Citation: Chang-Pu Wan, Jun-Dong Yi, Rong Cao, Yuan-Biao Huang. Conductive Metal/Covalent Organic Frameworks for CO2 Electroreduction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220500. doi: 10.14102/j.cnki.0254-5861.2022-0075 shu

Conductive Metal/Covalent Organic Frameworks for CO2 Electroreduction





  • Author Bio: Chang-Pu Wan obtained his BE degree from the Qingdao University in 2020. Currently, he studies as a master student in Prof. Rong Cao's group in the Fujian Institute of Research on the Structure of Matter (FJIRSM), CAS. His research focuses on porous frameworks materials (MOFs, COFs) for CO2 heterogeneous catalysis
    Jun-Dong Yi received his bachelor's degree from the School of Materials Science and Engineering, Central South University in 2013. Then he received his PhD degree in Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences in 2018. His current research interest focuses on carbon dioxide cycle system, including carbon dioxide enrichment, carbon dioxide electrolysis, and the improvement of carbon dioxide electrolysis device
    Rong Cao received his bachelor's degree from University of Science and Technology of China in 1986 and obtained his PhD (1993) in FJIRSM (Fujian Institute of Research on the Structure of Matter), Chinese Academy of Sciences. Following post-doctoral experience in the Hong Kong Polytechnic University and JSPS Fellowship in Nagoya University, he became a professor at FJIRSM in 1998. Now, he is the director of FJIRSM. His main research interests include inorganic-organic hybrid materials, nanomaterials and supramolecular chemistry
    Yuan-Biao Huang obtained his PhD (2009) under the supervision of Prof. Guo-Xin Jin from Fudan University. In the same year, he joined Prof. Rong Cao's group at FJIRSM, CAS. In 2014, he joined Prof. Qiang Xu's group at AIST (National Institute of Advanced Industrial Science and Technology) as a JSPS (Japan Society for the Promotion of Science) invited fellow. In 2015, he moved back to FJIRSM, CAS and since 2017, he has been a professor at FJIRSM. His research interests include porous ionic frameworks and conducting materials (MOFs, COFs) for CO2-involved heterogeneous catalysis
  • Corresponding author: Rong Cao, rcao@fjirsm.ac.cn Yuan-Biao Huang, ybhuang@fjirsm.ac.cn
  • Received Date: 3 April 2022
    Accepted Date: 29 April 2022

Figures(14)

  • Porous crystalline metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are promising platforms for electrocatalytic reduction of CO2 (CO2RR) due to their large CO2 adsorption uptakes and periodically arranged single active sites. However, the applications in CO2RR of the traditional MOFs and COFs are greatly limited by their low electron conductivity. In recent years, numerous types of MOFs and COFs with high intrinsic conductivity have been rationally designed and successfully constructed, and some of them have been applied in CO2RR. In this review, the applications of conductive MOFs and COFs in CO2RR have been summarized. The conductive MOFs and COFs can be categorized according to the methods, in which the conductivity is enhanced, such as constructing fully π-conjugated backbones, donor-acceptor heterojunction, enhancing the π-π stacking interactions between organic moieties and/or the introduction of guest molecules.
  • 加载中
    1. [1]

      Drechsler, M.; Egerer, J.; Lange, M.; Masurowski, F.; Meyerho, J.; Oehlmann, M. Efficient and equitable spatial allocation of renewable power plants at the country scale. Nat. Energy 2017, 2, 17124.  doi: 10.1038/nenergy.2017.124

    2. [2]

      Leitner, W.; Quadrelli, E. A.; Schloegl, R. Harvesting renewable energy with chemistry. Green Chem. 2017, 19, 2307-2308.  doi: 10.1039/C7GC90045G

    3. [3]

      Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the largescale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.  doi: 10.1038/s41570-017-0091

    4. [4]

      Marttunen, M.; Belton, V.; Lienert, J. Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of Multi-Criteria Decision Analysis. Eur. J. Oper. Res. 2018, 265, 178-194.
       

    5. [5]

      Liu, S. H.; Li, Y.; Ding, K. N.; Chen, W. K.; Zhang, Y. F.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.

    6. [6]

      Li, Z.; Zhai, L.; Ge, Y.; Huang, Z.; Shi, Z.; Liu, J.; Zhai, W.; Liang, J.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 2021, DOI: 10.1093/nsr/nwab142.  doi: 10.1093/nsr/nwab142

    7. [7]

      Zhou, Y. G.; Kang, Y.; Huang, J. Fluidized electrocatalysis. CCS Chem. 2020, 2, 31-41.

    8. [8]

      Li, G. W.; Yang, Q.; Manna, K.; Mu, Q. G.; Fu, C. G.; Sun, Y.; Felse, C. Magnetocatalysis: the interplay between the magnetic field and electrocatalysis. CCS Chem. 2021, 3, 2259-2267.

    9. [9]

      Yang, D.; Zhu, Q.; Chen, C.; Liu, H.; Liu, Z.; Zhao, Z.; Zhang, X.; Liu, S.; Han, B. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 2019, 10, 677.
       

    10. [10]

      Zhang, M. D.; Yi, J. D.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    11. [11]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5.
       

    12. [12]

      Hou, S. S.; Xu, Z. T.; Zhang, Y. K.; Xie, K.; Gan, L. Z. Enhanced CO2 electrolysis with Mn-doped SrFeO3-delta cathode. Chin. J. Struct. Chem. 2020, 39, 1662-1668.

    13. [13]

      Ye, K.; Wang, G. X.; Bao, X. H. Electrodeposited Sn-based catalysts for CO2 electroreduction. Chin. J. Struct. Chem. 2020, 39, 206-213.

    14. [14]

      Yang, D.; Sun, Y. N; Cai, X.; Hu, W. G.; Dai, Y. H.; Zhu, Y.; Yang, Y. H. Catalytic conversion of C1 molecules on atomically precise metal nanoclusters. CCS Chem. 2021, 4, 66-94.

    15. [15]

      Xu, Z. T.; Xie, K. Enhanced CO2 electrolysis with metal-oxide interface structures. Chin. J. Struct. Chem. 2021, 40, 31-41.

    16. [16]

      Peterson, A. A.; Norskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251-258.
       

    17. [17]

      Klingan, K.; Kottakkat, T.; Jovanov, Z. P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Roldan Cuenya, B.; Roth, C.; Dau, H. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 2018, 11, 3449-3459.
       

    18. [18]

      Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093-2125.

    19. [19]

      Feng, D. M.; Zhu, Y. P.; Chen, P.; Ma, T. Y. Recent advances in transition-metal-mediated electrocatalytic CO2 reduction: from homogeneous to heterogeneous systems. Catalysts 2017, 7, 373.

    20. [20]

      Fukuzumi, S.; Lee, Y. M.; Ahn, H. S.; Nam, W. Mechanisms of catalytic reduction of CO2 with heme and nonheme metal complexes. Chem. Sci. 2018, 9, 6017-6034.
       

    21. [21]

      Wang, N.; Feng, L.; Shang, Y.; Zhao, J.; Cai, Q.; Jin, P. Two-dimensional iron-tetracyanoquinodimethane (Fe-TCNQ) monolayer: an efficient electrocatalyst for the oxygen reduction reaction. RSC Adv. 2016, 6, 72952-72958.
       

    22. [22]

      He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, DOI: 10.1093/nsr/nwab157.  doi: 10.1093/nsr/nwab157

    23. [23]

      Zheng, S.; Li, Q.; Xue, H.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305-314.

    24. [24]

      Cui, P. P.; Liu, Y.; Zhai, H. G.; Zhu, J. P.; Yan, W. N.; Yang, Y. M. Two copper-organic frameworks constructed from the flexible dicarboxylic ligands. Chin. J. Struct. Chem. 2020, 39, 368-374.

    25. [25]

      Liang, Z.; Wang, H. Y.; Zheng, H.; Zhang, W.; Cao, R. Porphyrinbased frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 2021, 50, 2540-2581.

    26. [26]

      Wang, Y.; Zhang, X. P.; Lei, H.; Guo, K.; Xu, G.; Xie, L.; Li, X.; Zhang, W.; Apfel, U. P.; Cao, R. Tuning electronic structures of covalent Co porphyrin polymers for electrocatalytic CO2 reduction in aqueous solutions. CCS Chem. 2022, DOI: 10.31635/ccschem.022.202101706.  doi: 10.31635/ccschem.022.202101706

    27. [27]

      Wu, X. M.; Liu, M. M.; Guo, H. X.; Ying, S. M.; Chen, Z. X. Polyoxovanadate-based MOFs microsphere constructed from 3-D discrete nano-sheets as supercapacitor. Chin. J. Struct. Chem. 2021, 40, 994-998.

    28. [28]

      Liang, Y.; Xu, X. D.; Ni, J. L.; Li, J. F.; Wang, F. M. Synthesis, structure and fluorescence property of new Cd-MOFs based on a tetraphenylethylene (tpe) ligand. Chin. J. Struct. Chem. 2021, 40, 193-198.

    29. [29]

      Zhang, X.; Chen, Z. X.; Yang, Y. T.; Deng, M. L.; Weng, L. H. Effect of fluorination on the crystal structure, stability and gas adsorption property in zinc(II) metal-organic frameworks. Chin. J. Struct. Chem. 2022, 41, 2202049-2202056.

    30. [30]

      Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 2012, 1, H17-H19

    31. [31]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.
       

    32. [32]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129-14135.
       

    33. [33]

      Jiang, X.; Li, H.; Xiao, J.; Gao, D.; Si, R.; Yang, F.; Li, Y.; Wang, G.; Bao, X. Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy 2018, 52, 345-350.
       

    34. [34]

      Wang, Y.; Hou, P.; Wang, Z.; Kang, P. Zinc imidazolate metal-organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem 2017, 18, 3142-3147.

    35. [35]

      Yang, Z.; Zhang, X.; Long, C.; Yan, S.; Shi, Y.; Han, J.; Zhang, J.; An, P.; Chang, L.; Tang, Z. Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction. CrystEngComm 2020, 22, 1619-1624.

    36. [36]

      Yang, X.; Li, Q. X.; Chi, S. Y.; Li, H. F.; Huang, Y. B.; Cao, R. Hydrophobic perfluoroalkane modified metal-organic frameworks for the enhanced electrocatalytic reduction of CO. SmartMat 2022, 3, 163-172.

    37. [37]

      Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208-1213.
       

    38. [38]

      Cheung, P. L.; Lee, S. K.; Kubiak, C. P. Facile solvent-free synthesis of thin iron porphyrin COFs on carbon cloth electrodes for CO2 reduction. Chem. Mater. 2019, 31, 1908-1919.

    39. [39]

      Chi, S. Y.; Chen, Q.; Zhao, S. S.; Si, D. H.; Wu, Q. J.; Huang, Y. B.; Cao, R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J. Mater. Chem. A 2022, 10, 4653-4659.

    40. [40]

      Diercks, C. S.; Lin, S.; Komienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C.; Zhao, Y.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116-1122.
       

    41. [41]

      Popov, D. A.; Luna, J. M.; Orchanian, N. M.; Haiges, R.; Downes, C. A.; Marinescu, S. C. A 2, 2'-bipyridine-containing covalent organic framework bearing rhenium(I) tricarbonyl moieties for CO2 reduction. Dalton Trans 2018, 47, 17450-17460.
       

    42. [42]

      Yi, J. D.; Si, D. H.; Xie, R.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 2021, 60, 17108.

    43. [43]

      Zhang, M. D.; Si, D. H.; Yi, J. D.; Yin, Q.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Sci. China Chem. 2021, 64, 1332-1339.

    44. [44]

      Meng, Z.; Luo, J.; Li, W.; Mirica, K. A. Hierarchical tuning of the performance of electrochemical carbon dioxide reduction using conductive two-dimensional metallophthalocyanine based metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 21656-21669.

    45. [45]

      Zhong, H.; Ghorbani-Asl, M.; Ly, K. H.; Zhang, J.; Ge, J.; Wang, M.; Liao, Z.; Makarov, D.; Zschech, E.; Brunner, E.; Weidinger, I. M.; Zhang, J.; Krasheninnikov, A. V.; Kaskel, S.; Dong, R.; Feng, X. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 2020, 11, 1409.

    46. [46]

      Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242-7246.

    47. [47]

      Yi, J. D.; Si, D. H.; Xie, R.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 2021, 60, 17108.

    48. [48]

      Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319-13325.
       

    49. [49]

      Karapinar, D.; Huan, N. T.; Ranjbar Sahraie, N.; Li, J.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Galvão Tizei, L. H.; Zitolo, A.; Jaouen, F.; Mougel, V.; Fontecave, M. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 2019, 58, 15098-15103.

    50. [50]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717-12723.

    51. [51]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

    52. [52]

      Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.
       

    53. [53]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-Porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.
       

    54. [54]

      Xin, Z.; Wang, Y. R.; Chen, Y.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.

    55. [55]

      Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. J. Am. Chem. Soc. 2012, 134, 12932-12935.

    56. [56]

      Jana, A.; Bahring, S.; Ishida, M.; Goeb, S.; Canevet, D.; Salle, M.; Jeppesen, J. O.; Sessler, J. L. Functionalised tetrathiafulvalene-(TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem. Soc. Rev. 2018, 47, 5614-5645.
       

    57. [57]

      Dong, W. l.; Wang, L.; Ding, H. M.; Zhao, L.; Wang, D.; Wang, C.; Wan, L. J. Substrate orientation effect in the on-surface synthesis of tetrathiafulvalene-integrated single-layer covalent organic frameworks. Langmuir 2015, 31, 11755-11759.

    58. [58]

      Wu, Q.; Xie, R. K.; Mao, M. J.; Chai, G.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Integration of strong electron transporter tetrathiafulvalene into metalloporphyrin-based covalent organic framework for highly efficient electroreduction of CO2. ACS Energy Lett. 2020, 5, 1005-1012.

    59. [59]

      Wu, Q.; Mao, M. J.; Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Construction of donor-acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2021, 17, 2004933.

    60. [60]

      Zhang, M. D.; Si, D. H.; Yi, J. D.; Zhao, S. S.; Huang, Y. B.; Cao, R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020, 16, 2005254.

    61. [61]

      Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; Wang, H. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 2017, 8, 14675.

    62. [62]

      Wu, H.; Zeng, M.; Zhu, X.; Tian, C.; Mei, B.; Song, Y.; Du, X. L.; Jiang, Z.; He, L.; Xia, C.; Dai, S. Defect engineering in polymeric cobalt phthalocyanine networks for enhanced electrochemical CO2 reduction. ChemElectroChem 2018, 5, 2717.

    63. [63]

      Morlanes, N.; Takanabe, K.; Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal. 2016, 6, 3092-3095.

    64. [64]

      Yue, Y.; Cai, P.; Xu, K.; Li, H.; Chen, H.; Zhou, H. C.; Huang, N. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts. J. Am. Chem. Soc. 2021, 143, 18052-18060.

    65. [65]

      Huang, N.; Lee, K. H.; Yue, Y.; Xu, X.; Irle, S.; Jiang, Q.; Jiang, D. A stable and conductive metallophthalocyanine framework for electrocatalytic carbon dioxide reduction in water. Angew. Chem. Int. Ed. 2020, 59, 16587-16593.

    66. [66]

      Lu, M.; Zhang, M.; Liu, C. G.; Liu, J.; Shang, L. J.; Wang, M.; Chang, J. N.; Li, S. L.; Lan, Y. Q. Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 23641-23648.

    67. [67]

      Han, B.; Ding, X.; Yu, B. Q.; Wu, H.; Zhou, W.; Liu, W. P.; Wei, C. Y.; Chen, B. T.; Qi, D. D.; Wang, H. L.; Wang, K.; Chen, Y. L.; Chen, B. L.; Jiang, J. Z. Two-dimensional covalent organic frameworks with cobalt(II)-phthalocyanine sites for efficient electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2021, 7104-7113.

    68. [68]

      Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 2021, 60, 25485-25492.

    69. [69]

      Li, P.; Zeng, H. C. Advanced oxygen evolution catalysis by bimetallic Ni-Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chem. Commun. 2017, 53, 6025-6028.
       

    70. [70]

      Zhang, H.; Liu, X.; Wu, Y.; Guan, C.; Cheetham, A. K.; Wang, J. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 2018, 54, 5268-5288.
       

    71. [71]

      Yilmaz, G.; Yam, K. M.; Zhang, C.; Fan, H. J.; Ho, G. W. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv. Mater. 2017, 29, 1606814.
       

    72. [72]

      Jiang, Y.; Liu, H.; Tan, X.; Guo, L.; Zhang, J.; Liu, S.; Guo, Y.; Zhang, J.; Wang, H.; Chu, W. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl. Mater. Interfaces 2017, 925239-25249.

    73. [73]

      Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Li, M.; Liu, F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.
       

    74. [74]

      Jiao, L.; Zhu, J.; Zhang, Y.; Yang, W.; Zhou, S.; Li, A.; Xie, C.; Zheng, X.; Zhou, W.; Yu, S. H.; Jiang, H. L. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417-19424.

    75. [75]

      Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 2021, 60, 7607-7611.

    76. [76]

      Gong, Y. N.; Jiao, L.; Qian, Y.; Pan, C. Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 2020, 59, 2705-2709.

    77. [77]

      Zou, L.; Sa, R.; Zhong, H.; Lv, H.; Wang, X.; Wang, R. Photoelectron transfer mediated by the interfacial electron effects for boosting visiblelight-driven CO2 reduction. ACS Catal. 2022, 12, 3550-3557.

    78. [78]

      Lin, H. X.; Chen, C. P.; Zhou, T. H.; Zhang, J. Two-dimensional covalent-organic frameworks for photocatalysis: the critical roles of building block and linkage. Sol. RRL 2021, 5, 2000458.

    79. [79]

      Lin, H.; Xu, Y.; Wang, B.; Li, D. S.; Zhou, T.; Zhang, J. Postsynthetic modification of metal-organic frameworks for photocatalytic applications. Small Struct. 2022, DOI: 10.1002/sstr.202100176.  doi: 10.1002/sstr.202100176

    80. [80]

      Pan, Y. T.; Qian, Y. Y.; Zheng, X. S.; Chu, S. Q.; Yang, Y. J.; Ding, C. M.; Wang, X.; Yu, S. H.; Jiang, H. L. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 2020, 8, nwaa224.

    81. [81]

      Liu, S. H.; Li, Y.; Ding, K. N.; Chen, W. K.; Zhang, Y. F.; Lin, W. Mechanism on carbon vacancies in polymeric carbon nitride for CO2 photoreduction. Chin. J. Struct. Chem. 2020, 39, 2068-2076.

    82. [82]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

    83. [83]

      Ni, Y.; Miao, L.; Wang, J.; Liu, J.; Yuan, M.; Chen, J. Pore size effect of graphyne supports on CO2 electrocatalytic activity of Cu single atoms. Chem. Phys. 2020, 22, 1181-1186.

    84. [84]

      Gao, F. Y.; Bao, R. C.; Gao, M. R.; Yu, S. H. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 2020, 8, 15458-15478.

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    3. [3]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    6. [6]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    7. [7]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    8. [8]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    9. [9]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    10. [10]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    11. [11]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    12. [12]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    13. [13]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    14. [14]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    15. [15]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    16. [16]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    17. [17]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    18. [18]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

Metrics
  • PDF Downloads(11)
  • Abstract views(515)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return