Molecular Engineering of g-C3N4 with Dibenzothiophene Groups as Electron Donor for Enhanced Photocatalytic H2-Production
- Corresponding author: Shaowen Cao, swcao@whut.edu.cn
Citation:
Shanren Tao, Sijie Wan, Qinyang Huang, Chengming Li, Jiaguo Yu, Shaowen Cao. Molecular Engineering of g-C3N4 with Dibenzothiophene Groups as Electron Donor for Enhanced Photocatalytic H2-Production[J]. Chinese Journal of Structural Chemistry,
;2022, 41(6): 220604.
doi:
10.14102/j.cnki.0254-5861.2022-0068
The over-consumption of traditional fossil energy has slowed down the sustainable development of human society. Photocatalytic hydrogen evolution (PHE) has shown great potential in the field of solar energy utilization and transformation and is believed to be a promising solution to the world energy crisis.[1-5] High stability and efficiency are the two most important indicators of a photocatalyst. Over the past decade, graphitic carbon nitride (g-C3N4) has gradually attracted widespread attention[6-8] because of its superior properties comprising of non-toxicity, "earth-abundant" nature, suitable band gap, stable physical and chemical properties, etc.[9-12] However, the practical application of pristine g-C3N4 has encountered several obstacles, e.g., low conversion efficiency of solar energy and slow mobility of photoexcited electron-hole pairs. To solve these problems, a number of strategies have been developed, including building heterojunctions with WO3, [13] CdS, [14] ZnIn2S4, [15] etc., and loading co-catalysts with sulfide, [16] selenide, [17] single metal atoms, [18, 19] and so on as well as the morphology engineering to form nanosheets, [20, 21], nanocages, [22] etc. Besides, element doping[23-25] and crystallinity improvement[26] are also beneficial to the enhancement of photocatalytic performance.
Apart from the above-mentioned strategies, molecular engineering is proposed more advantageous for the modification of g-C3N4, because it is convenient to distinguish the role of grafted molecular groups as electron donor (D) or acceptor (A) based on the difference of charge distribution. For instance, a series of studies[27, 28] reported that acceptor blocks were introduced into the skeleton of g-C3N4 to establish D-A type copolymers. Sun et al.[29] prepared benzenesulfonyl chloride incorporated g-C3N4 for enhanced H2 production. Besides, Fan et al.[30] selected dibromo aromatics as the electron acceptor comonomers to react with urea and constructed successfully novel intramolecular D-A copolymers with enhanced photocatalytic H2 evolution. Li et al.[31] incorporated 4, 4'-(benzoc 1, 2, 5 thiadiazole-4, 7-diyl)diphenylamine (as an electron acceptor) into the g-C3N4 networks to establish donor-π-acceptor-π-donor polymers for a high degree of intramolecular charge transfer.
However, by introducing electron acceptor into the structural network of g-C3N4, the reduction ability of photocatalyst is weakened. This is because the reduction ability of g-C3N4 depends on the energy level of its lowest unoccupied molecular orbital (LUMO). The more negative LUMO energy level indicates that g-C3N4 possesses stronger reduction ability. When g-C3N4 is modified with small molecules, the LUMO for electron accumulation is determined by the low energy-level units. Usually, the LUMO of the acceptor unit is lower than that of g-C3N4. Thus, when g-C3N4 is modified with acceptor units, its reduction ability will be weakened. Hence, introducing electron donor units which possess higher LUMO levels into the g-C3N4 frameworks where triazine rings serve as electron acceptor is a rational way to promote the photocatalytic performance while maintaining the strong reduction ability of photoinduced electrons.
Herein, dibenzothiophene (DBT)-incorporated g-C3N4 compounds were successfully synthesized by heat treatment of g-C3N4 and dibenzothiophene-4-formaldehyde. DBT as an electron-rich unit plays the role of electron donor and delivers electrons to the tri-s-triazine rings (as electron acceptor), to establish a g-C3N4-based intramolecular D-A copolymer (TCN-DBTx, in which x (mg) represents the quantity of dibenzothiophene-4-formaldehyde added). This D-A copolymer can be employed as a photocatalyst with much better charge migration and separation to reduce protons, as compared to pristine g-C3N4. Under visible-light irradiation, the D-A type g-C3N4 shows a steady and excellent activity of hydrogen evolution, with an optimal rate of 3334 μmol g-1 h-1, which is 2.5 times that of pristine g-C3N4. Such performance enhancement could be owing to the reinforced optical response, the boosted transfer and separation of excited charge carriers caused by the D-A structure modification.
Structure Analysis. TCN-DBTx was fabricated by the copolymerization of a mixture of g-C3N4 and DBT (Figure 1). X-ray diffraction (XRD) patterns (Figure 2a) show two typical diffraction peaks at 13.0° and 27.3° for all samples, which are assigned to (100) and (002) planes, respectively.[32, 33] The former is indexed to the in-plane repeated structural packing of tri-s-triazine motifs, while the latter stems from the regular graphite-like interlayer stacking of conjugated aromatic systems.[34] The introduction of a small amount of DBT does not change the primary chemical skeleton of g-C3N4. Fourier transform infrared spectra (FTIR) of DBT-modified samples are also similar with that of TCN (Figure 2b). The sharp signal at 810 cm-1 is caused by the representative breathing of heterocycles involving N in g-C3N4.[19] The peaks ranging from 1200 to 1600 cm-1 are the characteristics of stretching vibration modes of tri-s-triazine (C6N7) rings.[35] The extensive absorption band emerging at the scope of 3000-3400 cm-1 is related to the vibrations of N–H bonds owing to uncondensed amino groups or O-H bonds resulting from adsorbed H2O.[36] When the DBT content is increased to 16 mg, a characteristic peak corresponding to the aromatic C=C[30] appears at 1508 cm-1 (Figure S1), which is also the evidence of successful incorporation of DBT into g-C3N4 networks.
To acquire more detailed information about the influence of DBT on the chemical states, the XPS analyses of TCN and TCN-DBT4 were conducted. The constituent elements of TCN basically comprise C, N and O (Figure 2c and Table S1). Compared with TCN, TCN-DBT4 contains a tiny amount of S. According to the estimated results listed in Table S1, the atomic ratio of C to N in TCN is 0.74, while TCN-DBT4 has a larger value due to the incorporation of DBT. Two peaks at 284.8 and 288.1 eV are deconvoluted for the high-resolution C 1s signals of the two samples (Figure 2d). The former of TCN results from adventitious carbon on the surface while the latter corresponds to the sp2 hybridized carbon (N-C=N).[37-39] Note that the peak area at 284.8 eV of TCN-DBT4 (8.06%) is increased in comparison with that of TCN (7.61%) due to the presence of aromatic rings in DBT. The deconvoluted spectra of N 1 s are mainly comprised of three peaks (Figure 2e). The signal at 398.5 eV is characteristic of the sp2 hybridized aromatic N bonded to C, (C=N-C)[40] and the peak located at 400.2 eV originates from the tertiary N bonded to three carbon (N-C3).[41, 42] Besides, the peak of 401.1 eV is the feature of the amino groups (-NHx).[43] Importantly, the existence of sulfur species in TCN-DBT4 is readily demonstrated by the obvious signals appearing at 163.8 (S 2p3/2) and 164.9 eV (S 2p1/2) in Figure 2f, which are related to thiophene-based molecules.[36, 44] Another distinct peak centered at 168.4 eV is indexed to S-O of sulfur oxides (SOx) from the partial decomposition of DBT during heat treatment in air.[45, 46]
The morphology and microstructure of various samples were investigated by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). As depicted in Figure 3 and Figure S2, both TCN and TCN-DBT4 exhibit obvious thin nanosheet structure. Note that apart from C and N, S is also uniformly distributed in the elemental mapping of TCN-DBT4. These results again prove the successful incorporation of DBT into g-C3N4 frameworks without changing its main molecular structure.
The nitrogen adsorption-desorption isothermal curves and Barrett-Joyner-Halenda (BJH) pore plots are illustrated in Figure S3. Both TCN and TCN-DBT4 present typical type-IV isotherms with high adsorption capacity in high relative pressure region (p/p0 > 0.65).[47] Such curves indicate that there are plentiful mesopores and macropores, which is consistent with the BJH pore plots. In addition, both samples possess H3-hysteresis loops, revealing the formation of slit-like pores caused by aggregation and stacking of nanosheets.[48-51] The similar structure feature also leads to the similarly high specific surface area for of TCN (193 m2 g-1) and TCN-DBT4 (189 m2 g-1), as well as similar pore volume and size (Table S2), for providing abundant reaction sites.
Analysis of the Optical and Electronic Properties. UV-vis diffuse reflectance spectra (DRS) were employed to explore the optical properties of TCN and TCN-DBTx. In contrast with TCN, the absorption intensity of DBT-modified samples in visible-light region was enhanced (Figure 4a). Correspondingly, the band-gaps of TCN and TCN-DBT4 were determined to be 2.80 and 2.76 eV, respectively (Figure 4b).[52, 53] Mott-Schottky plots were utilized to explore the flat-band potentials (EFB) of TCN and TCN-DBT4. The curves of TCN and TCN-DBT4 (Figure 4c and 4d) are characteristic of positive slope, corresponding to typical n-type semiconductor feature.[54] Generally, for n-type semiconductors, the position of the conduction band (CB) bottom is consistent with the flat band potential.[27, 55] Therefore, the CB of TCN and TCN-DBT4 can be roughly estimated as -1.18 and -1.30 eV, respectively. Combined with the band gap values obtained from UV-vis DRS, the band alignments are thus illustrated in Figure 4f. The result reveals that the incorporation of dibenthioohene groups could narrow the band gap of carbon nitride and cause an upshift of the CB. These alterations not only permit more electrons to participate in the reduction of protons, but also raise the reduction ability of photoinduced electrons.
PHE Activity of As-obtained Samples. The PHE performance of TCN and TCN-DBTx was evaluated under visible-light irradiation. As displayed in Figure 5a, TCN presents a relatively low PHE activity due to the rapid recombination of photogenerated electron-hole pairs. After the introduction of DBT into the g-C3N4 frameworks, all samples show much better PHE performance than that of TCN. Particularly, TCN-DBT4 shows the highest PHE rate of 3334 μmol h-1 g-1, which is 2.5 times that of TCN (1332 μmol h-1 g-1).
Note that after four cycles in 12 h, TCN-DBT4 still remains excellent photocatalytic activity (Figure 5b). The structure and morphology of TCN-DBT4 are also retained after the 4-cycle reactions, as evidenced by the XRD patterns (Figure 5c) and FESEM image (Figure 5d). These results demonstrate the superior stability of TCN-DBT4 catalyst. The apparent quantum yield (AQY) of TCN and TCN-DBT4 at monochromatic light irradiation of 420 nm is 0.57% and 0.82%, respectively.
Mechanism for the Enhanced PHE Activity. Quenching photoluminescence (PL) emission as an indicator of retarded radiation recombination implies the increased charge separation possibility.[56] PL spectra were thus measured to monitor the activity of excited charge carriers within the catalysts. As shown in Figure 6a, TCN exhibits a strong PL emission at ~430 nm. After modifying g-C3N4 with DBT, the peak intensity of TCN-DBTx decreases significantly with a slight red shift as the amount of DBT increases, revealing the suppression of electron-hole recombination. Time-resolved photoluminescence (TRPL) spectra were then recorded and shown in Figure 6b, where a three-exponential fitting is employed to investigate the luminescence decay curves.[19] The calculated average PL lifetime (τave) of TCN and TCN-DBT4 is 11.65 and 10.30 ns, respectively (Table S3). The reduced PL lifetime demonstrates the improved exciton separation.[12, 57]
The EIS Nyquist plots of TCN and TCN-DBT4 were also observed in dark conditions (Figure 6c). When DBT was used as electron donor to modify g-C3N4, the semicircular radius becomes significantly smaller as compared to that of TCN, revealing the greatly reduced charge transfer resistance of TCN-DBT4.[58-60] Moreover, the photocurrent intensity of TCN-DBT4 is much higher than that of TCN (Figure 6d), and does not decrease noticeably within five cycles, indicating the faster dissociation efficiency of electron-hole pairs with high stability.[61-63] Further electron paramagnetic resonance (EPR) analysis (Figure 7) shows an obvious g value of ~2.0051, the typical feature of π-conjugated aromatic delocalization within TCN and TCN-DBTx.[10, 64, 65] After DBT modification, the EPR signals of the sample are remarkably enhanced, revealing the existence of more unpaired electrons of the extended π-conjugated systems which are beneficial to the dissociation and transfer of photogenerated charge carriers.
DFT calculations were employed to investigate the electronic structures of the catalysts. Figure 8a and S4 present the spatial structure, electronic structure, optimized highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of TCN and TCN-DBT4. Compared to TCN, the HOMO change of TCN-DBT4 is not obvious. But its LUMO moves from the tri-s-triazine ring to DBT and the neighboring tri-s-triazine ring. This demonstrates the incorporation of DBT contributes to the spatial separation of HOMO and LUMO, which could induce the intramolecular electron transfer under light irradiation. Besides, Figure 8b and 8c reveal the projected density of states (PDOS) of TCN and TCN-DBT4. As for TCN-DBT4, the combination of nitrogen Pz orbitals generally devotes mainly to HOMO and C-N hybrid orbitals are the main contributor to LUMO, which is similar to TCN. And the TCN-DBT4 effectually narrows the HOMO-LUMO gap from 2.424 eV (TCN) to 2.119 eV, consistent with the results of UV-vis DRS analysis.
As shown in Figure S5, when DBT is connected to the tri-s-triazine ring, one unit of DBT loses 0.28 e, and correspondingly, one unit of tri-s-triazine ring gains 0.28 e. This result demonstrates that DBT acts as an electron donor in the entire network of the polymer. Therefore, a built-in electric field from DBT to tri-s-triazine ring is formed, which can further promote the transfer of photogenerated electrons from HOMO to LUMO and inhibit the recombination of photogenerated electron-hole pairs. Moreover, H2 adsorption free Gibbs energies (ΔGH*) were calculated to elucidate the kinetic mechanism of the catalytic process. In Figure 8d, the ΔGH* value of TCN-DBTx (-0.17 eV) is significantly reduced in comparison with that of TCN (0.23 eV), indicating the easier thermodynamic process of hydrogen evolution over TCN-DBT4 catalyst.[10, 66]
In summary, intramolecular D-A modification of g-C3N4 is readily achieved by the copolymerization of g-C3N4 and DBT. A series of characterization and DFT calculation demonstrate that the DBT unit could act as an electron donor after incorporating into the g-C3N4 frameworks. Such D-A modification of g-C3N4 helps to adjust the electronic structure with more negative CB for stronger reduction ability. More importantly, the introduction of DBT into g-C3N4 not only increases the electron delocalization, but also promotes the intramolecular charge transfer via inducing the internal electric field, as well as accelerating the surface catalytic process via reducing the reaction barrier. As a result, the optimal g-C3N4-based D-A copolymer shows the best hydrogen production performance (3334 μmol h-1 g-1), which is 2.5 times that of pristine g-C3N4. This work introduces a facile but effective route for constructing g-C3N4-based D-A copolymer with high charge separation efficiency and excellent photocatalytic activity.
Synthesis of Graphitic Carbon Nitride (g-C3N4). g-C3N4 was synthesized as follows. In a typical process, 10 g of urea was placed in a crucible with a cover, then heated to 550 ℃ with a ramping rate of 5 ℃ per minute in a muffle furnace and held for 2 h. The obtained solid was cooled to room temperature and ground into fine powder for next investigation.
Synthesis of Dibenzothiophene-incorporated Graphitic Carbon Nitride. The samples were prepared by thermal polymerization of a mixture of dibenzothiophene-4-formaldehyde and g-C3N4. In a typical procedure, 360 mg of g-C3N4 and a certain amount of dibenzothiophene-4-formaldehyde were dispersed in a beaker containing 40 mL of deionized water and stirred vigorously for 3 hours. Then the mixture was centrifuged, and washed with deionized water and alcohol for 3 times, respectively. After that, the resulting powders were placed in an alumina porcelain boat and heated to 450 ℃ for 2 h in a muffle furnace at a heating rate of 5 ℃ per minute. The as-obtained samples were recorded as TCN-DBTx (x = 2, 4, 6), in which x (mg) represents the quantity of dibenzothiophene-4-formaldehyde added. The sample used for comparison was prepared by the same synthetic procedure using g-C3N4 as precursor without the addition of dibenzothiophene-4-formaldehyde, and denoted as TCN.
Photocatalytic Hydrogen Evolution Tests. At room temperature, a 100 mL three-necked flask was used as the photocatalytic hydrogen production reactor to conduct the activity test of the catalyst. 20 mg of photocatalyst was placed in 72 mL of deioni-zed water and dispersed by ultrasonic for 10 min, and then a certain amount of H2PtCl6·6H2O aqueous solution was used as the precursor to load 1 wt% Pt on the sample as a cocatalyst by photodeposition method. Then 8 mL of triethanolamine (TEOA) was added to the above solution as a hole trapping agent, and the reactor was made a closed system using rubber stoppers and tape. Before light irradiation, the mixed aqueous solution was subjected to N2 for 30 minutes under magnetic stirring to remove oxygen in the closed system. Then it was illuminated under a Xe lamp (400-800 nm) and kept magnetic stirring. One hour later, 400 μL of gas was extracted from the reactor with a sampler and injected into a gas chromatograph (GC-14C, Shimadzu, Japan, TCD, 5 A molecular sieve column) with N2 as the carrier gas.
Zhao, W.; Chen, Z.; Yang, X. R.; Qian, X. X.; Liu, C. X.; Zhou, D. T.; Sun, T.; Zhang, M.; Wei, G. Y.; Dissanayake, P. D.; Ok, Y. S. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. Renew. Sust. Energ. Rev. 2020, 132, 110040.
doi: 10.1016/j.rser.2020.110040
Cheng, C.; He, B. W.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.
doi: 10.1002/adma.202100317
Lin, J. D.; Yan, S.; Huang, Q. D.; Fan, M. T.; Yuan, Y. Z.; Tan, T. T. Y.; Liao, D. W. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 2014, 309, 188-193.
doi: 10.1016/j.apsusc.2014.05.008
Xiang, X. L.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Lv, H. J. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small 2020, 16, 2001024.
doi: 10.1002/smll.202001024
Yang, Y.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Zeng, G. M.; Huang, D. L.; Zhang, C.; Song, B.; Xue, W. J.; Li, X. P.; Wang, Z. W.; He, D. H.; Luo, H. Z.; Ouyang, Z. L. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 2021, 405, 126547.
doi: 10.1016/j.cej.2020.126547
Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D. L.; Antonietti, M.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 2009, 113, 4940-4947.
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
doi: 10.1002/adma.201500033
Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energ. Rev. 2021, 135, 110235.
doi: 10.1016/j.rser.2020.110235
Hou, Y. T.; Guan, H. H.; Yu, J. G.; Cao, S. W. Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 563, 150310.
doi: 10.1016/j.apsusc.2021.150310
Jiang, R. R.; Lu, G. H.; Liu, J. C.; Wu, D. H.; Yan, Z. H.; Wang, Y. H. Incorporation of π-conjugated molecules as electron donors in g-C3N4 enhances photocatalytic H2-production. Renew. Energy 2021, 164, 531-540.
doi: 10.1016/j.renene.2020.09.040
Wang, Y. J.; Li, Y.; Cao, S. W.; Yu, J. G. Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chin. J. Catal. 2019, 40, 867-874.
doi: 10.1016/S1872-2067(19)63343-7
Zong, X. P.; Niu, L. J.; Jiang, W. S.; Yu, Y. M.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. Appl. Catal. B: Environ. 2021, 291, 120099.
doi: 10.1016/j.apcatb.2021.120099
Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556-565.
doi: 10.1016/j.apcatb.2018.11.011
Chen, L.; Xu, Y. M.; Chen, B. In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. Appl. Catal. B: Environ. 2019, 256, 117848.
doi: 10.1016/j.apcatb.2019.117848
Lin, B.; Li, H.; An, H.; Hao, W. B.; Wei, J. J.; Dai, Y. Z.; Ma, C. S.; Yang, G. D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nano-channels towards high efficiency photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 220, 542-552.
doi: 10.1016/j.apcatb.2017.08.071
Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K.; Yin, S. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photo-catalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 26898-26908.
doi: 10.1021/acsami.9b07311
Chen, Z.; Gao, Y. T.; Chen, F.; Shi, H. F. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity. Chem. Eng. J. 2021, 413.
Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
doi: 10.1002/adma.201505281
Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.
doi: 10.1002/adfm.201802169
Yin, J. T.; Li, Z.; Cai, Y.; Zhang, Q. F.; Chen, W. Ultrathin graphitic carbon nitride nanosheets with remarkable photocatalytic hydrogen production under visible LED irradiation. Chem. Commun. 2017, 53, 9430-9433.
doi: 10.1039/C7CC04204C
Cui, Y. J.; Wang, Y. X.; Wang, H.; Cao, F.; Chen, F. Y. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation. Chin. J. Catal. 2016, 37, 1899-1906.
doi: 10.1016/S1872-2067(16)62509-3
Wu, M.; Gong, Y. S.; Nie, T.; Zhang, J.; Wang, R.; Wang, H. W.; He, B. B. Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J. Mater. Chem. A 2019, 7, 5324-5332.
doi: 10.1039/C8TA12076E
Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2017, 218, 664-671.
doi: 10.1016/j.apcatb.2017.07.022
Guo, H.; Shu, Z.; Chen, D. H.; Tan, Y. G.; Zhou, J.; Meng, F. Y.; Li, T. T. One-step synthesis of S-doped g-C3N4 nanosheets for improved visible-light photocatalytic hydrogen evolution. Chem. Phys. 2020, 533, 110714.
doi: 10.1016/j.chemphys.2020.110714
Liao, Y. W.; Wang, G. H.; Wang, J.; Wang, K.; Yan, S. D.; Su, Y. R. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 2021, 587, 110-120.
doi: 10.1016/j.jcis.2020.12.009
Wang, L. Y.; Hong, Y. Z.; Liu, E. L.; Wang, Z. G.; Chen, J. H.; Yang, S.; Wang, J. B.; Lin, X.; Shi, J. Y. Rapid polymerization synthesizing high-crystalline g-C3N4 towards boosting solar photocatalytic H2 generation. Int. J. Hydrogen Energy 2020, 45, 6425-6436.
doi: 10.1016/j.ijhydene.2019.12.168
Che, H. N.; Liu, C. B.; Che, G. B.; Liao, G. F.; Dong, H. J.; Li, C. X.; Song, N.; Li, C. M. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.
doi: 10.1016/j.nanoen.2019.104273
Lai, J. Y.; Zhang, W. D.; Yu, Y. X. Building sp carbon-bridged g-C3N4-based electron donor-π-acceptor unit for efficient photocatalytic water splitting. Mol. Catal. 2021, 505, 111518.
doi: 10.1016/j.mcat.2021.111518
Sun, D. W.; Chen, K. L.; Huang, J. H. Benzenesulfonyl chloride-incorporated g-C3N4 for photocatalytic hydrogen generation by using the hydrolysate of poly(lactic acid) as sacrificial reagent. Appl. Catal. A-Gen. 2021, 628, 118397.
doi: 10.1016/j.apcata.2021.118397
Fan, X. Q.; Zhang, L. X.; Cheng, R. L.; Wang, M.; Li, M. L.; Zhou, Y. J.; Shi, J. L. Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal. 2015, 5, 5008-5015.
doi: 10.1021/acscatal.5b01155
Li, K.; Zhang, W. D. Creating graphitic carbon nitride based donor-π-acceptor-π-donor structured catalysts for highly photocatalytic hydrogen evolution. Small 2018, 14, 1703599.
doi: 10.1002/smll.201703599
Cao, S. W.; Jiang, J.; Zhu, B. C.; Yu, J. G. Shape-dependent photo-catalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 2016, 18, 19457-19463.
doi: 10.1039/C6CP02832B
Jin, Z. L.; Li, Y. B.; Hao, X. Q. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 1912033.
Wang, J.; Zhao, H.; Zhu, B. C.; Larter, S.; Cao, S. W.; Yu, J. G.; Kibria, M. G.; Hu, J. G. Solar-driven glucose isomerization into fructose via transient Lewis acid-base active sites. ACS Catal. 2021, 11, 12170-12178.
doi: 10.1021/acscatal.1c03252
Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218-5225.
doi: 10.1002/anie.201916012
Gong, J. Y.; Xie, Z. B.; Wang, B.; Li, Z. Q.; Zhu, Y.; Xue, J. M.; Le, Z. G. Fabrication of g-C3N4-based conjugated copolymers for efficient photo-catalytic reduction of U(VI). J. Environ. Chem. Eng. 2021, 9, 104638.
doi: 10.1016/j.jece.2020.104638
Li, H. F.; Ding, M. N.; Luo, L. L.; Yang, G. X.; Shi, F. Y.; Huo, Y. N. Nanomesh-structured graphitic carbon nitride polymer for effective capture and photocatalytic elimination of bacteria. ChemCatChem. 2020, 12, 1334-1340.
doi: 10.1002/cctc.201901699
Ye, H. N.; Wang, Z. Q.; Yu, F. T.; Zhang, S. C.; Kong, K. Y.; Gong, X. Q.; Hua, J. L.; Tian, H. Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution. Appl. Catal. B: Environ. 2020, 267, 118577.
doi: 10.1016/j.apcatb.2019.118577
Li, H.; Li, F.; Yu, J. G.; Cao, S. W. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction. Acta Phys. -Chim. Sin. 2021, 37, 2010073.
Kumar, A.; Prajapati, P. K.; Aathira, M. S.; Bansiwal, A.; Boukherroub, R.; Jain, S. L. Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. J. Colloid Interface Sci. 2019, 543, 201-213.
doi: 10.1016/j.jcis.2019.02.061
Song, X. H.; Li, X.; Zhang, X. Y.; Wu, Y. F.; Ma, C. C.; Huo, P. W.; Yan, Y. S. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118736.
doi: 10.1016/j.apcatb.2020.118736
Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.
Hayat, A.; Shaishta, N.; Mane, S. K. B.; Hayat, A.; Khan, J.; Rehman, A. U.; Li, T. H. Molecular engineering of polymeric carbon nitride based donor-acceptor conjugated copolymers for enhanced photocatalytic full water splitting. J. Colloid Interface Sci. 2020, 560, 743-754.
doi: 10.1016/j.jcis.2019.10.088
Wang, W. R.; Li, J.; Li, Q.; Xu, Z. W.; Liu, L. N.; Chen, X. Q.; Xiao, W. J.; Yao, J. H.; Zhang, F.; Li, W. S. Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. J. Mater. Chem. A 2021, 9, 8782-8791.
doi: 10.1039/D0TA12425G
Zhang, Y. Z.; Shi, J. W.; Huang, Z. X.; Guan, X. J.; Zong, S. C.; Cheng, C.; Zheng, B. T.; Guo, L. J. Synchronous construction of CoS2 in-situ loading and s doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J. 2020, 401, 126135.
doi: 10.1016/j.cej.2020.126135
Xue, F.; Liu, M. C.; Cheng, C.; Deng, J. K.; Shi, J. W. Localized NiS2 quantum dots on g-C3N4 nanosheets for efficient photocatalytic hydrogen production from water. ChemCatChem. 2018, 10, 5441-5448.
doi: 10.1002/cctc.201801510
Lin, B.; An, H.; Yan, X. Q.; Zhang, T. X.; Wei, J. J.; Yang, G. D. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2017, 210, 173-183.
doi: 10.1016/j.apcatb.2017.03.066
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051-1069.
doi: 10.1515/pac-2014-1117
Li, H.; Zhang, J.; Yu, J.; Cao, S. Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 338-347.
doi: 10.1007/s12209-021-00289-5
Li, H.; Zhu, B. C.; Cao, S. W.; Yu, J. G. Controlling defects in crystalline carbon nitride to optimize photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 5641-5644.
doi: 10.1039/D0CC01338B
Zhang, W. D.; Zhao, Z. W.; Dong, F.; Zhang, Y. X. Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 2017, 38, 372-378.
doi: 10.1016/S1872-2067(16)62585-8
Zhang, Y. Z.; Huang, Z. X.; Dong, C. L.; Shi, J. W.; Cheng, C.; Guan, X. J.; Zong, S. C.; Luo, B.; Cheng, Z. N.; Wei, D. X.; Huang, Y. C.; Shen, S. H.; Guo, L. J. Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem. Eng. J. 2022, 431.
Hu, S. W.; Shi, J. W.; Luo, B.; Ai, C. Q.; Jing, D. W. Significantly enhanced photothermal catalytic hydrogen evolution over Cu2O-rGO/TiO2 composite with full spectrum solar light. J. Colloid Interface Sci. 2022, 608, 2058-2065.
doi: 10.1016/j.jcis.2021.10.136
Lan, X. W.; Li, Q.; Zhang, Y. Z.; Li, Q.; Ricardez-Sandoval, L.; Bai, G. Y. Engineering donor-acceptor conjugated organic polymers with boron nitride to enhance photocatalytic performance towards visible-light-driven metal-free selective oxidation of sulfides. Appl. Catal. B: Environ. 2020, 277, 119274.
doi: 10.1016/j.apcatb.2020.119274
Li, H. P.; Lee, H. Y.; Park, G. S.; Lee, B. J.; Park, J. D.; Shin, C. H.; Hou, W. G.; Yu, J. S. Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency. Carbon 2018, 129, 637-645.
doi: 10.1016/j.carbon.2017.12.048
Zhang, Q. H.; Xia, Y.; Cao, S. W. "Environmental phosphorylation" boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chin. J. Catal. 2021, 42, 1667-1676.
doi: 10.1016/S1872-2067(21)63824-X
Yu, H. G.; Xu, J. C.; Gao, D. D.; Fan, J. J.; Yu, J. G. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci. China Mater. 2020, 63, 2215-2227.
doi: 10.1007/s40843-020-1298-x
Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143-150.
doi: 10.1016/j.jmst.2020.02.062
Chen, B.; Yu, J.; Wang, R.; Zhang, X. G.; He, B. B.; Jin, J.; Wang, H. W.; Gong, Y. S. Three-dimensional ordered macroporous g-C3N4-Cu2O-TiO2 heterojunction for enhanced hydrogen production. Sci. China Mater. 2022, 65, 139-146.
doi: 10.1007/s40843-021-1714-9
Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013.
He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G. Enhanced photo-catalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9-20.
doi: 10.1016/S1872-2067(19)63382-6
Yang, C.; Wang, Y. J.; Yu, J. G.; Cao, S. W. Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction. ACS Appl. Energy Mater. 2021, 4, 8734-8738.
doi: 10.1021/acsaem.1c02122
Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.
Sun, Z. Z.; Jiang, Y. B.; Zeng, L.; Huang, L. M. Intramolecular charge transfer and extended conjugate effects in donor-π-acceptor-type mesoporous carbon nitride for photocatalytic hydrogen evolution. ChemSusChem. 2019, 12, 1325-1333.
doi: 10.1002/cssc.201802890
Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T.; Ye, J. H. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822-6829.
doi: 10.1002/adfm.201602779
Che, H. N.; Li, C. M.; Li, C. X.; Liu, C. B.; Dong, H. J.; Song, X. H. Benzoyl isothiocyanate as a precursor to design of ultrathin and high-crystalline g-C3N4-based donor-acceptor conjugated copolymers for superior photocatalytic H2 production. Chem. Eng. J. 2021, 410, 127791.
doi: 10.1016/j.cej.2020.127791
Zhao, W.; Chen, Z.; Yang, X. R.; Qian, X. X.; Liu, C. X.; Zhou, D. T.; Sun, T.; Zhang, M.; Wei, G. Y.; Dissanayake, P. D.; Ok, Y. S. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. Renew. Sust. Energ. Rev. 2020, 132, 110040.
doi: 10.1016/j.rser.2020.110040
Cheng, C.; He, B. W.; Fan, J. J.; Cheng, B.; Cao, S. W.; Yu, J. G. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.
doi: 10.1002/adma.202100317
Lin, J. D.; Yan, S.; Huang, Q. D.; Fan, M. T.; Yuan, Y. Z.; Tan, T. T. Y.; Liao, D. W. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution. Appl. Surf. Sci. 2014, 309, 188-193.
doi: 10.1016/j.apsusc.2014.05.008
Xiang, X. L.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Lv, H. J. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small 2020, 16, 2001024.
doi: 10.1002/smll.202001024
Yang, Y.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Zeng, G. M.; Huang, D. L.; Zhang, C.; Song, B.; Xue, W. J.; Li, X. P.; Wang, Z. W.; He, D. H.; Luo, H. Z.; Ouyang, Z. L. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 2021, 405, 126547.
doi: 10.1016/j.cej.2020.126547
Maeda, K.; Wang, X. C.; Nishihara, Y.; Lu, D. L.; Antonietti, M.; Domen, K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C 2009, 113, 4940-4947.
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
doi: 10.1002/adma.201500033
Malik, R.; Tomer, V. K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sust. Energ. Rev. 2021, 135, 110235.
doi: 10.1016/j.rser.2020.110235
Hou, Y. T.; Guan, H. H.; Yu, J. G.; Cao, S. W. Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 563, 150310.
doi: 10.1016/j.apsusc.2021.150310
Jiang, R. R.; Lu, G. H.; Liu, J. C.; Wu, D. H.; Yan, Z. H.; Wang, Y. H. Incorporation of π-conjugated molecules as electron donors in g-C3N4 enhances photocatalytic H2-production. Renew. Energy 2021, 164, 531-540.
doi: 10.1016/j.renene.2020.09.040
Wang, Y. J.; Li, Y.; Cao, S. W.; Yu, J. G. Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chin. J. Catal. 2019, 40, 867-874.
doi: 10.1016/S1872-2067(19)63343-7
Zong, X. P.; Niu, L. J.; Jiang, W. S.; Yu, Y. M.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. Appl. Catal. B: Environ. 2021, 291, 120099.
doi: 10.1016/j.apcatb.2021.120099
Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556-565.
doi: 10.1016/j.apcatb.2018.11.011
Chen, L.; Xu, Y. M.; Chen, B. In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. Appl. Catal. B: Environ. 2019, 256, 117848.
doi: 10.1016/j.apcatb.2019.117848
Lin, B.; Li, H.; An, H.; Hao, W. B.; Wei, J. J.; Dai, Y. Z.; Ma, C. S.; Yang, G. D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nano-channels towards high efficiency photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 220, 542-552.
doi: 10.1016/j.apcatb.2017.08.071
Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K.; Yin, S. Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photo-catalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer. ACS Appl. Mater. Interfaces 2019, 11, 26898-26908.
doi: 10.1021/acsami.9b07311
Chen, Z.; Gao, Y. T.; Chen, F.; Shi, H. F. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity. Chem. Eng. J. 2021, 413.
Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
doi: 10.1002/adma.201505281
Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.
doi: 10.1002/adfm.201802169
Yin, J. T.; Li, Z.; Cai, Y.; Zhang, Q. F.; Chen, W. Ultrathin graphitic carbon nitride nanosheets with remarkable photocatalytic hydrogen production under visible LED irradiation. Chem. Commun. 2017, 53, 9430-9433.
doi: 10.1039/C7CC04204C
Cui, Y. J.; Wang, Y. X.; Wang, H.; Cao, F.; Chen, F. Y. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation. Chin. J. Catal. 2016, 37, 1899-1906.
doi: 10.1016/S1872-2067(16)62509-3
Wu, M.; Gong, Y. S.; Nie, T.; Zhang, J.; Wang, R.; Wang, H. W.; He, B. B. Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J. Mater. Chem. A 2019, 7, 5324-5332.
doi: 10.1039/C8TA12076E
Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2017, 218, 664-671.
doi: 10.1016/j.apcatb.2017.07.022
Guo, H.; Shu, Z.; Chen, D. H.; Tan, Y. G.; Zhou, J.; Meng, F. Y.; Li, T. T. One-step synthesis of S-doped g-C3N4 nanosheets for improved visible-light photocatalytic hydrogen evolution. Chem. Phys. 2020, 533, 110714.
doi: 10.1016/j.chemphys.2020.110714
Liao, Y. W.; Wang, G. H.; Wang, J.; Wang, K.; Yan, S. D.; Su, Y. R. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 2021, 587, 110-120.
doi: 10.1016/j.jcis.2020.12.009
Wang, L. Y.; Hong, Y. Z.; Liu, E. L.; Wang, Z. G.; Chen, J. H.; Yang, S.; Wang, J. B.; Lin, X.; Shi, J. Y. Rapid polymerization synthesizing high-crystalline g-C3N4 towards boosting solar photocatalytic H2 generation. Int. J. Hydrogen Energy 2020, 45, 6425-6436.
doi: 10.1016/j.ijhydene.2019.12.168
Che, H. N.; Liu, C. B.; Che, G. B.; Liao, G. F.; Dong, H. J.; Li, C. X.; Song, N.; Li, C. M. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.
doi: 10.1016/j.nanoen.2019.104273
Lai, J. Y.; Zhang, W. D.; Yu, Y. X. Building sp carbon-bridged g-C3N4-based electron donor-π-acceptor unit for efficient photocatalytic water splitting. Mol. Catal. 2021, 505, 111518.
doi: 10.1016/j.mcat.2021.111518
Sun, D. W.; Chen, K. L.; Huang, J. H. Benzenesulfonyl chloride-incorporated g-C3N4 for photocatalytic hydrogen generation by using the hydrolysate of poly(lactic acid) as sacrificial reagent. Appl. Catal. A-Gen. 2021, 628, 118397.
doi: 10.1016/j.apcata.2021.118397
Fan, X. Q.; Zhang, L. X.; Cheng, R. L.; Wang, M.; Li, M. L.; Zhou, Y. J.; Shi, J. L. Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution. ACS Catal. 2015, 5, 5008-5015.
doi: 10.1021/acscatal.5b01155
Li, K.; Zhang, W. D. Creating graphitic carbon nitride based donor-π-acceptor-π-donor structured catalysts for highly photocatalytic hydrogen evolution. Small 2018, 14, 1703599.
doi: 10.1002/smll.201703599
Cao, S. W.; Jiang, J.; Zhu, B. C.; Yu, J. G. Shape-dependent photo-catalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C3N4 photocatalyst. Phys. Chem. Chem. Phys. 2016, 18, 19457-19463.
doi: 10.1039/C6CP02832B
Jin, Z. L.; Li, Y. B.; Hao, X. Q. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 1912033.
Wang, J.; Zhao, H.; Zhu, B. C.; Larter, S.; Cao, S. W.; Yu, J. G.; Kibria, M. G.; Hu, J. G. Solar-driven glucose isomerization into fructose via transient Lewis acid-base active sites. ACS Catal. 2021, 11, 12170-12178.
doi: 10.1021/acscatal.1c03252
Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem. Int. Ed. 2020, 59, 5218-5225.
doi: 10.1002/anie.201916012
Gong, J. Y.; Xie, Z. B.; Wang, B.; Li, Z. Q.; Zhu, Y.; Xue, J. M.; Le, Z. G. Fabrication of g-C3N4-based conjugated copolymers for efficient photo-catalytic reduction of U(VI). J. Environ. Chem. Eng. 2021, 9, 104638.
doi: 10.1016/j.jece.2020.104638
Li, H. F.; Ding, M. N.; Luo, L. L.; Yang, G. X.; Shi, F. Y.; Huo, Y. N. Nanomesh-structured graphitic carbon nitride polymer for effective capture and photocatalytic elimination of bacteria. ChemCatChem. 2020, 12, 1334-1340.
doi: 10.1002/cctc.201901699
Ye, H. N.; Wang, Z. Q.; Yu, F. T.; Zhang, S. C.; Kong, K. Y.; Gong, X. Q.; Hua, J. L.; Tian, H. Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution. Appl. Catal. B: Environ. 2020, 267, 118577.
doi: 10.1016/j.apcatb.2019.118577
Li, H.; Li, F.; Yu, J. G.; Cao, S. W. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction. Acta Phys. -Chim. Sin. 2021, 37, 2010073.
Kumar, A.; Prajapati, P. K.; Aathira, M. S.; Bansiwal, A.; Boukherroub, R.; Jain, S. L. Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation. J. Colloid Interface Sci. 2019, 543, 201-213.
doi: 10.1016/j.jcis.2019.02.061
Song, X. H.; Li, X.; Zhang, X. Y.; Wu, Y. F.; Ma, C. C.; Huo, P. W.; Yan, Y. S. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118736.
doi: 10.1016/j.apcatb.2020.118736
Zou, J.; Liao, G.; Jiang, J.; Xiong, Z.; Bai, S.; Wang, H.; Wu, P.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025-2201033.
Hayat, A.; Shaishta, N.; Mane, S. K. B.; Hayat, A.; Khan, J.; Rehman, A. U.; Li, T. H. Molecular engineering of polymeric carbon nitride based donor-acceptor conjugated copolymers for enhanced photocatalytic full water splitting. J. Colloid Interface Sci. 2020, 560, 743-754.
doi: 10.1016/j.jcis.2019.10.088
Wang, W. R.; Li, J.; Li, Q.; Xu, Z. W.; Liu, L. N.; Chen, X. Q.; Xiao, W. J.; Yao, J. H.; Zhang, F.; Li, W. S. Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. J. Mater. Chem. A 2021, 9, 8782-8791.
doi: 10.1039/D0TA12425G
Zhang, Y. Z.; Shi, J. W.; Huang, Z. X.; Guan, X. J.; Zong, S. C.; Cheng, C.; Zheng, B. T.; Guo, L. J. Synchronous construction of CoS2 in-situ loading and s doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight. Chem. Eng. J. 2020, 401, 126135.
doi: 10.1016/j.cej.2020.126135
Xue, F.; Liu, M. C.; Cheng, C.; Deng, J. K.; Shi, J. W. Localized NiS2 quantum dots on g-C3N4 nanosheets for efficient photocatalytic hydrogen production from water. ChemCatChem. 2018, 10, 5441-5448.
doi: 10.1002/cctc.201801510
Lin, B.; An, H.; Yan, X. Q.; Zhang, T. X.; Wei, J. J.; Yang, G. D. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2017, 210, 173-183.
doi: 10.1016/j.apcatb.2017.03.066
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051-1069.
doi: 10.1515/pac-2014-1117
Li, H.; Zhang, J.; Yu, J.; Cao, S. Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 338-347.
doi: 10.1007/s12209-021-00289-5
Li, H.; Zhu, B. C.; Cao, S. W.; Yu, J. G. Controlling defects in crystalline carbon nitride to optimize photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 5641-5644.
doi: 10.1039/D0CC01338B
Zhang, W. D.; Zhao, Z. W.; Dong, F.; Zhang, Y. X. Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 2017, 38, 372-378.
doi: 10.1016/S1872-2067(16)62585-8
Zhang, Y. Z.; Huang, Z. X.; Dong, C. L.; Shi, J. W.; Cheng, C.; Guan, X. J.; Zong, S. C.; Luo, B.; Cheng, Z. N.; Wei, D. X.; Huang, Y. C.; Shen, S. H.; Guo, L. J. Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem. Eng. J. 2022, 431.
Hu, S. W.; Shi, J. W.; Luo, B.; Ai, C. Q.; Jing, D. W. Significantly enhanced photothermal catalytic hydrogen evolution over Cu2O-rGO/TiO2 composite with full spectrum solar light. J. Colloid Interface Sci. 2022, 608, 2058-2065.
doi: 10.1016/j.jcis.2021.10.136
Lan, X. W.; Li, Q.; Zhang, Y. Z.; Li, Q.; Ricardez-Sandoval, L.; Bai, G. Y. Engineering donor-acceptor conjugated organic polymers with boron nitride to enhance photocatalytic performance towards visible-light-driven metal-free selective oxidation of sulfides. Appl. Catal. B: Environ. 2020, 277, 119274.
doi: 10.1016/j.apcatb.2020.119274
Li, H. P.; Lee, H. Y.; Park, G. S.; Lee, B. J.; Park, J. D.; Shin, C. H.; Hou, W. G.; Yu, J. S. Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency. Carbon 2018, 129, 637-645.
doi: 10.1016/j.carbon.2017.12.048
Zhang, Q. H.; Xia, Y.; Cao, S. W. "Environmental phosphorylation" boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chin. J. Catal. 2021, 42, 1667-1676.
doi: 10.1016/S1872-2067(21)63824-X
Yu, H. G.; Xu, J. C.; Gao, D. D.; Fan, J. J.; Yu, J. G. Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Sci. China Mater. 2020, 63, 2215-2227.
doi: 10.1007/s40843-020-1298-x
Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143-150.
doi: 10.1016/j.jmst.2020.02.062
Chen, B.; Yu, J.; Wang, R.; Zhang, X. G.; He, B. B.; Jin, J.; Wang, H. W.; Gong, Y. S. Three-dimensional ordered macroporous g-C3N4-Cu2O-TiO2 heterojunction for enhanced hydrogen production. Sci. China Mater. 2022, 65, 139-146.
doi: 10.1007/s40843-021-1714-9
Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013.
He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G. Enhanced photo-catalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9-20.
doi: 10.1016/S1872-2067(19)63382-6
Yang, C.; Wang, Y. J.; Yu, J. G.; Cao, S. W. Ultrathin 2D/2D graphdiyne/Bi2WO6 heterojunction for gas-phase CO2 photoreduction. ACS Appl. Energy Mater. 2021, 4, 8734-8738.
doi: 10.1021/acsaem.1c02122
Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.
Sun, Z. Z.; Jiang, Y. B.; Zeng, L.; Huang, L. M. Intramolecular charge transfer and extended conjugate effects in donor-π-acceptor-type mesoporous carbon nitride for photocatalytic hydrogen evolution. ChemSusChem. 2019, 12, 1325-1333.
doi: 10.1002/cssc.201802890
Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T.; Ye, J. H. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822-6829.
doi: 10.1002/adfm.201602779
Che, H. N.; Li, C. M.; Li, C. X.; Liu, C. B.; Dong, H. J.; Song, X. H. Benzoyl isothiocyanate as a precursor to design of ultrathin and high-crystalline g-C3N4-based donor-acceptor conjugated copolymers for superior photocatalytic H2 production. Chem. Eng. J. 2021, 410, 127791.
doi: 10.1016/j.cej.2020.127791
Wenda WANG , Jinku MA , Yuzhu WEI , Shuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458