Citation: Guobing Mao, Heng Wu, Tianyang Qiu, Dingjie Bao, Longjie Lai, Wenguang Tu, Qi Liu. WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220802. doi: 10.14102/j.cnki.0254-5861.2022-0086 shu

WO3@Fe2O3 Core-Shell Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting

Figures(7)

  • Photoelectrochemical (PEC) hydrogen production from water splitting is a green technology to convert solar energy into renewable hydrogen fuel. The construction of host/guest architecture in semiconductor photoanodes has been proven to be an effective strategy to improve solar-to-fuel conversion efficiency. In this study, WO3@Fe2O3 core-shell nanoarray heterojunction photoanodes are synthesized from the in-situ decomposition of WO3@Prussian blue (WO3@PB) and then used as host/guest photoanodes for photoelectrochemical water splitting, during which Fe2O3 serves as guest material to absorb visible solar light and WO3 can act as host scaffolds to collect electrons at the contact. The prepared WO3@Fe2O3 shows the enhanced photocurrent density of 1.26 mA cm-2 (under visible light) at 1.23 V. vs RHE and a superior IPEC of 24.4% at 350 nm, which is higher than that of WO3@PB and pure WO3 (0.43 mA/cm-2 and 16.3%, 0.18 mA/cm-2 and 11.5%) respectively, owing to the efficient light-harvesting from Fe2O3 and the enhanced electron-hole pairs separation from the formation of type-II heterojunctions, and the direct and ordered charge transport channels from the one-dimensional (1D) WO3 nanoarray nanostructures. Therefore, this work provides an alternative insight into the construction of sustainable and cost-effective photoanodes to enhance the efficiency of the solar-driven water splitting.
  • The purine (imidazo-[4, 5-d]pyrimidine) skeleton is an important structural motif which plays an important role in different life related processes[1, 2]. During the wide range of biological activities, purine structure is considered as a privileged scaffold in medicinal chemistry. Many drugs containing purine fragment have been developed for the treatment of asthma, inflammation, cancer and gastrointe stinal diseases[3-9]. In addition, some compounds with purine fragment, such as aureonuclemycin, are fungicides for plant disease control[10]. As active substructures, heterocyclic ring structures with both S and N atoms[11], especially 3, 4-dichlo roisothiazole[12], showed good systemic acquired resistance and fungicidal activities in pesticide lead discovery.

    The discovery of lead compounds is an important basis for novel pesticide development. Our group focused on agrichemical lead discovery, different pyrazole-thiazoles[13], pyrazole-aromatics[14], and thiadiazole derivatives[15] were found to show various degrees of fungicidal activity. YZK-C22 is a highly active fungicidal lead[16]. The research has shown that YZK-C22 does not act at traditional pesticide targets, but has a new potent target: pyruvate kinase (PK)[17]. Based on the structure of the lead molecule YZK-C22 and its potent new target PK, 3, 4-dichloro-5-(6-chloro-9-(4-fluoro benzyl)-9H-purin-8-yl)isothiazole was rationally designed (Fig. 1) and synthesized (Scheme 1) by the combination of bioactive substructures of purine and isothiazole, and its crystal chemical structure and fungicidal activity were evaluated here.

    Figure 1

    Figure 1.  Design of the target compound

    Melting point was measured on an X-4 Digital Type Melting Point Tester (Gongyi, China) and uncorrected. 1H NMR spectra were recorded on a Bruker AV400 spectro meter (400 MHz) (Wisconsin, United States of America) and chemical shifts were reported in ppm. 13C NMR spectra were recorded on a Bruker AV400 spectrometer (101 MHz) (Wisconsin, United States of America) with complete proton decoupling. 19F NMR spectra were recorded on a Bruker AV400 spectrometer (101 MHz) (Wisconsin, United States of America) with complete proton decoupling. High-resolution mass spectra (HRMS) were recorded with an Agilent 6520 Q-TOF LC/MS instrument (Agilent Technologies Inc. State of California, United States of America). Crystal structure was determined on a Rigaku Xtalab P200 diffractometer. All of the solvents and materials were of reagent grade and purified as required.

    The procedure for the synthesis of compound 3 is shown in Scheme 1. As a key intermediate, pyrimidine amine 2 was synthesized according to the revision of the reported method[5]. Triethylamine (1.00 mL, 7.37 mmol) was added to a suspension of compound 1 (98% content) (1.00 g, 6.14 mmol) in ethanol (10 mL), followed by the addition of 4-fluorobenzylamine (0.75 mL, 6.45 mmol). Then the reaction mixture was stirred for 18 h at 80 ℃. After the reactant was consumed, the reaction mixture was concentrated under reduced pressure to remove the solvent, and the intermediate 2 was obtained by purifying the crude residue using silica gel column chromatography with a mixture eluent of petroleum ether (60~90 ℃ fraction): ethyl acetate (2:1, v/v).

    Scheme 1

    Scheme 1.  Synthesis of the target compound 3

    Reagents and conditions: (i) 4-fluorobenzylamine, EtOH, Et3N, 80 ℃, 12 h (ii) 3, 4-dichloroisothiazole-5-carbonyl chloride, NH4Cl, toluene, 100 ℃, 2 h; POCl3, 100 ℃, 12 h

    Analytical data for intermediate 2. Yellow solid; yield, 25%; m.p.: 221~223 ℃. 1H NMR (400 MHz, DMSO-d6) δ 7.73 (s, 1H), 7.39~7.30 (m, 3H), 7.19~7.09 (m, 2H), 5.09 (s, 2H), 4.60 (d, J = 5.6 Hz, 2H). 13C NMR (101 MHz, DMSO-d6) δ 161.2 (d, 1JF-C = 242.2 Hz), 151.7, 145.5, 136.9, 135.6 (d, 4JF-C = 3.0 Hz), 129.3 (d, 3JF-C = 8.2 Hz), 123.6, 115.0 (d, 2JF-C = 21.2 Hz), 43.4. 19F NMR (101 MHz, CDCl3) δ –114.59. HRMS (ESI) m/z calcd. for C11H11ClFN4+ (M+H)+: 253.0651; found: 253.0649. Document[18] reported its yield of 84% with the m.p. of 240~242 ℃.

    Compound 3 was synthesized according to the revision of the reported method[19]. To a suspension of compound 2 (0.20 g, 0.79 mmol) in toluene, ammonium chloride (0.25 g, 4.74 mmol) and 3, 4-dichloroisothiazole-5-carbonyl chloride (0.10 mL, 0.79 mmol) were added successively. The reaction mixture was heated at 100 ℃ for 2 h. After cooling the mixture to room temperature, phosphorus oxychloride (8.0 mL) was added. Then, the mixture was slowly heated to 100 ℃ again and kept for 12 h. After the reaction completed, the reaction mixture was slowly dropwise added to ice water. Then, the pH of the mixture was adjusted to 7~8 using ammonia water (25%~28%) carefully, and compound 3 in the mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with saturated sodium chloride solution (20 mL) for 3 times and dried over anhydrous sodium sulfate. After the solvent evaporation under reduced pressure, the residue of the target compound 3 was purified by silica gel column chromatography with a mixture of petroleum ether: ethyl acetate (5:1, v/v) as eluent.

    Analytical data for compound 3. Yellow solid; yield, 81%; m.p.: 133~134 ℃. 1H NMR (400 MHz, CDCl3) δ 8.82 (s, 1H), 6.99~6.92 (m, 2H), 6.92~6.85 (m, 2H), 5.53 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 162.7 (d, 1JF-C = 248.9 Hz), 153.1, 152.9, 152.0, 149.4, 148.8, 143.7, 131.5, 130.0 (d, 4JF-C = 3.2 Hz), 129.3 (d, 3JF-C = 8.2 Hz), 124.2, 116.2 (d, 2JF-C = 21.8 Hz), 47.2. 19F NMR (101 MHz, CDCl3) δ –111.9. HRMS (ESI) m/z calcd. for C15H8Cl3FN5S+ (M+H)+: 413.9545; found: 413.9549.

    The colorless crystal of the title compound 3 with dimensions of 0.18mm × 0.16mm × 0.13mm was cultured from n-hexane/dichloromethane and selected for X-ray diffraction analysis. The data were collected on a Rigaku Xtalab P200 Single Crystal diffractometer equipped with mirror-monochromatic Cu radiation (λ = 1.54184 Å) with an ω scan mode at 294.15 K. In the range of 4.22≤θ≤79.05°, a total of 22315 reflections were collected with 3532 unique ones (Rint = 0.0311), of which 3238 were observed with I > 2σ(I) for refinements. Using Olex2[20], the structure was solved by the ShelXT[21] structure solution program using Intrinsic Phasing and refined with the ShelXL[22] refinement package using Least Squares minimization. All of the non-hydrogen atoms were located with successive difference Fourier syntheses. The hydrogen atoms were added according to theoretical models. The final full-matrix least-squares refinement converged at R = 0.0310, wR = 0.0842 (w = 1/[σ2(Fo)2 + (0.0393P)2 + 0.5096P], where P = (Fo2 + 2Fc2)/3), S = 1.075, (Δρ)max = 0.24, (Δρ)min = –0.25 e/Å3 and (Δ/σ)max = 0.001.

    The fungicidal activities of intermediate 2 and target compound 3 were evaluated at 50 mg/L according to the previously reported procedures[23-25]. Seven representative fungi, A. s: Alternaria solani; B. c: Botrytis cinerea; C. a: Cercospora arachidicola; G. z: Gibberella zeae; P. p: Physalospora piricola; R. s: Rhizoctonia solani and S. s: Sclerotinia sclerotiorum, were tested. The commercially available pyrimidinamine fungicide diflumetorim and lead molecule YZK-C22 were selected as positive controls. Inhibitory rates (%) = (Dcontrol – Dtest)/(Dcontrol – 4) × 100, where Dcontrol was the average diameter (mm) of mycelia in the absence of any compounds and Dtest was the average diameter (mm) of mycelia treated with the test compound. All experiments were tested in triplicates. Data were presented as the mean ± standard deviation. EC50 of the target compound 3 and corresponding positive controls against R. solani were evaluated, too[16].

    As shown in Scheme 1, the target compound 3 was synthesized in good yield by cyclization of pyrimidine amine 2 with 3, 4-dichloroisothiazole-5-carbonyl chloride. Its structure was characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The crystal structure of compound 3, crystallizing from a mixed solvent of dichloromethane and n-hexane (1:2, v/v), is shown in Fig. 2.

    Figure 2

    Figure 2.  X-ray crystal structure of compound 3

    The selected bond lengths, bond angels and torsional angels of compound 3 are shown in Tables 1 and 2. The bond lengths and angles of the isothiazole ring agreed well with the values reported[26]. Meanwhile, bond lengths and angles of the purine substructure appeared to be normal relative to the closely related compounds in literature[27]. The sum of C(4)–N(5)–C(9), C(8)–N(5)–H(9) and C(8)–N(5)–H(5) angles was 359.96°, indicating the sp2 hybridization state of N(5) atom. The torsion angle of N(2)–C(5)–C(8)–N(4) is –178.75°, indicating that the whole purine was coplanar. The torsion angles of C(2)–C(3)–C(4)–N(2) and C(8)–N(5)–C(9)– C(10) are –67.7° and 121.03°, which means that both the isothiazole and benzene rings were nonplanar with the purine ring. As shown in Table 3, the intermolecular hydrogen bonds C(9)–HA(9)⋅⋅⋅F(1)i, C(9)–HA(9)⋅⋅⋅Cl(2)ii and C(9)– HB(9)⋅⋅⋅N(2)iii were found in compound 3, which lead to the position of benzene ring close to the isothiazole ring rather than the purine ring. These intermolecular hydrogen bonds stabilize the crystal packing (Fig. 3). In addition, the intermolecular C–H···π interaction of C(12)–H(12)···C(15)iv (H(12)⋅⋅⋅C(15)iv 2.676 Å) was also observed in the crystal packing of compound 3, which is two-dimensional. No π-π interaction was observed due to the large distance between adjacent benzene ring and isothiazole ring or purine ring.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for Compound 3
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    Cl(1)–C(1) 1.7125(17) N(3)–C(7) 1.347(3) C(5)–C(6) 1.391(2)
    Cl(2)–C(2) 1.7046(17) N(4)–C(7) 1.334(2) C(5)–C(8) 1.392(2)
    Cl(3)–C(6) 1.7244(19) N(4)–C(8) 1.333(2) C(9)–C(10) 1.509(2)
    S(1)–N(1) 1.6466(15) N(5)–C(4) 1.3753(19) C(10)–C(11) 1.382(2)
    S(1)–C(3) 1.7064(16) N(5)–C(8) 1.3720(19) C(10)–C(15) 1.385(2)
    F(1)–C(13) 1.3618(19) N(5)–C(9) 1.4697(19) C(11)–C(12) 1.381(2)
    N(1)–C(1) 1.301(2) C(1)–C(2) 1.414(2) C(12)–C(13) 1.362(3)
    N(2)–C(4) 1.3164(19) C(2)–C(3) 1.362(2) C(13)–C(14) 1.360(3)
    N(2)–C(5) 1.378(2) C(3)–C(4) 1.466(2) C(14)–C(15) 1.390(3)
    N(3)–C(6) 1.314(2)
    Angles (°) Angles (°) Angles (°)
    N(1)–S(1)–C(3) 95.25(8) C(2)–C(3)–S(1) 108.45(11) N(4)–C(8)–C(5) 126.88(15)
    C(1)–N(1)–S(1) 109.11(12) C(2)–C(3)–C(4) 124.94(15) N(5)–C(8)–C(5) 105.65(13)
    C(4)–N(2)–C(5) 103.45(13) C(4)–C(3)–S(1) 126.29(12) N(5)–C(9)–C(10) 112.86(12)
    C(6)–N(3)–C(7) 117.55(15) N(2)–C(4)–N(5) 114.21(13) C(11)–C(10)–C(9) 120.87(14)
    C(8)–N(4)–C(7) 111.53(16) N(2)–C(4)–C(3) 124.18(14) C(11)–C(10)–C(15) 118.91(14)
    C(4)–N(5)–C(9) 128.24(13) N(5)–C(4)–C(3) 121.24(13) C(15)–C(10)–C(9) 120.21(14)
    C(8)–N(5)–C(4) 105.51(12) N(2)–C(4)–C(6) 134.17(16) C(12)–C(11)–C(10) 120.81(15)
    C(8)–N(5)–C(9) 126.21(13) N(2)–C(4)–C(8) 111.16(13) C(13)–C(12)–C(11) 118.53(17)
    N(1)–C(1)–Cl(1) 120.31(13) C(6)–C(5)–C(8) 114.63(15) F(1)–C(13)–C(12) 118.51(18)
    N(1)–C(1)–C(2) 116.91(15) N(3)–C(6)–Cl(3) 118.19(13) C(14)–C(13)–F(1) 118.62(17)
    C(2)–C(1)–Cl(1) 122.77(14) N(3)–C(6)–C(5) 121.36(17) C(14)–C(13)–C(12) 122.87(16)
    C(1)–C(2)–Cl(2) 124.57(13) C(5)–C(6)–Cl(3) 120.45(15) C(13)–C(14)–C(15) 118.27(16)
    C(3)–C(2)–Cl(2) 125.10(13) N(4)–C(7)–N(3) 128.05(17) C(10)–C(15)–C(14) 120.61(16)
    C(3)–C(2)–C(1) 110.26(15) N(4)–C(8)–N(5) 127.46(15)

    Table 2

    Table 2.  Selected Torsional Angles (°) for Compound 3
    DownLoad: CSV
    Angle (°) Angle (°)
    Cl(1)–C(1)–C(2)–Cl(2) –0.2(2) C(4)–N(5)–C(9)–C(10) –56.3(2)
    Cl(2)–C(2)–C(3)–C(4) 4.5(2) C(5)–N(2)–C(4)–C(3) 172.27(15)
    S(1)–N(1)–C(1)–Cl(1) –177.56(10) C(6)–C(5)–C(8)–N(4) –0.7(2)
    S(1)–C(3)–C(4)–N(5) –67.76(19) C(6)–C(5)–C(8)–N(5) 178.55(14)
    F(1)–C(13)–C(14)–C(15) –179.32(18) C(7)–N(3)–C(6)–Cl(3) 179.48(15)
    N(1)–S(1)–C(3)–C(4) 172.91(14) C(8)–N(5)–C(4)–C(3) –172.18(14)
    N(1)–C(1)–C(2)–Cl(2) –178.53(13) C(8)–N(5)–C(9)–C(10) 121.03(16)
    N(2)–C(5)–C(6)–Cl(3) –1.5(3) C(9)–N(5)–C(4)–N(2) 178.92(14)
    N(2)–C(5)–C(8)–N(4) –178.75(15) C(9)–N(5)–C(4)–C(3) 5.6(2)
    N(2)–C(5)–C(8)–N(5) 0.48(18) C(9)–N(5)–C(8)–N(4) 0.5(3)
    N(5)–C(9)–C(10)–C(11) –49.3(2) C(9)–C(10)–C(11)–C(12) –178.15(16)
    N(5)–C(9)–C(10)–C(15) 131.96(16) C(9)–C(10)–C(15)–C(14) 177.84(17)
    C(2)–C(3)–C(4)–N(2) –67.7(2) C(11)–C(12)–C(13)–F(1) 179.01(18)
    C(2)–C(3)–C(4)–N(5) 104.98(18) C(13)–C(14)–C(15)–C(10) 0.6(3)
    C(4)–N(5)–C(8)–N(4) 178.30(15) C(15)–C(10)–C(11)–C(12) 0.6(3)

    Table 3

    Table 3.  Hydrogen Bond Lengths (Å) and Bond Angles (°) for Compound 3
    DownLoad: CSV
    D–H···A d(D–H) d(H···A) d(D···A) ∠(DHA)
    C(9)–H(9A)···F(1)i 0.97 2.59 3.422(2) 144
    C(9)–H(9A)···Cl(2)ii 0.97 2.94 3.555(2) 123
    C(9)–H(9B)···N(2)iii 0.97 2.68 3.612(2) 162
    Symmetry codes: i: –1/2 + x, 1/2 – y, –1/2 + z; ii: –x, 1 – y, – z; iii: –1.5 + x, 1/2 – y, –1/2 + z

    Figure 3

    Figure 3.  Crystal packing of compound 3

    Symmetry codes: i: –1/2 + x, 1/2 – y, –1/2 + z; ii: –x, 1 – y, –z; iii: –3/2 + x, 1/2 – y, –1/2 + z; iv: 1/2 – x, –1/2 + y, 1/2 –z

    Fungicidal bioassay of intermediate 2 and the target compound 3 against seven phytopathogenic fungi at a concentration of 50 mg/L was compared with commercially pyrimidinamine fungicide diflumetorim and lead compound YZK-C22 as positive controls. As shown in Table 4, the intermediate 2 showed weak effects at 50 mg/L, the target compound 3 showed over 50% of inhibitory activities against B. cinerea, C. arachidicola, G. zeae, R. solani, S. sclerotiorum at 50 mg/L with inhibition of 58%, 53%, 55%, 67% and 59%. Most of them were better than diflumetorim but less than YZK-C22. To further assess the fungicidal potency, the EC50 values of target compound and positive controls with inhibition over 60% at 50 mg/L were measured. The results shown in Table 5 indicated that compound 3 exhibited good fungicidal activities with EC50 value of 25.06 mg/L or 60.44 µmol/L against R. solani. It was active at the same level of that of the positive control diflumetorim (19.76 mg/L or 60.29 µmol/L) and less active than the positive control YZK-C22 (4.21 mg/L or 12.32 µmol/L)[16]. Docking studies showed that the target compound had larger binding energy with pyruvate kinase than the positive control YZK-C22 because of the effecting of absorption, transduction and metabolism. Our studies indicated that isothiazolopurin derivative could be a fungicidal lead deserving for further study.

    Table 4

    Table 4.  Fungicidal Activities of Compounds Synthesized (Inhibition Rate/%)a
    DownLoad: CSV
    Compd. A.s b B.c C.a G.z P.p R.s S.s
    2 27 ± 0 14 ± 1 43 ± 1 25 ± 2 18 ± 1 24 ± 0 24 ± 1
    3 38 ± 1 58 ± 0 53 ± 2 55 ± 1 34 ± 0 67 ± 1 59 ± 2
    Diflumetorim 55 ± 1 44 ± 1 67 ± 1 48 ± 1 39 ± 1 74 ± 0 44 ± 2
    YZK-C22 60 ± 2 71 ± 3 77 ± 2 77 ± 1 55 ± 2 82 ± 2 63 ± 1
    a Values are the average of three replicates, tested at a concentration of 50 mg/L.bA.s: Alternariasolani; B.c: Botrytis cinerea; C.a: Cercosporaarachidicola; G.z: Gibberellazeae; P.p: Physalosporapiricola; R.s: Rhizoctoniasolani; S.s: Sclerotinia sclerotiorum.

    Table 5

    Table 5.  EC50 of the Target Compounds with Inhibition over 60% at 50 mg/L in Vitro
    DownLoad: CSV
    Fungi Compd. Regression equation R2 95% confidence interval(mg/L) EC50(mg/L) EC50(µmol/L)
    R. solani 3 y = 3.0674 + 1.3814x 0.9543 17.70~35.47 25.06 60.44
    Diflumetorim y = 3.0814 + 1.4806x 0.9969 18.07~21.61 19.76 60.29
    YZK-C22[16] y = 4.2367 + 1.2237x 0.9766 2.97~5.95 4.21 12.32

    1. [1]

      Fu, J.; Fan, Z.; Nakabayashi, M.; Ju, H.; Pastukhova, N.; Xiao, Y.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729-735.  doi: 10.1038/s41467-022-28415-4

    2. [2]

      Seabold, J.; Choi, K. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105-1112.

    3. [3]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    4. [4]

      Li, C.; Li, T.; Jing, M.; Yuan, W.; Li, C. M. Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via poly-mermediated self-assembly of CoOx nanoparticles. Sol. Energ. Mat. Sol. C 2020, 207, 110349.

    5. [5]

      Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S. In-situ construction of sulfur-doped g-C3N4 defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.

    6. [6]

      Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. Polymer-mediated self-assembly of TiO2@Cu2O core-shell nanowire array for highly effcient photoelectrochemical water oxidation. ACS Appl. Mater. Inter 2016, 8, 6082-6092.  doi: 10.1021/acsami.6b00030

    7. [7]

      Zhu, P.; Wang, Y.; Sun, X.; Zhang, J.; Waclawik, E. R.; Zheng, Z. Photocatalytic-controlled olefin isomerization over WO3-x using low-energy photons up to 625 nm. Chin. J. Catal. 2021, 42, 1641-1647.  doi: 10.1016/S1872-2067(21)63815-9

    8. [8]

      Ran, L.; Qiu, S.; Zhai, P.; Li, Z.; Gao, J.; Zhang, X.; Zhang, B.; Wang, C.; Sun, L.; Hou, J. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 7402-7413.  doi: 10.1021/jacs.1c00946

    9. [9]

      He, J. S.; Liu, P. Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Single-atom catalysts for high-efficiency photocatalytic and photoelectro-chemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 2022, 10, 6835-6871.  doi: 10.1039/D2TA00835A

    10. [10]

      Gaikwad, M. A.; Suryawanshi, U. P.; Ghorpade, U. V.; Jang, J. S.; Suryawanshi, M. P.; Kim, J. H. Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 2022, 18, 2105084.  doi: 10.1002/smll.202105084

    11. [11]

      Li, C.; Chen Z.; Yuan, W.; Xu, Q. H.; Li, C. M. In situ growth of α-Fe2O3@Co3O4 core-shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11, 1111-1122.

    12. [12]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectro-chemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    13. [13]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    14. [14]

      Liu, X.; Wanga, F.; Wanga, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894-7911.

    15. [15]

      Wang, Z.; Zhu, H.; Tu, W.; Zhu, X.; Yao, Y.; Zhou, Y.; Zou, Z. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv. Sci. 2022, 9, 103744.

    16. [16]

      Francisco, F.; Dias, P.; Ivanou, D.; Santos, F.; Azeyedo, J.; Mendes, A. Synthesis of host-guest hematite photoelectrodes for solar water splitting. Chemnanomat 2019, 5, 911-920.

    17. [17]

      Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H-2 production. Appl. Catal. B Environ. 2017, 219, 693-704.

    18. [18]

      Li, H.; Zhao, F.; Zhang, J.; Luo, L.; Xiao, X.; Huang, Y.; Ji, H.; Tong, Y. A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting. Mate. Chem. Front. 2017, 1, 338-342.

    19. [19]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectrochemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    20. [20]

      Wei, P.; Lin, K.; Meng, D.; Xie, T.; Na, Y. Photoelectrochemical performance for water oxidation improved by molecular nickel porphyrinintegrated WO3/TiO2 photoanode. Chemsuschem 2018, 11, 1746-1750.

    21. [21]

      Sun, W.; Wang, D.; Rahman, Z. U.; Wei, N.; Chen, S. 3D hierarchical WO3 grown on TiO2 nanotube arrays and their photoelectrochemical performance for water splitting. J. Alloys Compd. 2017, 695, 2154-2159.

    22. [22]

      Khare, C.; Sliozberg, K.; Meyer, R.; Savan, A.; Schuhmann, W.; Ludwig, A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. Int. J. Hydrogen Energy 2013, 38, 15954-15964.

    23. [23]

      Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals 2020, 39, 841-849.

    24. [24]

      Kim, E.; Kim, S.; Choi, Y. M.; Park, J. H.; Shin, H. Ultrathin hematite on mesoporous WO3 from atomic layer deposition for minimal charge recombination. ACS Sustain. Chem. Eng. 2020, 8, 11358-11367.

    25. [25]

      Memar, A.; Phan, C. M.; Tade, M. O. Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode. Int. J. Hydrogen Energy 2015, 40, 8642-8649.

    26. [26]

      Sadhasivam, S.; Gunasekaran, A.; Anbarasan, N.; Mukilan, N.; Jeganathan, K. CdS and CdSe nanoparticles activated 1D TiO2 hetero-structure nanoarray photoelectrodes for enhanced photoelectrocatalytic water splitting. Int. J. Hydrogen Energy 2021, 46, 26381-26390.

    27. [27]

      Qiu, Y.; Pan, Z.; Chen, H.; Ye, D.; Guo, L.; Fan, Z.; Yang, S. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci. Bull. 2019, 64, 1348-1380.

    28. [28]

      Pu, Y.; Wang, G.; Chang, K.; Ling, Y.; Li, Y. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

    29. [29]

      Luo, Z.; Wang, T.; Zhang, J.; Li, C.; Li, H.; Gong, J. Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide inter-layer for effective charge collection. Angew. Chem. Int. Ed. 2017, 56, 12878-12882.

    30. [30]

      Peng, G.; Lu, H.; Liu, Y.; Fan, D. The construction of a single-crystalline SbSI nanorod array-WO3 heterostructure photoanode for high PEC performance. Chem. Commun. 2021, 57, 335-338.

    31. [31]

      Gimenes, D. T.; Nossol, E. Effect of light source and applied potential in the electrochemical synthesis of Prussian blue on carbon nanotubes. Electrochim. Acta 2017, 251, 513-521.

    32. [32]

      Mao, G.; Li, C.; Li, Z.; Xu, M.; Wu, H.; Liu, Q. Efficient charge migration in TiO2@PB nanorod arrays with core-shell structure for photoelectrochemical water splitting. CrystEngComm 2022, 24, 2567-2574.

    33. [33]

      Wu, H.; Liu, Q.; Zhang, L.; Tang, Y.; Wang, G.; Mao, G. Novel nano-structured WO3@Prussian blue heterojunction photoanodes for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 12508-12514.

    34. [34]

      Cao, L.; Liu, Y.; Zhang, B.; Lu, L. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Inter. 2010, 2, 2339-2346.

    35. [35]

      Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater. Today Energy 2019, 14, 100332.

    36. [36]

      Hu, M.; Belik, A. A.; Imura, M.; Mibu, K.; Tsujimoto, Y.; Yamauchi, Y. Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem. Mater. 2012, 24, 2698-2707.

    37. [37]

      Zakaria, M. B.; Belik, A. A.; Liu, C. H.; Hsieh, H. Y.; Liao, Y. T.; Malgras, V.; Yamauchi, Y.; Wu, K. C. W. Prussian blue derived nano-porous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy. Chem. Asian J. 2015, 10, 1457-1462.

    38. [38]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    39. [39]

      Ma, M.; Zhang, K.; Li, P.; Jung, M. S.; Jeong, M. J.; Park, J. H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem. Int. Ed. 2016, 128, 11998-12002.

    40. [40]

      Ma, J.; Mao, K.; Low, J.; Wang, Z.; Xi, D.; Zhang, W.; Ju, H.; Qi, Z.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem. Int. Ed. 2021, 133, 9443-9447.

    41. [41]

      Iandolo, B.; Wickman, B.; Zoric, I.; Hellman, A. The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 16896-16912.

    42. [42]

      Chai, H.; Gao, L.; Wang, P.; Li, F.; Hu, G.; Jin, J. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Appl. Catal. B Environ. 2022, DOI 10.1016/j.apcatb.2021.121011.

    43. [43]

      Zhang, M.; Luo, W.; Li, Z.; Yu, T.; Zou, Z. Improved photoelectro-chemical responses of Si and Ti codoped α-Fe2O3 photoanode films. Appl. Phys. Lett. 2010, 97, 042105-042105.

    44. [44]

      Mei, B. A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194-206.

    45. [45]

      Sivula, K.; Formal F. L.; Gratzel, M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 2009, 21, 2862-2867.

    46. [46]

      Wu, Q.; Bu, Q.; Li, S.; Lin, Y.; Zou, X.; Wang, D.; Xi, T. Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting. J. Alloys Compd. 2019, 803, 1105-1111.

    1. [1]

      Fu, J.; Fan, Z.; Nakabayashi, M.; Ju, H.; Pastukhova, N.; Xiao, Y.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729-735.  doi: 10.1038/s41467-022-28415-4

    2. [2]

      Seabold, J.; Choi, K. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105-1112.

    3. [3]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight. Chin. J. Struct. Chem. 2022, 41, 2201034-2201039.

    4. [4]

      Li, C.; Li, T.; Jing, M.; Yuan, W.; Li, C. M. Remarkably promoted photoelectrochemical water oxidation on TiO2 nanowire arrays via poly-mermediated self-assembly of CoOx nanoparticles. Sol. Energ. Mat. Sol. C 2020, 207, 110349.

    5. [5]

      Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S. In-situ construction of sulfur-doped g-C3N4 defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.

    6. [6]

      Yuan, W.; Yuan, J.; Xie, J.; Li, C. M. Polymer-mediated self-assembly of TiO2@Cu2O core-shell nanowire array for highly effcient photoelectrochemical water oxidation. ACS Appl. Mater. Inter 2016, 8, 6082-6092.  doi: 10.1021/acsami.6b00030

    7. [7]

      Zhu, P.; Wang, Y.; Sun, X.; Zhang, J.; Waclawik, E. R.; Zheng, Z. Photocatalytic-controlled olefin isomerization over WO3-x using low-energy photons up to 625 nm. Chin. J. Catal. 2021, 42, 1641-1647.  doi: 10.1016/S1872-2067(21)63815-9

    8. [8]

      Ran, L.; Qiu, S.; Zhai, P.; Li, Z.; Gao, J.; Zhang, X.; Zhang, B.; Wang, C.; Sun, L.; Hou, J. Conformal macroporous inverse opal oxynitride-based photoanode for robust photoelectrochemical water splitting. J. Am. Chem. Soc. 2021, 143, 7402-7413.  doi: 10.1021/jacs.1c00946

    9. [9]

      He, J. S.; Liu, P. Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Single-atom catalysts for high-efficiency photocatalytic and photoelectro-chemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. A 2022, 10, 6835-6871.  doi: 10.1039/D2TA00835A

    10. [10]

      Gaikwad, M. A.; Suryawanshi, U. P.; Ghorpade, U. V.; Jang, J. S.; Suryawanshi, M. P.; Kim, J. H. Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 2022, 18, 2105084.  doi: 10.1002/smll.202105084

    11. [11]

      Li, C.; Chen Z.; Yuan, W.; Xu, Q. H.; Li, C. M. In situ growth of α-Fe2O3@Co3O4 core-shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11, 1111-1122.

    12. [12]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectro-chemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    13. [13]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    14. [14]

      Liu, X.; Wanga, F.; Wanga, Q. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 2012, 14, 7894-7911.

    15. [15]

      Wang, Z.; Zhu, H.; Tu, W.; Zhu, X.; Yao, Y.; Zhou, Y.; Zou, Z. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv. Sci. 2022, 9, 103744.

    16. [16]

      Francisco, F.; Dias, P.; Ivanou, D.; Santos, F.; Azeyedo, J.; Mendes, A. Synthesis of host-guest hematite photoelectrodes for solar water splitting. Chemnanomat 2019, 5, 911-920.

    17. [17]

      Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H-2 production. Appl. Catal. B Environ. 2017, 219, 693-704.

    18. [18]

      Li, H.; Zhao, F.; Zhang, J.; Luo, L.; Xiao, X.; Huang, Y.; Ji, H.; Tong, Y. A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting. Mate. Chem. Front. 2017, 1, 338-342.

    19. [19]

      Pinto, F.; Wilson, A.; Moss, B.; Kafizas, A. Systematic exploration of WO3/TiO2 heterojunction phase space for applications in photoelectrochemical water splitting. J. Phys. Chem. C 2022, 126, 871-884.

    20. [20]

      Wei, P.; Lin, K.; Meng, D.; Xie, T.; Na, Y. Photoelectrochemical performance for water oxidation improved by molecular nickel porphyrinintegrated WO3/TiO2 photoanode. Chemsuschem 2018, 11, 1746-1750.

    21. [21]

      Sun, W.; Wang, D.; Rahman, Z. U.; Wei, N.; Chen, S. 3D hierarchical WO3 grown on TiO2 nanotube arrays and their photoelectrochemical performance for water splitting. J. Alloys Compd. 2017, 695, 2154-2159.

    22. [22]

      Khare, C.; Sliozberg, K.; Meyer, R.; Savan, A.; Schuhmann, W.; Ludwig, A. Layered WO3/TiO2 nanostructures with enhanced photocurrent densities. Int. J. Hydrogen Energy 2013, 38, 15954-15964.

    23. [23]

      Zhang, Y. F.; Zhu, Y. K.; Lv, C. X.; Lai, S. J.; Xu, W. J.; Sun, J.; Sun, Y. Y.; Yang, D. J. Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals 2020, 39, 841-849.

    24. [24]

      Kim, E.; Kim, S.; Choi, Y. M.; Park, J. H.; Shin, H. Ultrathin hematite on mesoporous WO3 from atomic layer deposition for minimal charge recombination. ACS Sustain. Chem. Eng. 2020, 8, 11358-11367.

    25. [25]

      Memar, A.; Phan, C. M.; Tade, M. O. Photocatalytic activity of WO3/Fe2O3 nanocomposite photoanode. Int. J. Hydrogen Energy 2015, 40, 8642-8649.

    26. [26]

      Sadhasivam, S.; Gunasekaran, A.; Anbarasan, N.; Mukilan, N.; Jeganathan, K. CdS and CdSe nanoparticles activated 1D TiO2 hetero-structure nanoarray photoelectrodes for enhanced photoelectrocatalytic water splitting. Int. J. Hydrogen Energy 2021, 46, 26381-26390.

    27. [27]

      Qiu, Y.; Pan, Z.; Chen, H.; Ye, D.; Guo, L.; Fan, Z.; Yang, S. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci. Bull. 2019, 64, 1348-1380.

    28. [28]

      Pu, Y.; Wang, G.; Chang, K.; Ling, Y.; Li, Y. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

    29. [29]

      Luo, Z.; Wang, T.; Zhang, J.; Li, C.; Li, H.; Gong, J. Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide inter-layer for effective charge collection. Angew. Chem. Int. Ed. 2017, 56, 12878-12882.

    30. [30]

      Peng, G.; Lu, H.; Liu, Y.; Fan, D. The construction of a single-crystalline SbSI nanorod array-WO3 heterostructure photoanode for high PEC performance. Chem. Commun. 2021, 57, 335-338.

    31. [31]

      Gimenes, D. T.; Nossol, E. Effect of light source and applied potential in the electrochemical synthesis of Prussian blue on carbon nanotubes. Electrochim. Acta 2017, 251, 513-521.

    32. [32]

      Mao, G.; Li, C.; Li, Z.; Xu, M.; Wu, H.; Liu, Q. Efficient charge migration in TiO2@PB nanorod arrays with core-shell structure for photoelectrochemical water splitting. CrystEngComm 2022, 24, 2567-2574.

    33. [33]

      Wu, H.; Liu, Q.; Zhang, L.; Tang, Y.; Wang, G.; Mao, G. Novel nano-structured WO3@Prussian blue heterojunction photoanodes for efficient photoelectrochemical water splitting. ACS Appl. Energy Mater. 2021, 4, 12508-12514.

    34. [34]

      Cao, L.; Liu, Y.; Zhang, B.; Lu, L. In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Inter. 2010, 2, 2339-2346.

    35. [35]

      Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater. Today Energy 2019, 14, 100332.

    36. [36]

      Hu, M.; Belik, A. A.; Imura, M.; Mibu, K.; Tsujimoto, Y.; Yamauchi, Y. Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers. Chem. Mater. 2012, 24, 2698-2707.

    37. [37]

      Zakaria, M. B.; Belik, A. A.; Liu, C. H.; Hsieh, H. Y.; Liao, Y. T.; Malgras, V.; Yamauchi, Y.; Wu, K. C. W. Prussian blue derived nano-porous iron oxides as anticancer drug carriers for magnetic-guided chemotherapy. Chem. Asian J. 2015, 10, 1457-1462.

    38. [38]

      Wang, Y.; Wang, Y.; Zhao, J.; Chen, M.; Huang, X.; Xu, Y. Efficient production of H2O2 on Au/WO3 under visible light and the influencing factors. Appl. Catal. B 2021, 284, 119691-119702.

    39. [39]

      Ma, M.; Zhang, K.; Li, P.; Jung, M. S.; Jeong, M. J.; Park, J. H. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem. Int. Ed. 2016, 128, 11998-12002.

    40. [40]

      Ma, J.; Mao, K.; Low, J.; Wang, Z.; Xi, D.; Zhang, W.; Ju, H.; Qi, Z.; Long, R.; Wu, X.; Song, L.; Xiong, Y. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem. Int. Ed. 2021, 133, 9443-9447.

    41. [41]

      Iandolo, B.; Wickman, B.; Zoric, I.; Hellman, A. The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 16896-16912.

    42. [42]

      Chai, H.; Gao, L.; Wang, P.; Li, F.; Hu, G.; Jin, J. In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial S-O for enhanced charge separation and transport in photoelectrochemical water oxidation. Appl. Catal. B Environ. 2022, DOI 10.1016/j.apcatb.2021.121011.

    43. [43]

      Zhang, M.; Luo, W.; Li, Z.; Yu, T.; Zou, Z. Improved photoelectro-chemical responses of Si and Ti codoped α-Fe2O3 photoanode films. Appl. Phys. Lett. 2010, 97, 042105-042105.

    44. [44]

      Mei, B. A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical interpretations of nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 2018, 122, 194-206.

    45. [45]

      Sivula, K.; Formal F. L.; Gratzel, M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 2009, 21, 2862-2867.

    46. [46]

      Wu, Q.; Bu, Q.; Li, S.; Lin, Y.; Zou, X.; Wang, D.; Xi, T. Enhanced interface charge transfer via n-n WO3/Ti-Fe2O3 heterojunction formation for water splitting. J. Alloys Compd. 2019, 803, 1105-1111.

  • 加载中
    1. [1]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    2. [2]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    3. [3]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    6. [6]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    7. [7]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    8. [8]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    9. [9]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    12. [12]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    13. [13]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    14. [14]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    15. [15]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    16. [16]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    17. [17]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    18. [18]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

Metrics
  • PDF Downloads(3)
  • Abstract views(342)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return