Citation: Qing Yao, Kaiyu Wang, Jie Zhang, Changqian Li, Chenyu Shang, Feitong Chen, Qi Huang, Qiqi Zhao, Weiwei Zhang, Xiaoyuan Zhan, Jianxu Ding. Contributions of Cs and Rb on Inhibiting Photo-induced Phase Segregation and Enhancement Optoelectronic Performances of MA1-yXyPbI1.8Br1.2 (X = Cs, Rb) Single Crystals[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220507. doi: 10.14102/j.cnki.0254-5861.2022-0089 shu

Contributions of Cs and Rb on Inhibiting Photo-induced Phase Segregation and Enhancement Optoelectronic Performances of MA1-yXyPbI1.8Br1.2 (X = Cs, Rb) Single Crystals

  • Corresponding author: Jianxu Ding, dingjianxu@sdust.edu.cn
  • Received Date: 18 April 2022
    Accepted Date: 7 May 2022

Figures(8)

  • Introducing inorganic cation into hybrid organic-inorganic perovskites (HOIPs) has attracted great attention because of the enhancement stabilities without sacrificing their excellent optoelectronic properties. Here, we introduce Cs and Rb into MAPbI1.8Br1.2 single crystals (SCs) to dig out the mixed cation effect on optoelectronic performances and phase stabilities. Both Rb and Cs can increase the lattice capacity, which is sufficient to relieve the lattice stress caused by photon energy, thus achieving the purpose of stabilizing the lattice structure and inhibiting migration of halide ions, compared with MAPbI1.8Br1.2 SC. On the other hand, the smaller polarity of Rb and Cs reduces the electron-phonon coupling, thus significantly inhibiting the migration of halide ions. Meanwhile, through planar photo-detectors, MA0.9Cs0.1PbI1.8Br1.2-based device behaves much excellent optoelectronic performance (R = 0.170 A/W, EQE = 51.39 %, D* = 4.42 × 1012 Jones, on/off ratio: ~522).
  • 加载中
    1. [1]

      Liu, N.; Huang, C. Y.; Zhu, L.; Chen, Y.; Xu, G. W.; Chu, L.; Ma, X. G. Organic cation effect on the physical properties of CH3NH3PbI3 perovskite from the first-principles study. Chin. J. Struct. Chem. 2016, 35, 1297-1305.

    2. [2]

      Tao, J. L.; Wang, Z. W.; Wang, H. W.; Shen, J. L.; Liu, X. N.; Xue, J. W.; Guo, H. S.; Fu, G. S.; Kong, W. G.; Yang, S. P. Additive engineering for efficient and stable MAPbI3-perovskite solar cells with an efficiency of over 21%. ACS Appl. Mater. Interfaces 2021, 13, 44451-44459.  doi: 10.1021/acsami.1c13136

    3. [3]

      Wang, Y.; Zhu, L. P.; Du, C. F. Polarization-sensitive light sensors based on a bulk perovskite MAPbBr3 single crystal. Materials 2021, 14, 1238.  doi: 10.3390/ma14051238

    4. [4]

      Jiang, S.; Wu, C. C.; Li, F.; Zhang, Y. Q.; Zhang, Z. H.; Zhang, Q. H.; Chen, Z. J.; Qu, B.; Xiao, L. X.; Jiang, M. L. Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells. Rare Met. 2020, 40, 1-10.

    5. [5]

      Mao, G. P.; Wang, W.; Shao, S.; Sun, X. J.; Chen, S. A.; Li, M. H.; Li, H. M. Research progress in electron transport layer in perovskite solar cells. Rare Met. 2018, 2, 95-106.

    6. [6]

      Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G.; Shin, T. J.; Seok, S. I. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444-450.  doi: 10.1038/s41586-021-03964-8

    7. [7]

      Wang, R.; Wang, J. T.; Tan, S.; Duan, Y.; Wang, Z. K.; Yang, Y. Opportunities and challenges of lead-free perovskite optoelectronic devices. Trends Chem. 2019, 1, 368-379.  doi: 10.1016/j.trechm.2019.04.004

    8. [8]

      Lee, J. W.; Dai, Z. H.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; Marco, N. D.; Zhao, H. X.; Sun, P. Y.; Huang, Y.; Yang, Y. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021.  doi: 10.1038/s41467-018-05454-4

    9. [9]

      Gu, H.; Chen, C. S.; Zheng, Q. D. Long-term stable 2D Dion-Jacobson phase perovskite photodiode with low dark current and high on/off ratio. Chin. J. Struct. Chem. 2021, 40, 1621-1630.

    10. [10]

      Liu, Y.; Han, S. G.; Wang, J. Q.; Ma, Y.; Guo, W. Q.; Huang, X. Y.; Luo, J. H.; Hong, M. C.; Sun, Z. H. Spacer cation alloying of a homoconformational carboxylate trans isomer to boost in-plane ferroelectricity in a 2D hybrid perovskite. J. Am. Chem. Soc. 2021, 143, 2130-2137.  doi: 10.1021/jacs.0c12513

    11. [11]

      Li, M. F.; Han, S. G.; Liu, Y.; Luo, J. H.; Hong, M. C.; Sun, Z. H. Soft perovskite-type antiferroelectric with giant electrocaloric strength near room temperature. J. Am. Chem. Soc. 2020, 142, 20744-20751.  doi: 10.1021/jacs.0c09601

    12. [12]

      Li, Y. B.; Yang, T.; Xu, Z. Y.; Liu, X. T.; Huang, X. Y.; Han, S. G.; Liu, Y.; Li, M. F.; Luo, J. H.; Sun, Z. H. Dimensional reduction of Cs2AgBiBr6: a 2D hybrid double perovskite with strong polarization sensitivity. Angew. Chem. Int. Ed. 2020, 59, 3429-3433.  doi: 10.1002/anie.201911551

    13. [13]

      Wang, Y. T.; Guan, X. W.; Chen, W. J.; Yang, J.; Hu, L.; Yang, J.; Li, S.; Zadeh, K. K.; Wen, X. M.; Wu, T. Illumination-induced phase segregation and suppressed solubility limit in Br-rich mixed-halide inorganic perovskites. ASC Appl. Mater. Interfaces 2020, 12, 38376-38385.  doi: 10.1021/acsami.0c10363

    14. [14]

      Chen, Y. Y.; Gao, C. H.; Yang, T.; Li, W. J.; Xu, H. J.; Sun, Z. H. Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications. Chin. J. Struct. Chem. 2022, 41, 2204001-2204011.

    15. [15]

      Fang, Y.; Dong, Q.; Shao, Y.; Yuan, Y.; Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 2015, 9, 679–686.  doi: 10.1038/nphoton.2015.156

    16. [16]

      Shi, W. J.; Wang, Y.; Zhang, T. Y.; Zhang, H. J.; Zhao, Y. X.; Chen, J. Fast charge diffusion in MAPb(I1-xBrx)3 films for high-efficiency solar cells revealed by ultrafast time-resolved reflectivity. J. Phys. Chem. A 2019, 123, 2674-2678.  doi: 10.1021/acs.jpca.9b00978

    17. [17]

      Draguta, S.; Sharia, O.; Yoon, S. J.; Brennan, M. C.; Morozov, Y. V.; Manser, J. S.; Kamat, P. V.; Schneider, W. F.; Kuno, M. Rationalizing the light-induced phase segregation of mixed halide organic-inorganic perovskites. Nat. Commun. 2017, 8, 1-8.  doi: 10.1038/s41467-016-0009-6

    18. [18]

      Byun, H. R.; Park, D. Y.; Oh, H. M.; Namkoong, G.; Jeong, M. S. Light soaking phenomena in organic-inorganic mixed halide perovskite single crystals. ACS Photonics 2017, 4, 2813-2820.  doi: 10.1021/acsphotonics.7b00797

    19. [19]

      Sutter-Fella, C. M.; Ngo, Q. P.; Cefarin, N.; Gardner, K. L.; Tamura, N.; Stan, C. V.; Drisdell, W. S.; Javey, A.; Toma, F. M.; Sharp, I. D. Cation-dependent light-induced halide demixing in hybrid organic-inorganic perovskites. Nano Lett. 2018, 18, 3473-3480.  doi: 10.1021/acs.nanolett.8b00541

    20. [20]

      Zhang, S.; Tang, M. C.; Fan, Y. Y.; Li, R. P.; Nguyen, N. V.; Zhao, K.; Anthopoulos, T. D.; Hacker, C. A. Role of alkali-metal cations in electronic structure and halide segregation of hybrid perovskites. ACS Appl. Mater. Interfaces 2020, 12, 34402-34412.  doi: 10.1021/acsami.0c08396

    21. [21]

      Wang, K. Y.; Yao, Q.; Zhang, J.; Shang, C. Y.; Li, C. Q.; Chen, F. T.; Zhou, T. L.; Sun, H. Q.; Zhang, W. W.; Zhu, H. L.; Ding, J. X. Short-range migration of A‑site cations inhibit photoinduced phase segregation in FAxMAyCs1-x-yPbI3-zBrz single crystals. J. Phys. Chem. C 2021, 125, 23050-23057.  doi: 10.1021/acs.jpcc.1c08346

    22. [22]

      Bischak, C. G.; Wong, A. B.; Lin, E.; Limmer, D. T.; Yang, P. D.; Gins berg, N. S. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 2018, 9, 3998-4005.  doi: 10.1021/acs.jpclett.8b01512

    23. [23]

      Knight, A. J.; Borchert, J.; Oliver, R. D. J.; Patel, J. B.; Radaelli, P. G.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett. 2021, 6, 799-808.  doi: 10.1021/acsenergylett.0c02475

    24. [24]

      Doherty, T. A. S.; Winchester, A. J.; Macpherson, S.; Johnstone, D. N.; Pareek, V.; Tennyson, E. M.; Kosar, S.; Kosasih, F. U.; Anaya, M, Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Wong, E. L.; Madeo, J.; Chiang, Y. H.; Park, J. S.; Jung, Y. K.; Petoukhoff, C. E.; Divitini, G.; Man, M. K. L.; Ducati, C.; Walsh, A.; Midgley, P. A.; Dani, K. M.; Stranks, S. D. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 2020, 580, 360-366.  doi: 10.1038/s41586-020-2184-1

    25. [25]

      Jiang, J.; Sun, X.; Chen, X. C.; Wang, B. W.; Chen, Z. Z.; Hu, Y.; Guo, Y. W.; Zhang, L. F.; Ma, Y.; Gao, L.; Zheng, F. S.; Jin, L.; Chen, M.; Ma, Z. W.; Zhou, Y. Y.; Padture, N. P.; Beach, K.; Terrones, H.; Shi, Y. F.; Gall, D.; Lu, T. M.; Wertz, E.; Feng, J.; Shi, J. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 2019, 10, 4145.  doi: 10.1038/s41467-019-12056-1

    26. [26]

      Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J.; Hautzinger, M. P.; Shen, S. H.; Guo, L. J.; Pan, A.; Wright, J. C.; Jin, S. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J Am. Chemical Soc. 2017, 139, 13525-13532.  doi: 10.1021/jacs.7b07506

    27. [27]

      Makarov, S.; Furasova, A.; Tiguntseva, E.; Hemmetter, A.; Berestennikov, A.; Pushkarev, A.; Zakhidov, A.; Kivshar, Y. Halide-perovskite resonant nanophotonics. Adv. Opt. Mater. 2019, 7, 1800784.  doi: 10.1002/adom.201800784

    28. [28]

      Xue, J. J.; Wang, R.; Chen, X.; Yao, C. L.; Jin, X. Y.; Wang, K. L.; Huang, W. C.; Huang, T. Y.; Zhao, Y. P.; Zhai, Y. X.; Meng, D.; Tan, S.; Liu, R. Z.; Wang, Z. K.; Zhu, C. H.; Zhu, K.; Beard, M. C.; Yan, Y. F.; Yang, Y. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 2021, 371, 636-640.  doi: 10.1126/science.abd4860

    29. [29]

      Frost, J. M. Calculating polaron mobility in halide perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 96, 195202.  doi: 10.1103/PhysRevB.96.195202

    30. [30]

      Tang, X. F.; Berg, M. V. D.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 2018, 18, 2172-2178.  doi: 10.1021/acs.nanolett.8b00505

    31. [31]

      Li, Z.; Zheng, X.; Xiao, X.; An, Y. K.; Wang, Y. B.; Huang, Q. Y.; Li, X.; Cheacharoen, R. R.; An, Q. Y.; Rong, Y. G.; Wang, T.; Xu, H. X. Beyond the phase segregation: probing the irreversible phase reconstruction of mixed-halide perovskites. Adv. Sci. 2021, 2103948.

    32. [32]

      Hu, Y. H.; Hutter, E. M.; Rieder, P.; Grill, I.; Hanisch, J.; Aygüler, M. F.; Hufnagel, A. G.; Handloser, M.; Bein, T.; Hartschuh, A.; Tvingstedt, K.; Dyakonov, V.; Baumann, A.; Savenije, T. J.; Petrus, M. L.; Docampo, P. Understanding the role of cesium and rubidium additives in perovskite solar cells: trap states, charge transport, and recombination. Adv. Energy Mater. 2018, 8, 1703057.  doi: 10.1002/aenm.201703057

    33. [33]

      Mattoni, A.; Filippetti, A.; Caddeo, C. Modeling hybrid perovskites by molecular dynamics. J. Phys.: Condens. Matter 2017, 29, 043001.  doi: 10.1088/1361-648X/29/4/043001

    34. [34]

      Zheng, K.; Zhu, Q.; Abdellah, M.; Messing, M. E.; Zhang, W.; Generalov, A.; Niu, Y.; Ribaud, L.; Canton, S. E.; Pullerits, T. Exciton binding energy and the nature of emissive states in organometal halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2969-2975.  doi: 10.1021/acs.jpclett.5b01252

    35. [35]

      Damle, V. H.; Gouda, L.; Tirosh, S.; Tischler, Y. R. Structural characterization and room temperature low-frequency Raman scattering from MAPbI3 halide perovskite films rigidized by cesium incorporation. ACS Appl. Energy Mater. 2018, 1, 6707-6713.  doi: 10.1021/acsaem.8b01539

    36. [36]

      Cheng, X. H.; Yuan, Y.; Jing, L.; Zhou, T. L.; Li, Z. X.; Peng, Z. W.; Yao, Q.; Zhang, J.; Ding, J. X. Nucleation-controlled growth of superior long oriented CsPbBr3 microrod single crystals for high detectivity photodetectors. J. Mater. Chem. C 2019, 7, 14188.  doi: 10.1039/C9TC05333F

    37. [37]

      Wang, Y. C.; Zhang, Y. M.; Liu, Y. T.; Pang, T. Q.; Hu, Z. Y.; Zhu, Y. J.; Luan, S. Z.; Jia, R. X. Temperature-dependence studies of organolead halide perovskite-based metal/semiconductor/metal photodetectors. RSC Adv. 2017, 7, 20206-20211.  doi: 10.1039/C7RA01496A

    38. [38]

      Park, I. J.; Seo, S.; Park, M. A.; Lee, S.; Kim, D. H.; Zhu, K.; Shin, H.; Kim, J. Y. Effect of rubidium incorporation on the structural, electrical, and photovoltaic properties of methylammonium lead iodide-based perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 41898-41905.  doi: 10.1021/acsami.7b13947

    39. [39]

      Du, S. J.; Jing, L.; Cheng, X. H.; Yuan, Y.; Ding, J. X.; Zhou, T. L.; Zhan, X. Y.; Cui, H. Z. Incorporation of cesium ions into MA1-xCsxPbI3 single crystals: crystal growth, enhancement of stability, and optoelectronic properties. J. Phys. Chem. Lett. 2018, 9, 5833-5839.  doi: 10.1021/acs.jpclett.8b02390

    40. [40]

      Ding, J. X.; Du, S. J.; Zhou, T. L.; Yuan, Y.; Cheng, X. H.; Jing, L.; Yao, Q.; Zhang, J.; He, Q. K.; Cui, H. Z.; Zhan, X. Y.; Sun, H. Q. Cesium decreases defect density and enhances optoelectronic properties of mixed MA1-xCsxPbBr3 single crystal. J. Phys. Chem. C 2019, 123, 14969-14975.  doi: 10.1021/acs.jpcc.9b03987

    41. [41]

      Qiao, S.; Liu, Y.; Liu, J. H.; Fu, G. S.; Wang, S. F. High-responsivity, fast, and self-powered narrowband perovskite heterojunction photodetectors with a tunable response range in the visible and near-infrared region. ACS Appl. Mater. Interfaces 2021, 13, 34625-34636.  doi: 10.1021/acsami.1c09642

    42. [42]

      Subramanian, A.; Akram, J.; Hussain, S.; Chen, J.; Qasim, K.; Lei, W. High-performance photodetector based on a graphene quantum dot/CH3NH3PbI3 perovskite hybrid. ACS Appl. Electron. Mater. 2020, 2, 230-237.  doi: 10.1021/acsaelm.9b00705

    43. [43]

      Nguyen, T. M. H.; Lee, S. K.; Kim, S.; Bark, C. W. Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector. ACS Appl. Mater. Interfaces 2021, 13, 57609-57618.  doi: 10.1021/acsami.1c18099

    44. [44]

      Maculan, G.; Sheikh, A. D.; Abdelhady, A. L.; Saidaminov, M. I.; Haque, M. A.; Murali, B.; Alarousu, E.; Mohammed, O. F.; Wu, T.; Bakr, O. M. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781-3786.  doi: 10.1021/acs.jpclett.5b01666

    45. [45]

      Maity, A.; Raychaudhuri, A. K.; Ghosh, B. Paper-based stable broad optical detector made from cation organic perovskite halides. J. Phys. Chem. C 2021, 125, 10646-10652.  doi: 10.1021/acs.jpcc.1c01252

    46. [46]

      Li, J. B.; Shen, Y. L.; Liu, Y. C.; Shi, F.; Ren, X. D.; Niu, T. Q.; Zhao, K.; Liu, S. Z. Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite. ACS Appl. Mater. Interfaces 2017, 9, 19176-19183.  doi: 10.1021/acsami.7b03229

    47. [47]

      Ding, J. X.; Jing, L.; Cheng, X. H.; Zhao, Y.; Du, S. J.; Zhan, X. Y.; Cui, H. Z. Design growth of MAPbI3 single crystal with (220) facets exposed and its superior optoelectronic properties. J. Phys. Chem. Lett. 2018, 9, 216-221.  doi: 10.1021/acs.jpclett.7b03020

    48. [48]

      Zuo, Z. Y.; Ding, J. X.; Zhao, Y.; Du, S. J.; Li, Y. F.; Zhan, X. Y.; Cui, H. Z. Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 2017, 8, 684-689.  doi: 10.1021/acs.jpclett.6b02812

    49. [49]

      Ding, J. X.; Du, S. J.; Cheng, X. H.; Jing, L.; Zhao, Y.; Zuo, Z. Y.; Cui, H. Z.; Zhan, X. Y. Anisotropic optoelectronic performances on (112) and (100) lattice plane of perovskite MAPbI3 single crystal. Mater. Chem. Phys. 2018, 204, 222-227.  doi: 10.1016/j.matchemphys.2017.10.052

    50. [50]

      Wang, K. Y.; Yao, Q.; Zhang, J.; Jing, L.; Cheng, X. H.; Shang, C. Y.; Li, C. Q.; Chen, F. T.; Zhou, T. L.; Zhu, H. L.; Li, T. X.; Li, H. P.; Wang, Z. W.; Ding, J. X. How ternary cations and binary halogens stabilize trigonal FA1-x-yMAxCsyPbI3-zBrz perovskites: from a single crystal perspective. Chem. Mater. 2022, 34, 1179-1190.  doi: 10.1021/acs.chemmater.1c03710

  • 加载中
    1. [1]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    2. [2]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    3. [3]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    4. [4]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    5. [5]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    6. [6]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    7. [7]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    8. [8]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    9. [9]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    10. [10]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    13. [13]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    14. [14]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    15. [15]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    16. [16]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    17. [17]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    18. [18]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    19. [19]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    20. [20]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

Metrics
  • PDF Downloads(2)
  • Abstract views(409)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return