Selective Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dihydroxymethylfuran on Bimetallic PdCu Alloy
- Corresponding author: Yuqin Zou, yuqin_zou@hnu.edu.cn
Citation:
Xu Yue, Weixing Zhao, Shuangyin Wang, Yuqin Zou. Selective Electrocatalytic Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dihydroxymethylfuran on Bimetallic PdCu Alloy[J]. Chinese Journal of Structural Chemistry,
;2022, 41(5): 220506.
doi:
10.14102/j.cnki.0254-5861.2022-0074
Yang, M.; Yuan, Z.; Peng, R.; Wang, S.; Zou, Y. Recent progress on electrocatalytic valorization of biomass-derived organics. Energ. Environ. Mater. 2022, Doi:10.1002/eem2.12295.
doi: 10.1002/eem2.12295
Dai, Y. M.; Niu, L. L.; Liu, H.; Zou, J. Q.; Yu, L. P.; Feng, Q. J. Cu-Ni alloy catalyzed electrochemical carboxylation of benzyl bromide with carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Int. J. Electrochem. Sci. 2018, 13, 1084-1095.
Feng, Q.; Lv, H.; Zhang, Y.; Dai, F.; Yan, W. New method for electrochemical activation of N-benzyl ideneaniline to dibutyl phthalate in the present of carbon dioxide. Int. J. Electrochem. Sci. 2016, 11, 692-699.
Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage. 2001, 42, 1357-1378.
doi: 10.1016/S0196-8904(00)00137-0
Kwon, Y.; Schouten, K. J. P.; van der Waal, J. C.; de Jong, E.; Koper, M. T. M. Electrocatalytic conversion of furanic compounds. ACS Catal. 2016, 6, 6704-6717.
doi: 10.1021/acscatal.6b01861
Mamman, A. S.; Lee, J. M.; Kim, Y. C.; Hwang, I. T.; Park, N. J.; Hwang, Y. K.; Chang, J. S.; Hwang, J. S. Furfural: hemicellulose/xylose-derived biochemical. Biofuel Bioprod. Bior. 2008, 2, 438-454.
doi: 10.1002/bbb.95
Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982-985.
doi: 10.1038/nature05923
Li, S.; Sun, X.; Yao, Z.; Zhong, X.; Coo, Y.; Liang, Y.; Wei, Z.; Deng, S.; Zhuang, G.; Li, X.; Wang, J. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 2019, 29, 1904780.
doi: 10.1002/adfm.201904780
de Luna, G. S.; Ho, P. H.; Lolli, A.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Ag electrodeposited on Cu open-cell foams for the selective electroreduction of 5-hydroxymethylfurfural. Chemelectrochem 2020, 7, 1238-1247.
doi: 10.1002/celc.201902161
Nilges, P.; dos Santos, T. R.; Harnisch, F.; Schroeder, U. Electrochemistry for biofuel generation: electrochemical conversion of levulinic acid to octane. Energy & Environ. Sci. 2012, 5, 5231-5235.
Govind Rajan, A.; Carter, E. A. Discovering competing electrocatalytic mechanisms and their overpotentials: automated enumeration of oxygen evolution pathways. J. Phys. Chem. C 2020, 124, 24883-24898.
doi: 10.1021/acs.jpcc.0c08120
Kwon, Y.; Birdja, Y. Y.; Raoufmoghaddam, S.; Koper, M. T. M. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution. ChemSusChem 2015, 8, 1745-1751.
doi: 10.1002/cssc.201500176
Kwon, Y.; de Jong, E.; Raoufmoghaddam, S.; Koper, M. T. M. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. ChemSusChem 2013, 6, 1659-1667.
doi: 10.1002/cssc.201300443
Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120-14128.
doi: 10.1021/jacs.7b06331
Zhang, L.; Zhang, F.; Michel, F. C. Jr.; Co, A. C. Efficient electrochemical hydrogenation of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)-furan on Ag-displaced nanotextured Cu catalysts. Chemelectrochem 2019, 6, 4739-4749.
doi: 10.1002/celc.201900640
Zhang, Y. R.; Wang, B. X.; Qin, L.; Li, Q.; Fan, Y. M. A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural. Green Chem. 2019, 21, 1108-1113.
doi: 10.1039/C8GC03689F
Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075-8098.
doi: 10.1039/c2cs35188a
Roylance, J. J.; Kim, T. W.; Choi, K. S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 2016, 6, 1840-1847.
doi: 10.1021/acscatal.5b02586
Ma, S.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47-50.
doi: 10.1021/jacs.6b10740
Li, J.; Li, F.; Guo, S. X.; Zhang, J.; Ma, J. PdCu@Pd nanocube with Pt-like activity for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 8151-8160.
doi: 10.1021/acsami.7b01241
Huang, W.; Kang, X.; Xu, C.; Zhou, J.; Deng, J.; Li, Y.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
doi: 10.1002/adma.201706962
He, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Appl. Catal. B 2020, 265, 118560.
doi: 10.1016/j.apcatb.2019.118560
Shan, S.; Petkov, V.; Prasai, B.; Wu, J.; Joseph, P.; Skeete, Z.; Kim, E.; Mott, D.; Malis, O.; Luo, J.; Zhong, C. J. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale 2015, 7, 18936-18948.
doi: 10.1039/C5NR04535E
Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts. ACS Nano 2016, 10, 6345-6353.
doi: 10.1021/acsnano.6b02669
Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H. Intermetallic nanocrystals: syntheses and catalytic applications. Adv. Mater. 2017, 29, DOI: 10.1002/adma.201605997.
doi: 10.1002/adma.201605997
Cheng, Y.; Xue, J.; Yang, M.; Li, H.; Guo, P. Bimetallic PdCu nanoparticles for electrocatalysis: multiphase or homogeneous alloy? Inorg. Chem. 2020, 59, 10611-10619.
doi: 10.1021/acs.inorgchem.0c01056
He, C.; Ma, Z.; Wu, Q.; Cai, Y.; Huang, Y.; Liu, K.; Wu, X. Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta 2020, 330, 135119.
doi: 10.1016/j.electacta.2019.135119
Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71-129.
Li, F.; Li, J.; Feng, Q.; Yan, J.; Tang, Y.; Wang, H. Significantly enhanced oxygen reduction activity of Cu/CuNxCy co-decorated ketjenblack catalyst for Al-air batteries. J. Energy Chem. 2018, 27, 419-425.
doi: 10.1016/j.jechem.2017.12.002
Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
doi: 10.1038/ncomms5948
Li, J.; Liu, G.; Liu, B.; Min, Z.; Qian, D.; Jiang, J.; Li, J. Fe-doped CoSe2 nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2018, 265, 577-585.
doi: 10.1016/j.electacta.2018.01.211
Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W. A. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51-57.
doi: 10.1016/j.nanoen.2017.09.043
Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A 1997, 115, 421-429.
doi: 10.1016/S1381-1169(96)00348-2
Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.
doi: 10.1103/PhysRevLett.93.156801
Solanki, B. S.; Rode, C. V. Selective hydrogenation of 5-HMF to 2, 5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chem. 2019, 21, 6390-6406.
doi: 10.1039/C9GC03091C
Dutta, S.; De, S.; Patra, A. K.; Sasidharan, M.; Bhaumik, A.; Saha, B. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl. Catal. A 2011, 409, 133-139.
Alam, M. I.; De, S.; Singh, B.; Saha, B.; Abu-Omar, M. M. Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxy-methylfurfural (HMF) production. Appl. Catal. A 2014, 486, 42-48.
doi: 10.1016/j.apcata.2014.08.019
Lyons, M. E. G.; Brandon, M. P. The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem. 2009, 631, 62-70.
doi: 10.1016/j.jelechem.2009.03.019
Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36-39.
doi: 10.1021/jacs.5b10525
Zhao, T.; Wang, G.; Gong, M.; Xiao, D.; Chen, Y.; Shen, T.; Lu, Y.; Zhang, J.; Xin, H.; Li, Q.; Wang, D. Self-optimized ligand effect in L12-PtPdFe intermetallic for efficient and stable alkaline hydrogen oxidation reaction. ACS Catal. 2020, 10, 15207-15216.
doi: 10.1021/acscatal.0c03938
Zhou, L.; Zhu, X.; Su, H.; Lin, H.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N.; Xie, C.; Li, Y.; Lu, Y.; Zheng, J.; Johannessen, B.; Jiang, S. P.; Liu, Q.; Li, Y.; Zou, Y.; Wang, S. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci China-Chem. 2021, 64, 1586-1595.
doi: 10.1007/s11426-021-1100-y
Heidary, N.; Kornienko, N. Operando vibrational spectroscopy for electrochemical biomass valorization. Chem. Commun. 2020, 56, 8726-8734. DOI: 10.14102/j.cnki.0254-5861.2022-0074
doi: 10.14102/j.cnki.0254-5861.2022-0074
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Minghui Zhang , Na Zhang , Qian Zhao , Chao Wang , Alexander Steiner , Jianliang Xiao , Weijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Xuan Liu , Qing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670