Citation: Xu Yue, Weixing Zhao, Shuangyin Wang, Yuqin Zou. Selective Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dihydroxymethylfuran on Bimetallic PdCu Alloy[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220506. doi: 10.14102/j.cnki.0254-5861.2022-0074 shu

Selective Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dihydroxymethylfuran on Bimetallic PdCu Alloy

  • Corresponding author: Yuqin Zou, yuqin_zou@hnu.edu.cn
  • Received Date: 3 April 2022
    Accepted Date: 18 April 2022

Figures(4)

  • 2, 5-dihydroxymethylfuran (DHMF), obtained from 5-hydroxymethylfurfural (HMF) by electrochemical method, is a promising building block for polymers. However, one challenge of this process is to reduce initial potential and improve catalytic selectivity. In this work, the PdCu bimetallic catalyst is prepared with an onset potential of-0.05 VRHE and a selectivity of 99%. Compared with the single Cu electrocatalyst, the adsorption of HMF and proton is improved by introducing of Pd, which is demonstrated by the electrochemical results and hydrogen production rate. This work provides an effective strategy to improve the selectivity of Cu-based electrocatalyst and builds a relationship between the adsorption capacity and the electrocatalytic performance.
  • 加载中
    1. [1]

      Yang, M.; Yuan, Z.; Peng, R.; Wang, S.; Zou, Y. Recent progress on electrocatalytic valorization of biomass-derived organics. Energ. Environ. Mater. 2022, Doi:10.1002/eem2.12295.  doi: 10.1002/eem2.12295

    2. [2]

      Dai, Y. M.; Niu, L. L.; Liu, H.; Zou, J. Q.; Yu, L. P.; Feng, Q. J. Cu-Ni alloy catalyzed electrochemical carboxylation of benzyl bromide with carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Int. J. Electrochem. Sci. 2018, 13, 1084-1095.

    3. [3]

      Feng, Q.; Lv, H.; Zhang, Y.; Dai, F.; Yan, W. New method for electrochemical activation of N-benzyl ideneaniline to dibutyl phthalate in the present of carbon dioxide. Int. J. Electrochem. Sci. 2016, 11, 692-699.

    4. [4]

      Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 2001, 42, 1357-1378.  doi: 10.1016/S0196-8904(00)00137-0

    5. [5]

      Kwon, Y.; Schouten, K. J. P.; van der Waal, J. C.; de Jong, E.; Koper, M. T. M. Electrocatalytic conversion of furanic compounds. ACS Catal. 2016, 6, 6704-6717.  doi: 10.1021/acscatal.6b01861

    6. [6]

      Mamman, A. S.; Lee, J. M.; Kim, Y. C.; Hwang, I. T.; Park, N. J.; Hwang, Y. K.; Chang, J. S.; Hwang, J. S. Furfural: hemicellulose/xylose-derived biochemical. Biofuel Bioprod. Bior. 2008, 2, 438-454.  doi: 10.1002/bbb.95

    7. [7]

      Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982-985.  doi: 10.1038/nature05923

    8. [8]

      Li, S.; Sun, X.; Yao, Z.; Zhong, X.; Coo, Y.; Liang, Y.; Wei, Z.; Deng, S.; Zhuang, G.; Li, X.; Wang, J. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 2019, 29, 1904780.  doi: 10.1002/adfm.201904780

    9. [9]

      de Luna, G. S.; Ho, P. H.; Lolli, A.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Ag electrodeposited on Cu open-cell foams for the selective electroreduction of 5-hydroxymethylfurfural. Chemelectrochem 2020, 7, 1238-1247.  doi: 10.1002/celc.201902161

    10. [10]

      Nilges, P.; dos Santos, T. R.; Harnisch, F.; Schroeder, U. Electrochemistry for biofuel generation: electrochemical conversion of levulinic acid to octane. Energy & Environ. Sci. 2012, 5, 5231-5235.

    11. [11]

      Govind Rajan, A.; Carter, E. A. Discovering competing electrocatalytic mechanisms and their overpotentials: automated enumeration of oxygen evolution pathways. J. Phys. Chem. C 2020, 124, 24883-24898.  doi: 10.1021/acs.jpcc.0c08120

    12. [12]

      Kwon, Y.; Birdja, Y. Y.; Raoufmoghaddam, S.; Koper, M. T. M. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem 2015, 8, 1745-1751.  doi: 10.1002/cssc.201500176

    13. [13]

      Kwon, Y.; de Jong, E.; Raoufmoghaddam, S.; Koper, M. T. M. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. ChemSusChem 2013, 6, 1659-1667.  doi: 10.1002/cssc.201300443

    14. [14]

      Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120-14128.  doi: 10.1021/jacs.7b06331

    15. [15]

      Zhang, L.; Zhang, F.; Michel, F. C. Jr.; Co, A. C. Efficient electrochemical hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)-furan on Ag-displaced nanotextured Cu catalysts. Chemelectrochem 2019, 6, 4739-4749.  doi: 10.1002/celc.201900640

    16. [16]

      Zhang, Y. R.; Wang, B. X.; Qin, L.; Li, Q.; Fan, Y. M. A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural. Green Chem. 2019, 21, 1108-1113.  doi: 10.1039/C8GC03689F

    17. [17]

      Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075-8098.  doi: 10.1039/c2cs35188a

    18. [18]

      Roylance, J. J.; Kim, T. W.; Choi, K. S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 2016, 6, 1840-1847.  doi: 10.1021/acscatal.5b02586

    19. [19]

      Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47-50.  doi: 10.1021/jacs.6b10740

    20. [20]

      Li, J.; Li, F.; Guo, S. X.; Zhang, J.; Ma, J. PdCu@Pd nanocube with Pt-like activity for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 8151-8160.  doi: 10.1021/acsami.7b01241

    21. [21]

      Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.  doi: 10.1002/adma.201706962

    22. [22]

      He, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Appl. Catal. B 2020, 265, 118560.  doi: 10.1016/j.apcatb.2019.118560

    23. [23]

      Shan, S.; Petkov, V.; Prasai, B.; Wu, J.; Joseph, P.; Skeete, Z.; Kim, E.; Mott, D.; Malis, O.; Luo, J.; Zhong, C. J. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale 2015, 7, 18936-18948.  doi: 10.1039/C5NR04535E

    24. [24]

      Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345-6353.  doi: 10.1021/acsnano.6b02669

    25. [25]

      Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H. Intermetallic nanocrystals: syntheses and catalytic applications. Adv. Mater. 2017, 29, DOI: 10.1002/adma.201605997.  doi: 10.1002/adma.201605997

    26. [26]

      Cheng, Y.; Xue, J.; Yang, M.; Li, H.; Guo, P. Bimetallic PdCu nanoparticles for electrocatalysis: multiphase or homogeneous alloy? Inorg. Chem. 2020, 59, 10611-10619.  doi: 10.1021/acs.inorgchem.0c01056

    27. [27]

      He, C.; Ma, Z.; Wu, Q.; Cai, Y.; Huang, Y.; Liu, K.; Wu, X. Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta 2020, 330, 135119.  doi: 10.1016/j.electacta.2019.135119

    28. [28]

      Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71-129.

    29. [29]

      Li, F.; Li, J.; Feng, Q.; Yan, J.; Tang, Y.; Wang, H. Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al-air batteries. J. Energy Chem. 2018, 27, 419-425.  doi: 10.1016/j.jechem.2017.12.002

    30. [30]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.  doi: 10.1038/ncomms5948

    31. [31]

      Li, J.; Liu, G.; Liu, B.; Min, Z.; Qian, D.; Jiang, J.; Li, J. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2018, 265, 577-585.  doi: 10.1016/j.electacta.2018.01.211

    32. [32]

      Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W. A. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51-57.  doi: 10.1016/j.nanoen.2017.09.043

    33. [33]

      Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A 1997, 115, 421-429.  doi: 10.1016/S1381-1169(96)00348-2

    34. [34]

      Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.  doi: 10.1103/PhysRevLett.93.156801

    35. [35]

      Solanki, B. S.; Rode, C. V. Selective hydrogenation of 5-HMF to 2, 5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chem. 2019, 21, 6390-6406.  doi: 10.1039/C9GC03091C

    36. [36]

      Dutta, S.; De, S.; Patra, A. K.; Sasidharan, M.; Bhaumik, A.; Saha, B. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl. Catal. A 2011, 409, 133-139.

    37. [37]

      Alam, M. I.; De, S.; Singh, B.; Saha, B.; Abu-Omar, M. M. Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxy-methylfurfural (HMF) production. Appl. Catal. A 2014, 486, 42-48.  doi: 10.1016/j.apcata.2014.08.019

    38. [38]

      Lyons, M. E. G.; Brandon, M. P. The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem. 2009, 631, 62-70.  doi: 10.1016/j.jelechem.2009.03.019

    39. [39]

      Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36-39.  doi: 10.1021/jacs.5b10525

    40. [40]

      Zhao, T.; Wang, G.; Gong, M.; Xiao, D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H.; Li, Q.; Wang, D. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10, 15207-15216.  doi: 10.1021/acscatal.0c03938

    41. [41]

      Zhou, L.; Zhu, X.; Su, H.; Lin, H.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N.; Xie, C.; Li, Y.; Lu, Y.; Zheng, J.; Johannessen, B.; Jiang, S. P.; Liu, Q.; Li, Y.; Zou, Y.; Wang, S. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci China-Chem. 2021, 64, 1586-1595.  doi: 10.1007/s11426-021-1100-y

    42. [42]

      Heidary, N.; Kornienko, N. Operando vibrational spectroscopy for electrochemical biomass valorization. Chem. Commun. 2020, 56, 8726-8734. DOI: 10.14102/j.cnki.0254-5861.2022-0074  doi: 10.14102/j.cnki.0254-5861.2022-0074

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    3. [3]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    4. [4]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    5. [5]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    6. [6]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    7. [7]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    8. [8]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    9. [9]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    10. [10]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    11. [11]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    12. [12]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    13. [13]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    14. [14]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    17. [17]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    18. [18]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    19. [19]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    20. [20]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

Metrics
  • PDF Downloads(2)
  • Abstract views(338)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return