Citation: Yu-Feng Sang, Liang-Jin Xu, Zhong-Ning Chen. Morphology Engineering toward Highly Emissive Mn2+ Doped PEA2PbBr4 Perovskite with Their LED Application via Phosphonium Passivation[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220507. doi: 10.14102/j.cnki.0254-5861.2022-0088 shu

Morphology Engineering toward Highly Emissive Mn2+ Doped PEA2PbBr4 Perovskite with Their LED Application via Phosphonium Passivation

Figures(4)

  • Mn2+-doped lead halide perovskites either in 3D or 2D have been extensively explored due to their rich energy-transfer behaviors. While their application on LED is still lagging behind in comparison to non-doped 3D perovskite due to inferior film-formation and low luminescent efficiency. Here we report an in-situ-formed Mn2+ doped 2D perovskite nanocrystal (NCs) film by introducing quaternary phosphonium salt during the crystallizing process. The as-formed film shows improved luminescent efficiency with emission peaked at 600 nm and photoluminescence quantum yield (PLQY) of as high as 73.37%, which is about 1.3 times higher than that of pristine film. Further characterizations confirm the enhanced confinement effect from smaller size particle is responsible for the improved luminescent efficiency. The perovskite LEDs based on pristine and phosphonium passivated thin films were fabricated, and a great improvement in the external quantum efficiency of these LEDs (from 0.0017% to 0.12%) is observed due to the improved morphology and enhanced luminescent efficiency.
  • 加载中
    1. [1]

      Wu, J. M.; Wang, L. X.; Feng, A. B.; Yang, S.; Li, N.; Jiang, X. M.; Liu, N. A. Q.; Xie, S. D.; Guo, X. B.; Fang, Y. J. Self-powered FA(0.55)MA(0.45)PbI(3) single-crystal perovskite X-ray detectors with high sensitivity. Adv. Funct. Mater. 2022, 32, 2109149.  doi: 10.1002/adfm.202109149

    2. [2]

      Green, M. A.; Ho-Baillie, A. Perovskite solar cells: the birth of a new era in photovoltaics. Acs Energy Lett. 2017, 2, 822-830.  doi: 10.1021/acsenergylett.7b00137

    3. [3]

      Li, N.; Feng, A. B.; Guo, X. B.; Wu, J. M.; Xie, S. D.; Lin, Q. L.; Jiang, X. M.; Liu, Y.; Chen, Z. L.; Tao, X. T. Engineering the hole extraction interface enables single-crystal MAPbI3 perovskite solar cells with efficiency exceeding 22% and superior indoor response. Adv. Energy Mater. 2022, 12, 2103241.  doi: 10.1002/aenm.202103241

    4. [4]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.  doi: 10.1126/science.1243982

    5. [5]

      Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623-3630.  doi: 10.1021/jz4020162

    6. [6]

      De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035-1039.  doi: 10.1021/jz500279b

    7. [7]

      Unger, E. L.; Kegelmann, L.; Suchan, K.; Sorell, D.; Korte, L.; Albrecht, S. Roadmap and roadblocks for the bandgap tunability of metal halide perovskites. J. Mater. Chem. A 2017, 5, 15983-15983.  doi: 10.1039/C7TA90141K

    8. [8]

      Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Horantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.  doi: 10.1002/aenm.201502458

    9. [9]

      Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245-248.  doi: 10.1038/s41586-018-0575-3

    10. [10]

      Ma, D. X.; Lin, K. B.; Dong, Y. T.; Choubisa, H.; Proppe, A. H.; Wu, D.; Wang, Y. K.; Chen, B.; Li, P. C.; Fan, J. Z. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 2021, 599, 594-598.  doi: 10.1038/s41586-021-03997-z

    11. [11]

      Fang, Z. B.; Chen, W. J.; Shi, Y. L.; Zhao, J.; Chu, S. L.; Zhang, J.; Xiao, Z. G. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 2020, 30, 1909754.  doi: 10.1002/adfm.201909754

    12. [12]

      Meng, Z.; Guo, D. P.; Yu, J. G.; Fan, K. Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Appl. Surf. Sci. 2018, 430, 632-638.  doi: 10.1016/j.apsusc.2017.05.018

    13. [13]

      Zhang, Y.; Li, F. Z.; Jiang, K. J.; Huang, J. H.; Wang, H. J.; Fan, H. C.; Wang, P. C.; Liu, C. M.; Zhang, L. P.; Song, Y. L. From 2D to 3D: a facile and effective procedure for fabrication of planar CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 2018, 6, 17867-17873.  doi: 10.1039/C8TA07048B

    14. [14]

      Roghabadi, F. A.; Alidaei, M.; Mousavi, S. M.; Ashjari, T.; Tehrani, A. S.; Ahmadi, V.; Sadrameli, S. M. Stability progress of perovskite solar cells dependent on the crystalline structure: from 3D ABX3 to 2D Ruddlesden-Popper perovskite absorbers. J. Mater. Chem. A 2019, 7, 5898-5933.  doi: 10.1039/C8TA10444A

    15. [15]

      Li, G.; Zhang, T. Y.; Guo, N. J.; Xu, F.; Qian, X. F.; Zhao, Y. X. Ion-exchange-induced 2D-3D conversion of HMA(1-x)FA(x)PbI(3)Cl perovskite into a high-quality MA(1-x)FA(x)PbI(3) perovskite. Angew. Chem. Int. Ed. 2016, 55, 13460-13464.  doi: 10.1002/anie.201606801

    16. [16]

      Guo, D. P.; Yu, J. G.; Fan, K.; Zou, H. Y.; He, B. W. Nanosheet-based printable perovskite solar cells. Sol. Energ. Mat. Sol. C 2017, 159, 518-525.  doi: 10.1016/j.solmat.2016.09.043

    17. [17]

      Chang, S. H.; Huang, W. C.; Chen, C. C.; Chen, S. H.; Wu, C. G. Effects of anti-solvent (iodobenzene) volume on the formation of CH3NH3PbI3 thin films and their application in photovoltaic cells. Appl. Surf. Sci. 2018, 445, 24-29.  doi: 10.1016/j.apsusc.2018.03.123

    18. [18]

      Lan, C. Y.; Zhou, Z. Y.; Wei, R. J.; Ho, J. C. Two-dimensional perovskite materials: from synthesis to energy-related applications. Mater. Today Energy 2019, 11, 61-82.  doi: 10.1016/j.mtener.2018.10.008

    19. [19]

      Gu, H.; Chen, S. C.; Zheng, Q. D. Long-term stable 2D Dion-Jacobson phase perovskite photodiode with low dark current and high on/off ratio. Chin. J. Struct. Chem. 2021, 40, 1621-1630.

    20. [20]

      Zhang, J. H.; Zhou, S. H.; Lin, H. Dimensionality reducing from three-dimensional RbLu5Te8 to two-dimensional CsMnGdTe3: syntheses, crystal and electronic structures. Chin. J. Struct. Chem. 2020, 39, 1770-1780.

    21. [21]

      Dou, L. T. Emerging two-dimensional halide perovskite nanomaterials. J. Mater. Chem. C 2017, 5, 11165-11173.  doi: 10.1039/C7TC02863F

    22. [22]

      Saparov, B.; Mitzi, D. B. Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558-4596.  doi: 10.1021/acs.chemrev.5b00715

    23. [23]

      Ajayakumar, A.; Muthu, C. V.; Dev, A.; Pious, J. K.; Vijayakumar, C. Two-dimensional halide perovskites: approaches to improve optoelectronic properties. Chem. -Asian J. 2022, 17, e202101075.

    24. [24]

      Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872-875.  doi: 10.1038/nnano.2016.110

    25. [25]

      Jiang, Y. Z.; Cui, M. H.; Li, S. S.; Sun, C. J.; Huang, Y. M.; Wei, J. L.; Zhang, L.; Lv, M.; Qin, C. C.; Liu, Y. F. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 1-10.  doi: 10.1038/s41467-020-20314-w

    26. [26]

      Zhang, L.; Sun, C. J.; He, T. W.; Jiang, Y. Z.; Wei, J. L.; Huang, Y. M.; Yuan, M. J. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light-Sci. Appl. 2021, 10, 1-26.  doi: 10.1038/s41377-020-00435-z

    27. [27]

      Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B 1992, 45, 6961-6964.  doi: 10.1103/PhysRevB.45.6961

    28. [28]

      Chong, W. K.; Thirumal, K.; Giovanni, D.; Goh, T. W.; Liu, X. F.; Mathews, N.; Mhaisalkar, S.; Sum, T. C. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys. Chem. Chem. Phys. 2016, 18, 14701-14708.  doi: 10.1039/C6CP01955B

    29. [29]

      Gauthron, K.; Lauret, J. S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S. J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)(2)-PbI4 perovskite. Opt. Express. 2010, 18, 5912-5919.  doi: 10.1364/OE.18.005912

    30. [30]

      Bakthavatsalam, R.; Biswas, A.; Chakali, M.; Bangal, P. R.; Kore, B. P.; Kundu, J. Temperature-dependent photoluminescence and energy-transfer dynamics in Mn2+-doped (C4H9NH3)(2)PbBr4 two-dimensional (2D) layered perovskite. J. Phys. Chem. C 2019, 123, 4739-4748.  doi: 10.1021/acs.jpcc.9b00207

    31. [31]

      Zhou, G. J.; Jiang, X. X.; Molokeev, M.; Lin, Z. S.; Zhao, J.; Wang, J.; Xia, Z. G. Optically modulated ultra-broad-band warm white emission in Mn2+-doped (C6H18N2O2)PbBr4 hybrid metal halide phosphor. Chem. Mater. 2019, 31, 5788-5795.  doi: 10.1021/acs.chemmater.9b01864

    32. [32]

      Dutta, S. K.; Dutta, A.; Das Adhikari, S.; Pradhan, N. Doping Mn2+ in single-crystalline layered perovskite microcrystals. Acs Energy Lett. 2019, 4, 343-351.  doi: 10.1021/acsenergylett.8b02349

    33. [33]

      Zhou, G. J.; Jia, X. F.; Guo, S. Q.; Molokeev, M.; Zhang, J. Y.; Xia, Z. G. Role of halogen atoms on high-efficiency Mn2+ emission in two-dimensional hybrid perovskites. J. Phys. Chem. Lett. 2019, 10, 4706-4712.  doi: 10.1021/acs.jpclett.9b01996

    34. [34]

      Su, B. B.; Molokeev, M. S.; Xia, Z. G. Unveiling Mn2+ dopant states in two-dimensional halide perovskite toward highly efficient photoluminescence. J. Phys. Chem. Lett. 2020, 11, 2510-2517.  doi: 10.1021/acs.jpclett.0c00593

    35. [35]

      Wang, B.; Mu, T. H.; Ling, J. R.; Zhou, Y. F.; Xu, W. T.; Lin, H. Doping effect of Bi3+ on the properties of YAG: Ce3+, Mn2+ phosphor ceramics for warm WLEDs. Chin. J. Struct. Chem. 2020, 39, 511-518.

    36. [36]

      Cortecchia, D.; Mroz, W.; Neutzner, S.; Borzda, T.; Folpini, G.; Brescia, R.; Petrozza, A. Defect engineering in 2D perovskite by Mn(Ⅱ) doping for light-emitting applications. Chem-Us. 2019, 5, 2146-2158.  doi: 10.1016/j.chempr.2019.05.018

    37. [37]

      Zhang, H. H.; Yao, J. N. A.; Yang, Y. A.; Fu, H. B. Tailoring color-tunable dual emissions of Mn2+-alloyed two-dimensional perovskite quantum wells. Chem. Mater. 2021, 33, 2847-2854.  doi: 10.1021/acs.chemmater.0c04934

    38. [38]

      Chen, B.; Chen, H.; Hou, Y.; Xu, J.; Teale, S.; Bertens, K.; Chen, H. J.; Proppe, A.; Zhou, Q. L.; Yu, D. N. Passivation of the buried interface via preferential crystallization of 2D perovskite on metal oxide transport layers. Adv. Mater. 2021, 33, 2103394.  doi: 10.1002/adma.202103394

    39. [39]

      Xu, L. M.; Li, J. H.; Cai, B.; Song, J. Z.; Zhang, F. J.; Fang, T.; Zeng, H. B. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 2020, 11, 1-12.  doi: 10.1038/s41467-019-13993-7

    40. [40]

      Zhong, Q. X.; Liu, J.; Chen, S. H.; Li, P. L.; Chen, J. N.; Guan, W. H.; Qiu, Y. H.; Xu, Y.; Cao, M. H.; Zhang, Q. Highly stable CsPbX3/PbSO4 core/shell nanocrystals synthesized by a simple post-treatment strategy. Adv. Opt. Mater. 2021, 9, 2001763.  doi: 10.1002/adom.202001763

    41. [41]

      Zhong, Q. X.; Cao, M. H.; Xu, Y. F.; Li, P. L.; Zhang, Y.; Hu, H. C.; Yang, D.; Xu, Y.; Wang, L.; Li, Y. Y. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett. 2019, 19, 4151-4157.  doi: 10.1021/acs.nanolett.9b01666

    42. [42]

      Cheng, F. W.; He, R. Q.; Nie, S. Q.; Zhang, C. J.; Yin, J.; Li, J.; Zheng, N. F.; Wu, B. H. Perovskite quantum dots as multifunctional interlayers in perovskite solar cells with dopant-free organic hole transporting layers. J. Am. Chem. Soc. 2021, 143, 5855-5866.  doi: 10.1021/jacs.1c00852

    43. [43]

      Yen, M. C.; Lee, C. J.; Liu, K. H.; Peng, Y.; Leng, J. F.; Chang, T. H.; Chang, C. C.; Tamada, K.; Lee, Y. J. All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 2021, 12, 1-12.  doi: 10.1038/s41467-020-20314-w

    44. [44]

      Zhou, Q. C.; Bai, Z. L.; Lu, W. G.; Wang, Y. T.; Zou, B. S.; Zhong, H. Z. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Adv. Mater. 2016, 28, 9163-9167.  doi: 10.1002/adma.201602651

    45. [45]

      Hu, L.; Zhao, Q.; Huang, S. J.; Zheng, J. H.; Guan, X. W.; Patterson, R.; Kim, J.; Shi, L.; Lin, C. H.; Lei, Q. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 2021, 12, 1-9.  doi: 10.1038/s41467-020-20314-w

    46. [46]

      Luo, X. S. Z.; Shen, Y. Effective passivation with self-organized molecules for perovskite photovoltaics. Adv. Mater. 2022, 2202100.

    47. [47]

      Sun, C.; Xue, Q. F.; Hu, Z. C.; Chen, Z. M.; Huang, F.; Yip, H. L.; Cao, Y. Phosphonium halides as both processing additives and interfacial modifiers for high performance planar-heterojunction perovskite solar cells. Small 2015, 11, 3344-3350.  doi: 10.1002/smll.201403344

    48. [48]

      He, Q. Q.; Worku, M.; Xu, L. J.; Zhou, C. K.; Lteif, S.; Schlenoff, J. B.; Ma, B. W. Surface passivation of perovskite thin films by phosphonium halides for efficient and stable solar cells. J. Mater. Chem. A 2020, 8, 2039-2046.  doi: 10.1039/C9TA12597C

    49. [49]

      Ge, C. Y.; Zhai, W. H.; Tian, C.; Zhao, S. Q.; Guo, T.; Sun, S. R.; Chen, W. X.; Ran, G. Z. Centimeter-scale 2D perovskite (PEA)(2)PbBr4 single crystal plates grown by a seeded solution method for photodetectors. Rsc Adv. 2019, 9, 16779-16783.  doi: 10.1039/C9RA01415B

    50. [50]

      Wang, Z. B.; Cheng, T.; Wang, F. Z.; Dai, S. Y.; Tan, Z. A. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small 2016, 12, 4412-4420.  doi: 10.1002/smll.201601785

    51. [51]

      Dou, L. T.; Wong, A. B.; Yu, Y.; Lai, M. L.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. N. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 2015, 349, 1518-1521.  doi: 10.1126/science.aac7660

    52. [52]

      Xu, L. J.; Worku, M.; Lin, H. R.; Xu, Z. T.; He, Q. Q.; Zhou, C. K.; Zhang, H.; Xin, Y.; Lteif, S.; Xue, J. G. Highly emissive and stable organic-perovskite nanocomposite thin films with phosphonium passivation. J. Phys. Chem. Lett. 2019, 10, 5923-5928.  doi: 10.1021/acs.jpclett.9b02387

    53. [53]

      Chen, O.; Shelby, D. E.; Yang, Y. A.; Zhuang, J. Q.; Wang, T.; Niu, C. G.; Omenetto, N.; Cao, Y. C. Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 10132-10135.  doi: 10.1002/anie.201004926

    54. [54]

      Das Adhikari, S.; Guria, A. K.; Pradhan, N. Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J. Phys. Chem. Lett. 2019, 10, 2250-2257.  doi: 10.1021/acs.jpclett.9b00182

    55. [55]

      Yang, Y. A.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428-12429.  doi: 10.1021/ja064818h

    56. [56]

      Liang, D.; Peng, Y. L.; Fu, Y. P.; Shearer, M. J.; Zhang, J. J.; Zhai, J. Y.; Zhang, Y.; Hamers, R. J.; Andrew, T. L.; Jin, S. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. Acs Nano. 2016, 10, 6897-6904. DOI: 10.14102/j.cnki.0254-5861.2022-0088  doi: 10.14102/j.cnki.0254-5861.2022-0088

  • 加载中
    1. [1]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    2. [2]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    3. [3]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    6. [6]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    7. [7]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    8. [8]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    11. [11]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    12. [12]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    13. [13]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    14. [14]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    15. [15]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    18. [18]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    19. [19]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    20. [20]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

Metrics
  • PDF Downloads(4)
  • Abstract views(489)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return