Citation: Deqing Zhang, Junfeng Ren, Caixia Li, Bin Luo, Lei Wang, Yanyan Li. An Advanced Design Concept of Mansion-like Freestanding Silicon Anodes with Improved Lithium Storage Performances[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220505. doi: 10.14102/j.cnki.0254-5861.2022-0070 shu

An Advanced Design Concept of Mansion-like Freestanding Silicon Anodes with Improved Lithium Storage Performances

Figures(6)

  • To conquer inherently low conductivity, volume swelling, and labile solid electrolyte interphase (SEI) films of Si anode in lithium ion battery (LIBs), it is widely accepted that appropriate structure design of Si-C hybrids performs effectively, especially for nanosize Si particles. Herein, inspired by the sturdy construction of high-rise buildings, a mansion-like 3D structured Si@SiO2/PBC/RGO (SSPBG) with separated rooms is developed based on 0D core-shell Si@SiO2, 1D pyrolytic bacterial cellulose (PBC) and 2D reduced graphene oxide (RGO). Therefore, these hierarchical protectors operate synergistically to inhibit the inevitable volume changes during electrochemical process. Specifically, tightly coated SiO2 shell as the first protective layer could buffer the volume expansion and reduce detrimental pulverization of Si NPs. Furthermore, flexible spring-like PBC and ultra-fine RGO sheets perform as securer barriers and skeleton which will counteract the microstructure strain and accelerate electron transfer at the same time. Remarkably, the self-supporting electrode realizes a distinguished performance of 901 mAh g-1 at 2 A g-1 for 500 cycles. When matched with LiFePO4 cathodes, high stability of more than 100 cycles has been realized for the full batteries.
  • 加载中
    1. [1]

      Takami, N.; Satoh, A.; Hara, M.; Ohsaki, T. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electroanal. Chem. 1995, 142, 371.  doi: 10.1149/1.2044017

    2. [2]

      Levi, M. D.; Aurbach, D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J. Phys. Chem. B 1997, 101, 4641-4647.

    3. [3]

      Yu, P.; Popov, B. N.; Ritter, J. A.; White, R. E. Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc. India 1999, 146, 8.  doi: 10.1149/1.1391556

    4. [4]

      Zhang, C.; Kang, T. H.; Yu, J. S. Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 2017, 11, 233-245.

    5. [5]

      Xia, L.; Wang, S.; Liu, G.; Ding, L.; Li, D.; Wang, H.; Qiao, S. Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 2016, 12, 853-859.  doi: 10.1002/smll.201503315

    6. [6]

      Jia, L.; Ji, Y.; Wang, Z.; Yang, K.; Chen, H.; Pan, F. Interface reconstruction study by functional scanning probe microscope in Li-ion battery research. Chin. J. Struct. Chem. 2020, 39, 200-205.

    7. [7]

      Van Noorden, R. A better battery. Nature 2014, 507, 26.  doi: 10.1038/507026a

    8. [8]

      Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.  doi: 10.1021/ja3091438

    9. [9]

      Wang, L.; Zhuo, L.; Zhao, F. Carbon dioxide-expanded ethanol-assisted synthesis of carbon-based metal composites and their catalytic and electrochemical performance in lithium-ion batteries. Chin. J. Catal. 2016, 37, 218-226.  doi: 10.1016/S1872-2067(15)61024-5

    10. [10]

      Wang, R.; Wang, S.; Jin, D.; Zhang, Y.; Cai, Y.; Ma, J.; Zhang, L. Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Storage Mater. 2017, 9, 195-205.  doi: 10.1016/j.ensm.2017.07.013

    11. [11]

      Cui, G. Reasonable design of high-energy-density solid-state lithium-metal batteries. Matter 2020, 2, 805-815.  doi: 10.1016/j.matt.2020.02.003

    12. [12]

      Guo, Y.; Chen, Y. N.; Cui, H.; Zhou, Z. Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chin. J. Catal. 2019, 40, 1298-1310.  doi: 10.1016/S1872-2067(19)63349-8

    13. [13]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267-278.  doi: 10.1038/s41560-018-0107-2

    14. [14]

      Li, X.; Yang, S.; Feng, N.; He, P.; Zhou, H. Progress in research on Li-CO2 batteries: mechanism, catalyst and performance. Chin. J. Catal. 2016, 37, 1016-1024.  doi: 10.1016/S1872-2067(15)61125-1

    15. [15]

      Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456-463.  doi: 10.1016/j.carbon.2009.09.061

    16. [16]

      Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 2019, 131, 7905-7910.  doi: 10.1002/ange.201904174

    17. [17]

      Xu, G.; Li, J.; Wang, C.; Du, X.; Lu, D.; Xie, B.; Wang, X.; Lu, C.; Liu, H.; Dong, S. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 2021, 133, 7849-7855.  doi: 10.1002/ange.202013812

    18. [18]

      Wu, F.; Liu, M.; Li, Y.; Feng, X.; Zhang, K.; Bai, Y.; Wang, X.; Wu, C. High-mass-loading electrodes for advanced secondary batteries and supercapacitors. Electrochem. Energy R 2021, 4, 382-446.  doi: 10.1007/s41918-020-00093-0

    19. [19]

      Liu, Y.; Li, W.; Xia, Y. Recent progress in polyanionic anode materials for Li(Na)-ion batteries. Electrochem. Energy R 2021, 4, 447-472.  doi: 10.1007/s41918-021-00095-6

    20. [20]

      Boyjoo, Y.; Shi, H.; Tian, Q.; Liu, S.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energ. Environ. Sci. 2021, 14, 540-575.  doi: 10.1039/D0EE03316B

    21. [21]

      Zhong, X.; Papandrea, B.; Xu, Y.; Lin, Z.; Zhang, H.; Liu, Y.; Huang, Y.; Duan, X. Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. Nano Res. 2017, 10, 472-482.  doi: 10.1007/s12274-016-1306-4

    22. [22]

      Boyjoo, Y.; Shi, H.; Olsson, E.; Cai, Q.; Wu, Z. S.; Liu, J.; Lu, G. Q. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000651.  doi: 10.1002/aenm.202000651

    23. [23]

      Yoon, J. H.; Lee, G.; Li, P.; Baik, H.; Yi, G. R.; Park, J. H. Expandable crosslinked polymer coatings on silicon nanoparticle anode toward high-rate and long-cycle-life lithium-ion battery. Appl. Surf. Sci. 2022, 571, 151294.  doi: 10.1016/j.apsusc.2021.151294

    24. [24]

      Xie, Q.; Qu, S.; Zhao, P. A facile fabrication of micro/nano-sized silicon/carbon composite with a honeycomb structure as high-stability anodes for lithium-ion batteries. J. Electroanal. Chem. 2021, 884, 115074.  doi: 10.1016/j.jelechem.2021.115074

    25. [25]

      McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395-1442.  doi: 10.1007/s12274-014-0659-9

    26. [26]

      Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small Struct. 2021, 2, 2100009.  doi: 10.1002/sstr.202100009

    27. [27]

      Liu, H.; Wei, C.; Peng, H.; Ma, W.; Wang, Y.; Zhang, L.; Lu, C.; Ma, C.; Shi, J. Improved lithium storage performance by encapsulating silicon in free-standing 3D network structure carbon-based composite membranes as flexible anodes. Surf. Coat. Technol. 2021, 423, 127606.  doi: 10.1016/j.surfcoat.2021.127606

    28. [28]

      Song, Z.; Chen, S.; Zhao, Y.; Xue, S.; Qian, G.; Fang, J.; Zhang, T.; Long, C.; Yang, L.; Pan, F. Constructing a resilient hierarchical conductive network to promote cycling stability of SiOx anode via binder design. Small 2021, 17, 2102256.  doi: 10.1002/smll.202102256

    29. [29]

      Song, Z.; Zhang, T.; Wang, L.; Zhao, Y.; Li, Z.; Zhang, M.; Wang, K.; Xue, S.; Fang, J.; Ji, Y. Bio-inspired binder design for a robust conductive network in silicon-based anodes. Small Methods 2022, 2101591.

    30. [30]

      Yang, K.; Yang, L.; Wang, Z.; Guo, B.; Song, Z.; Fu, Y.; Ji, Y.; Liu, M.; Zhao, W.; Liu, X.; Yang, S.; Pan, F. Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries. Adv. Energy Mater. 2021, 11, 2100601.  doi: 10.1002/aenm.202100601

    31. [31]

      Yang, Y.; Yang, J.; Pan, F.; Cui, Y. From intercalation to alloying chemistry: structural design of silicon anodes for the next generation of lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 16-19.

    32. [32]

      Huang, X.; Sui, X.; Yang, H.; Ren, R.; Wu, Y.; Guo, X.; Chen, J. HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 2593-2599.  doi: 10.1039/C7TA08283E

    33. [33]

      Guo, S.; Hu, X.; Hou, Y.; Wen, Z. Tunable synthesis of yolk-shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Inter 2017, 9, 42084-42092.  doi: 10.1021/acsami.7b13035

    34. [34]

      Fu, L.; Xu, A.; Song, Y.; Ju, J.; Sun, H.; Yan, Y.; Wu, S. Pinecone-like silicon@carbon microspheres covered by Al2O3 nano-petals for lithium-ion battery anode under high temperature. Electrochim. Acta 2021, 387, 138461.  doi: 10.1016/j.electacta.2021.138461

    35. [35]

      Feng, X.; Yang, J.; Bie, Y.; Wang, J.; Nuli, Y.; Lu, W. Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries. Nanoscale 2014, 6, 12532-12539.  doi: 10.1039/C4NR03948C

    36. [36]

      Kim, J. M.; Guccini, V.; Kim, D.; Oh, J.; Park, S.; Jeon, Y.; Hwang, T.; Salazar-Alvarez, G.; Piao, Y. A novel textile-like carbon wrapping for high-performance silicon anodes in lithium-ion batteries. J. Mater. Chem. A 2018, 6, 12475-12483.  doi: 10.1039/C8TA01414K

    37. [37]

      Zhang, X.; Wang, D.; Zhang, S.; Li, X.; Zhi, L. A hierarchical layering design for stable, self-restrained and high volumetric binder-free lithium storage. Nanoscale 2019, 11, 21728-21732.  doi: 10.1039/C9NR08215H

    38. [38]

      Xia, M.; Chen, B.; Gu, F.; Zu, L.; Xu, M.; Feng, Y.; Wang, Z.; Zhang, H.; Zhang, C.; Zhang, C. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano 2020, 14, 5111-5120.  doi: 10.1021/acsnano.0c01976

    39. [39]

      Kucinskis, G.; Bajars, G.; Kleperis, J. Graphene in lithium ion battery cathode materials: a review. J. Power Sources 2013, 240, 66-79.  doi: 10.1016/j.jpowsour.2013.03.160

    40. [40]

      Wang, B.; Li, W.; Wu, T.; Guo, J.; Wen, Z. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries. Energy Storage Mater. 2018, 15, 139-147.  doi: 10.1016/j.ensm.2018.03.025

    41. [41]

      Kim, N.; Park, H.; Yoon, N.; Lee, J. K. Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes. ACS Nano 2018, 12, 3853-3864.  doi: 10.1021/acsnano.8b01129

    42. [42]

      Ge, G.; Li, G.; Wang, X.; Chen, X.; Fu, L.; Liu, X.; Mao, E.; Liu, J.; Yang, X.; Qian, C.; Sun, Y. Manipulating oxidation of silicon with fresh surface enabling stable battery anode. Nano Lett. 2021, 21, 3127-3133.  doi: 10.1021/acs.nanolett.1c00317

    43. [43]

      Zhang, X.; Guo, R.; Li, X.; Zhi, L. Scallop-inspired shell engineering of microparticles for stable and high volumetric capacity battery anodes. Small 2018, 14, 1800752.  doi: 10.1002/smll.201800752

    44. [44]

      Li, P.; Hwang, J. Y.; Sun, Y. K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano 2019, 13, 2624-2633.

    45. [45]

      Jakša, G.; Štefane, B.; Kovač, J. Influence of different solvents on the morphology of APTMS-modified silicon surfaces. Appl. Surf. Sci. 2014, 315, 516-522.  doi: 10.1016/j.apsusc.2014.05.157

    46. [46]

      Li, G.; Zhang, B.; Yan, J.; Wang, Z. Micro- and mesoporous poly(Schiff-base)s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO2 gas. J. Mater. Chem. A 2014, 2, 18881-18888.  doi: 10.1039/C4TA04429K

    47. [47]

      Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 2017, 7, 1700715.  doi: 10.1002/aenm.201700715

    48. [48]

      Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.  doi: 10.1038/nnano.2007.411

    49. [49]

      Gao, H.; Xiao, L.; Plümel, I.; Xu, G. L.; Ren, Y.; Zuo, X.; Liu, Y.; Schulz, C.; Wiggers, H.; Amine, K. Parasitic reactions in nanosized silicon anodes for lithium-ion batteries. Nano Lett. 2017, 17, 1512-1519.  doi: 10.1021/acs.nanolett.6b04551

    50. [50]

      Zhu, R.; Wang, Z.; Hu, X.; Liu, X.; Wang, H. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101487.  doi: 10.1002/adfm.202101487

    51. [51]

      Wu, J.; Qin, X.; Zhang, H.; He, Y. B.; Li, B.; Ke, L.; Lv, W.; Du, H.; Yang, Q. H.; Kang, F. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434-443.  doi: 10.1016/j.carbon.2014.12.036

    52. [52]

      Lin, H.; Weng, W.; Ren, J.; Qiu, L.; Zhang, Z.; Chen, P.; Chen, X.; Deng, J.; Wang, Y.; Peng, H. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater. 2014, 26, 1217-1222.  doi: 10.1002/adma.201304319

    53. [53]

      Bao, W.; Wang, J.; Chen, S.; Li, W.; Su, Y.; Wu, F.; Tan, G.; Lu, J. A three-dimensional hierarchical structure of cyclized-PAN/Si/Ni for mechanically stable silicon anodes. J. Mater. Chem. A 2017, 5, 24667-24676.  doi: 10.1039/C7TA08744F

    54. [54]

      Xu, S.; Zhou, J. G.; Wang, J.; Pathiranage, S.; Oncel, N.; Ilango, P. R.; Zhang, X.; Mann, M.; Hou, X. D. In situ synthesis of graphene-coated silicon monoxide anodes from coal-derived humic acid for high-performance lithium-ion batteries. Adv. Funct. Mater. 2021.

    55. [55]

      Qu, E.; Chen, T.; Xiao, Q.; Lei, G.; Li, Z. Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery. J. Power Sources 2018, 403, 103-108.  doi: 10.1016/j.jpowsour.2018.09.086

    56. [56]

      Wang, M. S.; Song, W. L.; Wang, J.; Fan, L. Z. Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 2015, 82, 337-345.  doi: 10.1016/j.carbon.2014.10.078

    57. [57]

      Zhou, Y.; Yang, Y.; Hou, G.; Yi, D.; Zhou, B.; Chen, S.; Lam, T. D.; Yuan, F.; Golberg, D.; Wang, X. Stress-relieving defects enable ultra-stable silicon anode for Li-ion storage. Nano Energy 2020, 70, 104568.  doi: 10.1016/j.nanoen.2020.104568

    58. [58]

      Zhu, S.; Zhou, J.; Guan, Y.; Cai, W.; Zhao, Y.; Zhu, Y.; Zhu, L.; Zhu, Y.; Qian, Y. Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries. Small 2018, 14, 1802457.  doi: 10.1002/smll.201802457

    59. [59]

      Zhang, J.; Chen, Y.; Chen, X.; Feng, T.; Yang, P.; An, M. Preparation of graphene-like carbon attached porous silicon anode by magnesiothermic and nickel-catalyzed reduction reactions. Ionics 2020, 26, 5941-5950.  doi: 10.1007/s11581-020-03746-8

    60. [60]

      Zhang, X.; Wang, D.; Qiu, X.; Ma, Y.; Kong, D.; Mullen, K.; Li, X.; Zhi, L. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 2020, 11, 3826.  doi: 10.1038/s41467-020-17686-4

    61. [61]

      Zhu, R.; Li, L.; Wang, Z.; Zhang, S.; Dang, J.; Liu, X.; Wang, H. Adjustable dimensionality of microaggregates of silicon in hollow carbon nanospheres: an efficient pathway for high-performance lithium-ion batteries. ACS Nano 2021.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    3. [3]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    4. [4]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    5. [5]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    9. [9]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    10. [10]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    11. [11]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    20. [20]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

Metrics
  • PDF Downloads(2)
  • Abstract views(307)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return