Citation: Zhao-Di Zhou, Zi-Long Xu, Dan Wang, Lin-Fang Jia, Han-Qing Zhao, Bao-Yi Yu, Chong-Chen Wang. Two Bisligand-Coordinated Luminescent Zn(II)-Coordination Polymers for Sensing of Ions and Pesticides in Aqueous Solutions[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220908. doi: 10.14102/j.cnki.0254-5861.2022-0077 shu

Two Bisligand-Coordinated Luminescent Zn(II)-Coordination Polymers for Sensing of Ions and Pesticides in Aqueous Solutions

Figures(5)

  • Two coordination polymers (CPs) [Zn(PTA)(DTP)(H2O)2]·(DMF) (CP-1) and [Zn(BTC)(DTP)]·(CH3CN)1.5·(H2O)4 (CP-2) with one- and two-dimensional architectures were synthesized from Zn(II) ion and different organic linkers like terephthalic acid (H2PTA), benzene-1, 3, 5-tricarboxylic acid (H3BTC), and 3, 5-di(1, 2, 4-triazol-1-yl) pyridine (DTP). The fluorescent sensing experiments showed that the two CPs displayed effective, sensitive, and selective abilities towards Fe3+ and Cr2O72-. For sensing the pesticides, CP-1 outperforms in sensing of metamitron (MMT) and CP-2 is ultrasensitive towards imidacloprid (IMI). The possible mechanisms involved in the quenching of the fluorescence intensity include the inner filter effect (IFE) and the fluorescence resonance energy transfer (FRET) effect.
  • 加载中
    1. [1]

      Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933-969.  doi: 10.1021/cr200304e

    2. [2]

      Carlucci, L.; Ciani, G.; Proserpio, D. M.; Mitina, T. G.; Blatov, V. A. Entangled two-dimensional coordination networks: a general survey. Chem. Rev. 2014, 114, 7557-7580.

    3. [3]

      Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metalorganic frameworks. Chem. Soc. Rev. 2009, 38, 1294-1314.

    4. [4]

      Kumar, K. V.; Preuss, K.; Titirici, M. M.; Rodriguez-Reinoso, F. Nanoporous materials for the onboard storage of natural gas. Chem. Rev. 2017, 117, 1796-1825.  doi: 10.1021/acs.chemrev.6b00505

    5. [5]

      Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161-8266.

    6. [6]

      Burtch, N. C.; Jasuja, H.; Walton, K. S. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575-10612.  doi: 10.1021/cr5002589

    7. [7]

      Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468-8535.  doi: 10.1021/acs.chemrev.9b00685

    8. [8]

      Zhang, X. H.; Han, L. X.; Sheng, H. C.; Wang, S. Y. Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy. Chin. Chem. Lett. 2022, 33, 1117-1130.

    9. [9]

      Chakraborty, G.; Park, I. H.; Medishetty, R.; Vittal, J. J. Two-dimensional metal-organic framework materials: synthesis, structures, properties and applications. Chem. Rev. 2021, 121, 3751-3891.  doi: 10.1021/acs.chemrev.0c01049

    10. [10]

      Nartey, K. A.; Hu, J. S.; Li, J. X. Two coordination polymers with high selectivity for sensing iron(III) constructed from bifunctional ligand. Chin. J. Struct. Chem. 2021, 40, 465-472.

    11. [11]

      Liu, Y.; Xie, X. Y.; Cheng, C.; Shao, Z. S.; Wang, H. S. Strategies to fabricate metal-organic framework (MOF)-based luminescent sensing platforms. J. Mater. Chem. C 2019, 7, 10743-10763.  doi: 10.1039/C9TC03208H

    12. [12]

      Sappia, L. D.; Tuninetti, J. S.; Ceolin, M.; Knoll, W.; Rafti, M.; Azzaroni, O. MOF@PEDOT composite films for impedimetric pesticide sensors. Glob. Chall. 2020, 4, 1900076.  doi: 10.1002/gch2.201900076

    13. [13]

      Olorunyomi, J. F.; Geh, S. T.; Caruso, R. A.; Doherty, C. M. Metalorganic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387-2419.

    14. [14]

      Fu, C.; Sun, X.; Zhang, G.; Shi, P.; Cui, P. Porphyrin-based metalorganic framework probe: highly selective and sensitive fluorescent turn-on sensor for M3+ (Al3+, Cr3+, and Fe3+) ions. Inorg. Chem. 2021, 60, 1116-1123.

    15. [15]

      Zhai, L. J.; Tong, R.; Wang, C. B.; Shi, M. J.; Mo, Y. N.; Che, W. K.; Niu, Y. L.; Hu, T. P. Structural diversity and magnetic properties of two coordination polymers based on 6-(3, 5-dicarboxylphenyl)-nicotinic acid. Chin. J. Struct. Chem. 2021, 40, 1687-1695.

    16. [16]

      Safaei, S.; Wang, J.; Junk, P. C. Incorporation of thiazolothiazole fluorophores into a MOF structure: a highly luminescent Zn(II)-based MOF as a selective and reversible sensor for Cr2O72− and MnO4 anions. J. Solid State Chem. 2021, 294, 121762.

    17. [17]

      Zhang, Y. Q.; Sheng, S. S.; Mao, S.; Wu, X. H.; Li, Z.; Tao, W. Q.; Jenkinsond, I. R. Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. Water Res. 2019, 163, 114883.

    18. [18]

      Yuan, R.; He, H. State of the art methods and challenges of luminescent metal-organic frameworks for antibiotic detection. Inorg. Chem. Front. 2020, 7, 4293-4319.

    19. [19]

      Wang, C. Y.; Wang, C. C.; Zhang, X. W.; Ren, X. Y.; Yu, B. Y.; Wang P.; Zhao, Z. X.; Fu, H. F. A new Eu-MOF for ratiometrically fluorescent detection toward quinolone antibiotics and selective detection toward tetracycline antibiotics. Chin. Chem. Lett. 2022, 33, 1353-1357.

    20. [20]

      Zhou, Z. D.; Wang, C. Y.; Zhu, G. S.; Du, B.; Yu, B. Y.; Wang, C. C. Water-stable europium(III) and terbium(III)-metal organic frameworks as fluorescent sensors to detect ions, antibiotics and pesticides in aqueous solutions. J. Mol. Struct. 2022, 1251, 132009.

    21. [21]

      Dong, J.; Zhao, D.; Lu, Y.; Sun, W. Y. Photoluminescent metalorganic frameworks and their application for sensing biomolecules. J. Mater. Chem. A 2019, 7, 22744-22767.

    22. [22]

      Guo, W. X.; Wang, Y. Y.; Hu, X. L.; Qi, Y.; Gao, E. Q. Homochiral helical coordination architectures built from biphenyl based amino acid derivatives: structural diversity tuned by varying conformation and configuration of N-donor ligands, sensing of acidic amino acids, and photoluminescence properties. Cryst. Growth Des. 2020, 20, 5072-5085.

    23. [23]

      Yang, S. L.; Li, G.; Guo, M. Y.; Liu, W. S.; Bu, R.; Gao, E. Q. Positive cooperative protonation of a metal-organic framework: pH-responsive fluorescence and proton conduction. J. Am. Chem. Soc. 2021, 143, 8838-8848.

    24. [24]

      Mukhopadhyay, A.; Jindal, S.; Savitha, G.; Moorthy, J. N. Temperature-dependent emission and turn-off fluorescence sensing of hazardous "quat" herbicides in water by a Zn-MOF based on a semi-rigid dibenzochrysene tetraacetic acid linker. Inorg. Chem. 2020, 59, 6202-6213.

    25. [25]

      Yan, B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal-organic framework hybrids. In org. Chem. Front. 2021, 8, 201-233.

    26. [26]

      Xing, S.; Janiak, C. Design and properties of multiple-emitter luminescent metal-organic frameworks. Chem. Commun. 2020, 56, 12290-12306.

    27. [27]

      Yang, H.; Qi, D.; Chen, Z.; Cao, M.; Deng, Y.; Liu, Z.; Shao, C.; Yang, L. A Zn-based metal-organic framework as bifunctional chemosensor for the detection of nitrobenzene and Fe3+. J. Solid State Chem. 2021, 296, 121970.

    28. [28]

      Gosselin, A. J.; Rowland, C. A.; Bloch, E. D. Permanently microporous metal-organic polyhedra. Chem. Rev. 2020, 120, 8987-9014.

    29. [29]

      Ding, M.; Yang, Y.; Duan, X.; Wang, S.; Feng, X.; Wang, T.; Wang, P.; Liu, S.; Li, L.; Liu, J.; Tang, L.; Niu, X.; Zhang, Y.; Li, G.; Yao, W.; Cui, L.; Wang, W. Association of genetic polymorphisms of telomere binding proteins with cholinesterase activity in omethoate-exposed workers. Ecotoxicol. Environ. Saf. 2018, 161, 563-568.

    30. [30]

      Wu, K.; Hu, J.; Shi, S.; Li, J.; Cheng, X. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes Pigm. 2020, 173, 107993.

    31. [31]

      van Heerden, P. V.; Jenkins, I. R.; Woods, W. P. D.; Rossi, E.; Cameron, P. D. Death by tanning - a case of fatal basic chromium sulphate poisoning. Intens. Care Med. 1994, 20, 145-147.
       

    32. [32]

      Elfikrie, N.; Ho, Y. B.; Zaidon, S. Z.; Juahir, H.; Tan, E. S. S. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci. Total Environ. 2020, 712, 136540.

    33. [33]

      Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K. A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625.

    34. [34]

      Håkansson, K.; Coorey, R. V.; Zubarev, R. A.; Talrose, V. L.; Håkansson, P. Low-mass ions observed in plasma desorption mass spectrometry of high explosives. J. Mass Spectrom. 2000, 35, 337-346.

    35. [35]

      Moros, J.; Laserna, J. J. New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal. Chem. 2011, 83, 6275-6285.

    36. [36]

      Moreno-González, D.; Lara, F. J.; Jurgovská, N.; Gámiz-Gracia, L.; García-Campaña, A. M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta 2015, 891, 321-328.

    37. [37]

      Tabrizchi, M.; Ilbeigi, V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010, 176, 692-696.

    38. [38]

      Ju, P.; Yang, H.; Jiang, L.; Li, M.; Yu, Y.; Zhang, E. A novel high sensitive Cd-MOF fluorescent probe for acetone vapor in air and picric acid in water: synthesis, structure and sensing properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 118962.

    39. [39]

      Qin, G.; Wang, J.; Li, L.; Yuan, F.; Zha, Q.; Bai, W.; Ni, Y. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of cefixime. Talanta 2021, 221, 121421.

    40. [40]

      Liu, Y. K.; Zhou, X. H. Synthesis, structure and property of a metal-organic framework based on 9-(2, 6-dicarboxy-pyridin-4-yl)-9H-carbazole-3, 6-dicarboxylic acid. Chin. J. Struct. Chem. 2020, 39, 559-566.
       

    41. [41]

      Feng, D.; Tang, J.; Yang, J.; Ma, X.; Fan, C.; Wang, X. A multiresponsive luminescent probe of antibiotics, pesticides, Fe3+ and ascorbic acid with a cadmium(II) metal-organic framework. J. Mol. Struct. 2020, 1221, 128841.
       

    42. [42]

      Li, C.; Yang, W.; Zhang, X.; Han, Y.; Tang, W.; Yue, T.; Li, Z. A 3D hierarchical dual-metal-organic framework heterostructure up-regulating the pre-concentration effect for ultrasensitive fluorescence detection of tetracycline antibiotics. J. Mater. Chem. C 2020, 8, 2054-2064.

    43. [43]

      Pan, M. Q.; Yang, R. Q.; Muhammad, Y.; Cai, K. T.; Han, F.; Zhang, H. C.; Niu, Y. Q.; Wang, H. Crystal structure, Fe3+ luminescence sensing and color tuning of 2D lanthanide-metal-organic frameworks constructed from tricarboxylic acid ligand. Chin. J. Struct. Chem. 2022, 41, 2202023-2202033.

    44. [44]

      Feng, L.; Wang, K. Y.; Day, G. S.; Ryder, M. R.; Zhou, H. C. Destruction of metal-organic frameworks: positive and negative aspects of stability and lability. Chem. Rev. 2020, 120, 13087-13133.

    45. [45]

      Chen, S.; Yu, Y. L.; Wang, J. H. Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 2018, 999, 13-26.

    46. [46]

      Jin, Y.; Zhang, Q.; Zhang, Y.; Duan, C. Electron transfer in the confined environments of metal-organic coordination supramolecular systems. Chem. Soc. Rev. 2020, 49, 5561-5600.

    47. [47]

      Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York 2006

    48. [48]

      Wang, C. L.; Song, C. Q.; Shen, W. H.; Qi, Y. Y.; Xue, Y.; Shi, Y. C.; Yu, H.; Feng, L. A two-dimensional Ni(II) coordination polymer based on a 3, 5-bis(1′, 2′, 4′-triazol-1′-yl)pyridine ligand for water electro-oxidation. Catal. Sci. Technol. 2019, 9, 1769-1773.

    49. [49]

      Madison, W. I. SAINT, ver. 8.40A, Bruker Nano 2019.

    50. [50]

      Madison, W. I. SADABS, ver. 2016/2, Bruker AXS 2016.

    51. [51]

      Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3-10.

    52. [52]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.

    53. [53]

      Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Siliqi, D.; Polidori, G.; Spagna, R.; Giacovazzo, C. IL MILIONE: a suite of computer programs for crystal structure solution of proteins. J. Appl. Crystallogr. 2007, 40, 609-613.

    54. [54]

      Sheldrick, G. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A 2015, 71, 3-8.

  • 加载中
    1. [1]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    2. [2]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    3. [3]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    8. [8]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    9. [9]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    12. [12]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    16. [16]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    17. [17]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    18. [18]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    19. [19]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(2)
  • Abstract views(684)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return