Citation: Wei Fu, Jiajie Fan, Quanjun Xiang. Ag2S Quantum Dots Decorated on Porous Cubic-CdS Nanosheets-assembled Flowers for Photocatalytic CO2 Reduction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220603. doi: 10.14102/j.cnki.0254-5861.2022-0090 shu

Ag2S Quantum Dots Decorated on Porous Cubic-CdS Nanosheets-assembled Flowers for Photocatalytic CO2 Reduction

  • Corresponding author: Quanjun Xiang, xiangqj@uestc.edu.cn
  • Received Date: 20 April 2022
    Accepted Date: 13 May 2022

Figures(10)

  • The production of renewable fossil fuels such as CH4 and CO by photocatalytic CO2 reduction has attracted more and more attention. However, single photocatalyst is less efficient for photocatalytic reduction of CO2 due to the fast recombination of photogenerated electron pairs. Herein, we successfully prepare CdS-Ag2S composite by assembling the Ag2S QDs cocatalyst on the surface of CdS nanosheet-assembled flower through oil-bath solvothermal method. This composite is prepared through a simple self-assembly strategy using cadmium chloride, ammonia and thiourea as precursors of the CdS nanosheet-assembled flower and silver nitrate and 3-mercaptopropionic acid as the precursors of Ag2S QDs. The average diameter of Ag2S QDs is apparently 6.0 nm. The light absorption edge of the composite is at around 560 nm, with the corresponding band gap at 2.14 eV. The CdS-Ag2S QDs composite with 5 wt% Ag2S QDs loaded achieves CO evolution rate of 16.6 μmol·g-1·h-1 without noble-metal cocatalysts. This strengthened photocatalytic performance and photocatalytic stability were attributed to the energy band broadening of Ag2S QDs caused by quantum size effect and the large specific surface area due to the assembled flower. The mechanism underlying the enhanced photocatalytic CO2 reduction activity is further proposed. This study demonstrates that semiconductor-based quantum dots are strong candidates for excellent cocatalysts in photocatalysis.
  • 加载中
    1. [1]

      Hao, W. Y.; Zhang, J. W.; Yuan, C.; Lu, Z. L.; Ma, B.; Ruan, W. S.; Liu, Z.; Teng, F. Gram-scale batch production of novel CdS hollow hexa-gonal prisms by a molten salt method and the improved photocatalytic stability. J. Alloys Compd. 2021, 891, 161987.

    2. [2]

      Chang, H. B.; Liu, J. B.; Dong, Z.; Wang, D. D.; Xin, Y.; Jiang, Z. L.; Tang, S. S. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 Modified AgNbO3 photocatalyst under visible-light irradiation. Chin. J. Struct. Chem. 2021, 40, 1595-1603.

    3. [3]

      Li, Y.; Gong, F.; Zhou, Q.; Feng, X. H.; Fan, J. J.; Xiang, Q. J. Crystalline isotype heptazine-/triazine-based carbon nitride hetero-junctions for an improved hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118381.  doi: 10.1016/j.apcatb.2019.118381

    4. [4]

      Wang, J. F.; Wang, P. F.; Hou, J.; Qian, J.; Wang, C.; Ao, Y. H. In situ surface engineering of ultrafine Ni2P nanoparticles on cadmium sulfide for robust hydrogen evolution. Catal. Sci. Technol. 2018, 8, 5406-5415.  doi: 10.1039/C8CY00519B

    5. [5]

      Ma, X. W.; Lin, H. F.; Li, Y. Y.; Wang, L.; Peng, X. P.; Yi. X. J. Dramati-cally enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7-22.

    6. [6]

      Chen, R.; Chen, J.; Che, H. N.; Zhou, G.; Ao, Y. H.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.

    7. [7]

      Cheng, L.; Zhang, D. N.; Liao, Y. L.; F.; Zhang, H. W.; Xiang, Q. J. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2019, 555, 94-103.  doi: 10.1016/j.jcis.2019.07.060

    8. [8]

      Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. S-Scheme heterojunction photocatalyst for CO2 photoreduction. Acta Phys. -Chim. Sin. 2021, 37, 2010024.

    9. [9]

      Li, Y.; Li, X.; Zhang, H. W.; Xiang, Q. J. Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horiz. 2020, 5, 765-786.

    10. [10]

      Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69-88.

    11. [11]

      Kozhevnikova, N. S.; Vorokh, A. S.; Shalaeva, E. V.; Baklanova, I. V.; Tyutyunnik, A. P.; Zubkov, V. G.; Yushkov, A. A.; Kolosov, V. Y. One-pot inorganic route to highly stable water-dispersible Ag2S quantum dots. J. Alloys Compd. 2017, 712, 418-424.  doi: 10.1016/j.jallcom.2017.04.112

    12. [12]

      Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627-636.  doi: 10.1016/S1872-2067(20)63684-1

    13. [13]

      Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou. X. W. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2019, 4, 1900586.

    14. [14]

      Xia, Y.; Yu, J. G. Reaction: rational design of highly active photocatalysts for CO2 conversion. Chem. 2020, 6, 1039-1040.  doi: 10.1016/j.chempr.2020.02.015

    15. [15]

      Wang, M.; Wu, X. Y.; Wang, S. S.; Lu, C. Z. A Stable Polyoxo-metalate-based coordination polymer for light driven degradation of organic dye pollutant. Chin. J. Struct. Chem. 2021, 40, 1449-1455.

    16. [16]

      Cheng, L.; Yin, H.; Cai, C.; Fan, J. J.; Xiang, Q. J. Single Ni atoms anchored on porous few-layer g-C3N4 for photocatalytic CO2 reduction: the role of edge confinement. Small 2020, 16, 2002411.  doi: 10.1002/smll.202002411

    17. [17]

      Cheng, L.; Zhang, D. N.; Liao, Y. L.; Fan, J. J.; Xiang, Q. J. Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction. Chin. J. Catal. 2021, 42, 131-140.  doi: 10.1016/S1872-2067(20)63623-3

    18. [18]

      Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552-10561.  doi: 10.1021/acsnano.0c04544

    19. [19]

      Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure. Acta Phys. -Chim. Sin. 2022, 38, 2111008.

    20. [20]

      Cheng, F. Y.; Yin, H.; Xiang, Q. J. Low-temperature solid-state prepa-ration of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity. Appl. Surf. Sci. 2017, 391, 432-439.  doi: 10.1016/j.apsusc.2016.06.169

    21. [21]

      Wang, P.; Sheng, Y.; Wang, F. Z.; Yu, H. G. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2-evolution performance: a case study of CdS-Au photocatalyst. Appl. Catal. B: Environ. 2018, 220, 561-569.  doi: 10.1016/j.apcatb.2017.08.080

    22. [22]

      Liu, J. J.; Fu, W.; Liao, Y. L.; Fan, J. J.; Xiang, Q. J. Recent advances in crystalline carbon nitride for photocatalysis. J. Mater. Sci. Technol. 2021, 91, 224-240.  doi: 10.1016/j.jmst.2021.03.017

    23. [23]

      Gao, H. H.; Zhang, S. W.; Xu, J. Z.; Dou, Y.; Zhou, J. T.; Zhou, R. Activating and optimizing activity of CdS@g-C3N4 heterojunction for photocatalytic hydrogen evolution through the synergistic effect of phosphorus doping and defects, J. Alloys Compd. 2020, 834, 155201.

    24. [24]

      Li, Q.; Shi, T.; Li, X.; Lv, K. L.; Li, M.; Liu, F. L; Li, H. Y.; Lei, M. Remarkable positive effect of Cd(OH)2 on CdS semiconductor for visible-light photocatalytic H2 production. Appl. Catal. B: Environ. 2018, 229, 8-14.

    25. [25]

      Lang, D.; Shen, T. T.; Xiang, Q. J. Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem. 2015, 7, 943-951.

    26. [26]

      Ren, D. D.; Shen, R. C.; Jiang, Z. M.; Lu, X. Y.; Li, X. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions. Chin. J. Catal. 2020, 41, 31-40.

    27. [27]

      Lan, J. S.; Gao, M. Y.; Haw, C. Y.; Khan, I.; Zhao, J. T.; Wang, Z. Y.; Guo, S. S.; Huang, S. L.; Li, S. P.; Kang, J. Y. Layer-by-layer assembly of Ag2S quantum dots-sensitized ZnO/SnO2 core-shell nanowire arrays for enhanced photocatalytic activity. Phys. Lett. A 2020, 384, 126708.

    28. [28]

      Liu, J.; Jing, L. Q.; Gao, G. F.; Xu, Y. G.; Xie, M.; Huang, L Y.; Ji, H. Y.; Xie, J. M.; Li, H. M. Ag2S quantum dots in situ coupled to hexagonal SnS2 with enhanced photocatalytic activity for MO and Cr(VI) removal. RSC Adv. 2017, 7, 46823-46831.

    29. [29]

      Liu, Y. P.; Geng, P. P.; Wang, J. X.; Yang, Z. S.; Lu, H. D.; Hai, J. F.; Lu, Z. H.; Fan, D. Y.; Li, M. In-situ ion-exchange synthesis Ag2S modified SnS2 nanosheets toward highly photocurrent response and photocatalytic activity. J. Colloid Interface Sci. 2018, 512, 784-791.

    30. [30]

      Li, F.; Yue, X. Y.; Zhou, H. P.; Fan, J. J.; Xiang, Q. J. Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction. Chin. J. Catal. 2021, 42, 1608-1616.

    31. [31]

      Yue, X. Y.; Fan, J. J.; Xiang, Q. J. Internal electric field on steering charge migration: modulations, determinations and energy-related applications. Adv. Funct. Mater. 2022, 32, 2110258.

    32. [32]

      He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9-20.

    33. [33]

      Li, F.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. J. Mater. Chem. A 2021, 9, 23765-23782.

    34. [34]

      Cheng, L.; Yue, X. Y.; Wang, L. X.; Zhang, D. N.; Zhang, P.; Fan, J. J.; Xiang, Q. J. Dual-single-atom tailoring with bifunctional integration for high-performance CO2 photoreduction. Adv. Mater. 2021, 33, 2105135.

    35. [35]

      Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. 2D/2D black phosphourous/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. -Chim. Sin. 2021, 37, 2010027.

    36. [36]

      Yu, H. G.; Xu, J. C.; Gao, D. D.; Fan, J. J.; Yu, J. G. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci. China Mater. 2020, 63, 2215-2227.

    37. [37]

      Wang, M.; Cheng, J. J.; Wang, X. F.; Hong, X. K.; Fan, J. J.; Yu, H. G. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin. J. Catal. 2021, 42, 37-45.

    38. [38]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci. China Mater. 2020, 11, 2153-2188.

    39. [39]

      Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

    40. [40]

      Ma, X. Y.; Xiang, Q. J.; Liao, Y. L.; Wen, T. L.; Zhang, H. W. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Appl. Surf. Sci. 2018, 457, 846-855.

    41. [41]

      Wang, X. J.; Tian, X.; Sun, Y. J.; Zhu, J. Y.; Li, F. T.; Mu, H. Y.; Zhao, J. Enhanced Schottky effect of a 2D-2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution. Nanoscale 2018, 10, 12315-12321.

    42. [42]

      Bie, C. B.; Fu, J. W.; Cheng, B.; Zhang, L. Y. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation. Appl. Surf. Sci. 2018, 462, 606-614.

    43. [43]

      Cheng, L.; Zhang, D. N.; Liao, Y. L.; Zhang, H. W.; Xiang, Q. J. One-step solid-phase synthesis of 2D ultrathin Cds nanosheets for enhanced visible-light photocatalytic hydrogen evolution. Sol. RRL 2019, 3, 1900062.

    44. [44]

      Lang, D.; Liu, F.; Qiu, G. H.; Feng, X. H.; Xiang, Q. J. Synthesis and visible-light photocatalytic performance of cadmium sulfide and oxide hexa-gonal nanoplates. ChemPlusChem. 2014, 79, 1726-1732.

    45. [45]

      Xiang, Q. J.; Cheng, B.; Yu, J. G. Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl. Catal. B: Environ. 2013, 138, 299-303.

    46. [46]

      Hu, X. L.; Li, Y. Y.; Tian, J.; Yang, H. R.; Cui, H. Z. Highly efficient full solar spectrum (UV-Vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures. J. Ind. Eng. Chem. 2017, 45, 189-196.

    47. [47]

      Zhao, X. X.; Yang, H.; Li, R. S.; Cui, Z. M.; Liu, X. Q. Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes. Environ. Sci. Pollut. R. 2019, 26, 5524-5538.

    48. [48]

      Javidi, J.; Haeri, A.; Shirazi, F. H.; Kobarfard, F.; Dadashzadeh, S. Synthesis, characterization, in vivo imaging, hemolysis, and toxicity of hydrophilic Ag2S near-infrared quantum dots. J. Clust. Sci. 2017, 28, 165-178.

    49. [49]

      You, Z. Y.; Yue, X. Y.; Zhang, D. N.; Fan, J. J.; Xiang, Q. J. Construction 0D/2D heterojunction by highly dispersed Ag2S quantum dots (QDs) loaded on the g-C3N4 nanosheets for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2022, 607, 662-675.

    50. [50]

      Wu, Q.; Zhou, M.; Gong, Y.; Li, Q. J.; Yang, M. Y.; Yang, Q. F.; Zhang, Z. X. Three-dimensional bandgap-tuned Ag2S quantum dots/reduced graphene oxide composites with enhanced adsorption and photocatalysis under visible light. Catal. Sci. Technol. 2018, 8, 5225-5235.

    51. [51]

      Koˇcí, K.; Praus, P.; Edelmannová, M.; Ambrožová, N.; Troppová, I.; Fridrichová, D.; Słowik, G.; Ryczkowski, J. Photocatalytic reduction of CO2 over CdS, ZnS and core/shell CdS/ZnS nanoparticles deposited on montmorillonite. J. Nanosci. Nanotechno. 2017, 17, 4041-4047.

    52. [52]

      He, B. W.; Bie, C. B.; Fei, X. G.; Cheng, B.; Yu, J. G.; Ho, W. K.; Al-Ghamdi, A. A.; Wageh, S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts. Appl. Catal. B: Environ. 2021, 288, 119994.

    53. [53]

      Yu, W. L.; Yin, J.; Li, Y.; Lai, B.; Jiang, T.; Li, Y. Y.; Liu, H. W.; Liu, J. L.; Zhao, C.; Singh, S. C.; Chen, J. S.; Lin, B.; Idriss, H.; Guo, C. L. Ag2S quantum dots as an infrared excited photocatalyst for hydrogen production. ACS Appl. Energy Mater. 2019, 2, 2751-2759.

    54. [54]

      Di, T. M.; Zhu, B. C.; Zhang, J.; Cheng, B.; Yu, J. G. Enhanced photo-catalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst. Appl. Surf. Sci. 2016, 389, 775-782.

    55. [55]

      Wang, Y.; Sun, M. X.; Fang, Y. L.; Sun, S. F.; He, J. Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. J. Mater. Sci. 2016, 51, 779-787.

    56. [56]

      Wang, B.; Liu, Z. F.; Han, J. H.; Hong, T. T.; Zhang, J.; Li, Y. J.; Cui, T. Hierarchical graphene/CdS/Ag2S sandwiched nanofilms for photoelectrochemical water splitting. Electrochim. Acta 2015, 176, 334-343.

    57. [57]

      Di, T. M.; Cheng, B.; Ho, W. K.; Yu, J. G.; Tang, H. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Appl. Surf. Sci. 2019, 470, 196-204.

    58. [58]

      Yang, Y.; Zhang, D.; Xiang, Q. J. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale 2019, 11, 18797-18805.

    59. [59]

      Karimipour, M.; Bagheri, M.; Molaei, M. One pot, rapid and green photo-chemical synthesis of Ag2S and Ag2S-ZnS core-shells. J. Electron. Mater. 2019, 48, 2555-2562.

    60. [60]

      Zamiri, R.; Ahangar, H. A.; Zakaria, A.; Zamiri, G.; Shabani, M.; Singh B.; Ferreira, J. M. F. The structural and optical constants of Ag2S semiconductor nanostructure in the far-infrared. Chem. Cent. J. 2015, 9, 28.

    61. [61]

      Kim, Y. Y.; Walsh, D. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions. Nanoscale 2010, 2, 240-247.

    62. [62]

      Yang, M. R.; Shi, Y. H.; Li, Y. G.; Li, H. J.; Luo, N. D.; Li, J.; Fan, J.; Zhou, A. N. Construction of 2D Bi2S3/CdS nanosheet arrays for enhanced photoelectrochemical hydrogen evolution. J. Electron. Mater. 2019, 48, 6397-6405.

    63. [63]

      Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. K. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 2015, 11, 5262-5271.

    64. [64]

      An, C. H.; Wang, J. Z.; Jiang, W.; Zhang, M. Y.; Ming, X. J.; Wang, S. T.; Zhang, Q. H. Strongly visible-light responsive plasmonic shaped AgX: Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale 2012, 4, 5646-5650.

    65. [65]

      Zhang, Y.; Qin, H. N.; Li, B. L.; Wu, B. Syntheses, structures and photocatalytic degradation properties of two copper(II) coordination polymers with flexible bis(imidazole) ligand. Chin. J. Struct. Chem. 2021, 40, 595-602.

    66. [66]

      Jin, J.; Yu, J. G.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A 2013, 1, 10927.

    67. [67]

      Cheng, C.; He, B. W.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2105135.

    68. [68]

      Fu, J. W.; Zhu, B. C.; You, W.; Jaroniec, M.; Yu, J. G. A flexible bio-inspired H2-production photocatalyst. Appl. Catal. B: Environ. 2018, 220, 148-160.

    69. [69]

      Cheng, L.; Zhang, H. W.; Li, X.; Fan, J. J.; Xiang, Q. J. Carbon-graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small 2021, 17, 2005231.

    70. [70]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556-565.

    71. [71]

      Li, Y. G.; Wei, X. L.; Li, H. J.; Wang, R. R.; Feng, J.; Yun, H.; Zhou, A. N. Fabrication of inorganic-organic core-shell heterostructure: novel CdS@g-C3N4 nanorod arrays for photoelectrochemical hydrogen evolution. RSC Adv. 2015, 19, 14074-14080.

    72. [72]

      Lei, Y. G.; Hou, J. H.; Wang, F.; Ma, X. H.; Jin, Z. L.; Xu, J.; Min, S. X. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route. Appl. Surf. Sci. 2017, 420, 456-464.

    73. [73]

      Jiang, D. L.; Chen, L. L.; Xie, J. M.; Chen, M. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878-4885.

    74. [74]

      Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. Review on metal sulphide-based z-scheme photocatalysts. ChemCatChem. 2019, 11, 1394.

    75. [75]

      Li, R.; Ou, X.; Zhang, L.; Qi, Z.; Wu, X.; Lu, C.; Fan, J.; Lv, K. Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: effect of metallic Bi on CdS nanorods. Chem. Commun. 2021, 57, 10067-10070.

    76. [76]

      Li, X.; Wang, W.; Dong, F.; Zhang, Z.; Han, L.; Luo, X.; Huang, J.; Feng, Z.; Chen, Z.; Jia, G.; Zhang. T. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications. ACS Catal. 2021, 11, 4739-4769.

    77. [77]

      Hong, X.; Yu, X.; Wang, L.; Liu, Q.; Sun, J.; Tang, H. Lattice-matched CoP/CoS2 heterostructure cocatalyst to boost photocatalytic h2 generation. Inorg. Chem. 2021, 60, 12506-12516.

    78. [78]

      Zhao, Y.; Shao, C. T.; Lin, Z. X.; Jiang, S. J.; Song, S. Q. Low-energy facets on Cds allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small 2020, 16, 2000944.

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    3. [3]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    4. [4]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    5. [5]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    6. [6]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    7. [7]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    10. [10]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    13. [13]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

Metrics
  • PDF Downloads(3)
  • Abstract views(297)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return