; Li, Z. G.; Ye, Y. K.; Zhou, Z. Q.; Li, Y. B.; Zhang, M.; Yuan, X. R.; Hu, J.; Zhao, W. G.; Huang, Z. Y.; Li, C.; Chen, H. B.; Zheng, J. X.; Li, R. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater. 2021, 11, 2003639.  doi: 10.1002/aenm.202003639

    26. [26]

      Zhang, Q.; Li, C.; Li, Q.; Pan, Z.; Sun, J.; Zhou, Z.; He, B.; Man, P.; Xie, L.; Kang, L.; Wang, X.; Yang, J.; Zhang, T.; Shum, P. P.; Li, Q.; Yao, Y.; Wei, L. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 2019, 19, 4035-4042.  doi: 10.1021/acs.nanolett.9b01403

    27. [27]

      Yang, Q.; Mo, F.; Liu, Z.; Ma, L.; Li, X.; Fang, D.; Chen, S.; Zhang, S.; Zhi, C. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, e1901521.

    28. [28]

      Liu, Z.; Pulletikurthi, G.; Endres, F. A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158-64.  doi: 10.1021/acsami.6b01592

    29. [29]

      Gupta, T.; Kim, A.; Phadke, S.; Biswas, S.; Luong, T.; Hertzberg, B. J.; Chamoun, M.; Evans-Lutterodt, K.; Steingart, D. A. Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate. J. Power Sources 2016, 305, 22-29.  doi: 10.1016/j.jpowsour.2015.11.065

    30. [30]

      Guduru, R. K.; Icaza, J. C. A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 2016, 6, 41.  doi: 10.3390/nano6030041

    31. [31]

      Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.  doi: 10.1002/aenm.201400930

    32. [32]

      Naveed, A.; Yang, H.; Yang, J.; Nuli, Y.; Wang, J. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 2019, 58, 2760-2764.  doi: 10.1002/anie.201813223

    33. [33]

      Wan, F.; Niu, Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 16358-16367.  doi: 10.1002/anie.201903941

    34. [34]

      Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc-ion chemistry: the rechargeable zinc-ion battery. Angew. Chem. Int. Ed. 2012, 51, 933-935.  doi: 10.1002/anie.201106307

    35. [35]

      He, P.; Chen, Q.; Yan, M.; Xu, X.; Zhou, L.; Mai, L.; Nan, C. -W. Building better zinc-ion batteries: a materials perspective. EnergyChem 2019, 1, 100022.  doi: 10.1016/j.enchem.2019.100022

    36. [36]

      Konarov, A.; Voronina, N.; Jo, J. H.; Bakenov, Z.; Sun, Y. K.; Myung, S. T. Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 2018, 3, 2620-2640.  doi: 10.1021/acsenergylett.8b01552

    37. [37]

      Li, C.; Zhang, X.; He, W.; Xu, G.; Sun, R. Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications. J. Power Sources 2020, 449, 227596.  doi: 10.1016/j.jpowsour.2019.227596

    38. [38]

      Zhao, Q. H.; Ding, S. X.; Song, A. Y.; Qin, R. Z.; Pan, F. Tuning structure of manganese oxides to achieve high-performance aqueous Zn batteries. Chin. J. Struct. Chem. 2020, 39, 388-394.

    39. [39]

      Li, W. J.; Han, C.; Wang, Y.; Liu, H. K. Structural modulation of manganese oxides for zinc-ion batteries. Chin. J. Struct. Chem. 2020, 39, 31-35.

    40. [40]

      Wang, J.; Wang, J. -G.; Liu, H.; You, Z.; Wei, C.; Kang, F. Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 2019, 438, 226951.  doi: 10.1016/j.jpowsour.2019.226951

    41. [41]

      Hao, J.; Mou, J.; Zhang, J.; Dong, L.; Liu, W.; Xu, C.; Kang, F. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 2018, 259, 170-178.  doi: 10.1016/j.electacta.2017.10.166

    42. [42]

      Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F. Manganese sesquioxide as cathode material for multivalent zinc-ion battery with high capacity and long cycle life. Electrochim. Acta 2017, 229, 422-428.  doi: 10.1016/j.electacta.2017.01.163

    43. [43]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894-12901.  doi: 10.1021/jacs.6b05958

    44. [44]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.  doi: 10.1038/nenergy.2016.39

    45. [45]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.  doi: 10.1038/s41467-017-00467-x

    46. [46]

      Post, J. E.; Appleman, D. E. Chalcophanite, ZnMn3O7·3H2O: new crystal-structure determinations. Am. Mineral. 1988, 73, 1401-1404.

    47. [47]

      Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Elucidating the intercalation mechanism of zinc-ions into alpha-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265-9268.  doi: 10.1039/C5CC02585K

    48. [48]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27, 3609-3620.  doi: 10.1021/cm504717p

    49. [49]

      Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 12, 1569–1578.

    50. [50]

      Mao, Z.; Farkhondeh, M.; Pritzker, M.; Fowler, M.; Chen, Z. Dynamics of a blended lithium-ion battery electrode during galvanostatic intermittent titration technique. Electrochim. Acta 2016, 222, 1741-1750.  doi: 10.1016/j.electacta.2016.11.169

    51. [51]

      Wang, L.; Huang, K. W.; Chen, J.; Zheng, J. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci. Adv. 2019, 5, eaax4279.  doi: 10.1126/sciadv.aax4279

    52. [52]

      Zhang, G.; Wu, T.; Zhou, H.; Jin, H.; Liu, K.; Luo, Y.; Jiang, H.; Huang, K.; Huang, L.; Zhou, J. Rich alkali ions preintercalated vanadium oxides for durable and fast zinc-ion storage. ACS Energy Lett. 2021, 6, 2111-2120.  doi: 10.1021/acsenergylett.1c00625

    53. [53]

      Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; Wang, C. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775-9778.  doi: 10.1021/jacs.7b04471

  • 加载中
    1. [1]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    2. [2]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    3. [3]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    4. [4]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    5. [5]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    6. [6]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    7. [7]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    8. [8]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    9. [9]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    10. [10]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    11. [11]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    12. [12]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    13. [13]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    14. [14]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    15. [15]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    16. [16]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    17. [17]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    18. [18]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    19. [19]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(7)
  • Abstract views(347)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return