Citation: Haoran Song, Shida Xue, Shiming Chen, Zijian Wang, Yongli Song, Jiawen Li, Zhibo Song, Luyi Yang, Feng Pan. Polymeric Wetting Matrix for a Stable Interface between Solid-state Electrolytes and Li Metal Anode[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220504. doi: 10.14102/j.cnki.0254-5861.2022-0067 shu

Polymeric Wetting Matrix for a Stable Interface between Solid-state Electrolytes and Li Metal Anode

Figures(4)

  • Succinonitrile (SN) based solid-state electrolytes (SSEs) have potential applications in lithium (Li) batteries due to their ease of preparation and high ionic conductivity at room temperature. Here, a novel SSE consisting of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), poly(methyl methacrylate) (PMMA) and Li1.3Al0.3Ti1.7(PO4)3 with SN is fabricated, where PMMA is added to serve as a polymer matrix for better wettability of SN. Due to the addition of PMMA, improved room-temperature ionic conductivity of the SSE is resulted. More importantly, better interfacial contact as well as more stable solid electrolyte interphase (SEI) layer between SSE and Li anode can be also obtained. As a result, homogeneous and dendrite-free Li plating can be achieved for over 1000 h in Li symmetric cells. When coupled with LiNi0.5Mn0.3Co0.2O2 cathode and Li anode, the proposed SSE delivers excellent cycling stability and rate capability in full-cells. By implementing SSEs with a polymeric wetting agent, this work provides fresh perspectives on stabilizing the interface between SSEs and Li metal anodes.
  • 加载中
    1. [1]

      Jiang, P. X.; Liao, Y. F.; Liu, W.; Chen, Y. G. Alternating nanolayers as lithiophilic scaffolds for Li-metal anode. J. Energy Chem. 2021, 57, 131-139.  doi: 10.1016/j.jechem.2020.08.034

    2. [2]

      Zhang, Q. K.; Liu, S.; Lu, Y. T.; Xing, L.; Li, W. S. Artificial interphases enable dendrite-free Li-metal anodes. J. Energy Chem. 2021, 58, 198-206.  doi: 10.1016/j.jechem.2020.09.030

    3. [3]

      Li, S.; Li, Z.; Huai, L.; Ma, M.; Luo, K.; Chen, J.; Peng, Z. A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes. J. Energy Chem. 2021, 62, 179-190.  doi: 10.1016/j.jechem.2021.03.023

    4. [4]

      Liu, X. H.; Qian, X. J.; Tang, W. Q.; Luo, H.; Zhao, Y.; Tan, R.; Yang, S. C.; Wu, B. Designer uniform Li plating/stripping through lithium-cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. J. Energy Chem. 2021, 52, 385-392.  doi: 10.1016/j.jechem.2020.03.059

    5. [5]

      Jiang, Z.; Wang, S.; Chen, X.; Yang, W.; Yao, X.; Hu, X.; Wang, H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.  doi: 10.1002/adma.201906221

    6. [6]

      Han, Q.; Wang, S.; Jiang, Z.; Hu, X.; Wang, H. Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 20514-20521.  doi: 10.1021/acsami.0c03430

    7. [7]

      Jiang, Z.; Xie, H.; Wang, S.; Song, X.; Yao, X.; Wang, H. Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv. Energy Mater. 2018, 8, 1801433.  doi: 10.1002/aenm.201801433

    8. [8]

      Zuo, C.; Yang, M.; Wang, Z.; Jiang, K.; Li, S.; Luo, W.; Xue, Z. Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxyamine reaction for high-performance all-solid-state lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18871-18879.  doi: 10.1039/C9TA05028K

    9. [9]

      Wang, Z. Y.; Shen, L.; Deng, S. Q.; Cui, P.; Yao, X. Y. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 2021, 33, 2100353.  doi: 10.1002/adma.202100353

    10. [10]

      Liu, M.; Cheng, Z.; Ganapathy, S.; Wang, C.; Haverkate, L. A.; Tułodziecki, M.; Wagemaker, M. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler. ACS Energy Lett. 2019, 4, 2336-2342.  doi: 10.1021/acsenergylett.9b01371

    11. [11]

      Song, Y. L.; Yang, L. Y.; Li, J. W.; Zhang, M.; Wang, Y.; Li, S.; Pan, F. Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 2021, 17, 2102039.  doi: 10.1002/smll.202102039

    12. [12]

      Wang, Z. J.; Yang, L. Y.; Liu, J. J.; Song, Y. L.; Zhao, Q. H.; Yang, K.; Pan, F. Tuning rate-limiting factors to achieve ultrahigh-rate solid-state sodium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 48677-48683.  doi: 10.1021/acsami.0c15015

    13. [13]

      Liu, L.; Zhang, D.; Zhao, J.; Shen, J.; Li, F.; Yang, Y.; Liu, J. Synergistic effect of lithium salts with fillers and solvents in composite electrolytes for superior room-temperature solid-state lithium batteries. ACS Appl. Energy Mater. 2022, 5, 2484-2494.  doi: 10.1021/acsaem.1c04001

    14. [14]

      Wang, Z. J.; Yang, K.; Song, Y. L.; Lin, H.; Li, K.; Cui, Y.; Yang, L. Y.; Pan, F. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 2020, 13, 2431-2437.  doi: 10.1007/s12274-020-2871-0

    15. [15]

      Wang, Z. Y.; Guo, Q. Y.; Jiang, R. G.; Deng, S. G.; Ma, J. F.; Cui, P.; Yao, X. Y. Porous poly (vinylidene fluoride) supported three-dimensional poly (ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chem. Eng. J. 2022, 435, 135106.  doi: 10.1016/j.cej.2022.135106

    16. [16]

      Tamilarasan, P.; Ramaprabhu, S. Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 2013, 51, 374-381.  doi: 10.1016/j.energy.2012.11.037

    17. [17]

      Zhu, P.; Yan, C.; Dirican, M.; Zhu, J.; Zang, J.; Selvan, R. K.; Zhang, X. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2018, 6, 4279-4285.  doi: 10.1039/C7TA10517G

    18. [18]

      Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476-481.  doi: 10.1038/nmat1158

    19. [19]

      Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4, 10070-10083.  doi: 10.1039/C6TA02907H

    20. [20]

      Yang, Y. N.; Jiang, F. L.; Li, Y. Q.; Wang, Z. X.; Zhang, T. A surface coordination interphase stabilizes a solid-state battery. Angew. Chem. Int. Ed. 2021, 60, 24162-24170.  doi: 10.1002/anie.202108050

    21. [21]

      Das, S.; Prathapa, S. J.; Menezes, P. V.; Row, T. N. G.; Bhattacharyya, A. J. Study of ion transport in lithium perchlorate-succinonitrile plastic crystalline electrolyte via ionic conductivity and in situ cryocrystallography. J. Phys. Chem. B 2009, 113, 5025-5031.  doi: 10.1021/jp809465u

    22. [22]

      Kwon, T.; Choi, I.; Park, M. J. Highly conductive solid-state hybrid electrolytes operating at subzero temperatures. ACS Appl. Mater. Interfaces 2017, 9, 24250-24258.  doi: 10.1021/acsami.7b07159

    23. [23]

      Liu, L.; Cai, Y.; Zhao, Z.; Ma, C.; Li, C.; Mu, D. A succinonitrile-infiltrated silica aerogel synergistically-reinforced hybrid solid electrolyte for durable solid-state lithium metal batteries. Mater. Chem. Front. 2022, 6, 430-439.  doi: 10.1039/D1QM01508G

    24. [24]

      Zheng, T.; Cui, X.; Chu, Y.; Li, H.; Pan, Q. Ultrahigh elastic polymer electrolytes for solid-state lithium batteries with robust interfaces. ACS Appl. Mater. Interfaces 2022, 14, 5932-5939.  doi: 10.1021/acsami.1c20243

    25. [25]

      Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217-222.  doi: 10.1038/s41586-021-04209-4

    26. [26]

      Jiang, T.; He, P.; Wang, G.; Shen, Y.; Nan, C. W.; Fan, L. Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 1903376.  doi: 10.1002/aenm.201903376

    27. [27]

      Gai, J.; Ma, F.; Zhang, Z.; Sun, D.; Jin, Y.; Guo, Y.; Kim, W. Flexible organic-inorganic composite solid electrolyte with asymmetric structure for room temperature solid-state Li-ion batteries. ACS Sustain. Chem. Eng. 2019, 7, 15896-15903.  doi: 10.1021/acssuschemeng.9b01869

    28. [28]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039-5046.  doi: 10.1021/ja412807w

    29. [29]

      Hao, S.; Li, L.; Cheng, W.; Ran, Q.; Ji, Y.; Wu, Y.; Liu, X. Long-chain fluorocarbon driven hybrid solid polymer electrolyte for lithium metal battery. J. Mater. Chem. A 2022, 10, 4881-4888.  doi: 10.1039/D1TA10728C

    30. [30]

      Yue, H.; Li, J.; Wang, Q.; Li, C.; Zhang, J.; Li, Q.; Yang, S. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 268-274.  doi: 10.1021/acssuschemeng.7b02401

    31. [31]

      Zha, W.; Li, J.; Li, W.; Sun, C.; Wen, Z. Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chem. Eng. J. 2021, 406, 126754.  doi: 10.1016/j.cej.2020.126754

    32. [32]

      Wang, C.; Adair, K. R.; Liang, J.; Li, X.; Sun, Y.; Li, X.; Sun, X. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv. Funct. Mater. 2019, 29, 1900392.  doi: 10.1002/adfm.201900392

    33. [33]

      Bi, J.; Mu, D.; Wu, B.; Fu, J.; Yang, H.; Mu, G.; Wu, F. A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. J. Mater. Chem. A 2020, 8, 706-713.  doi: 10.1039/C9TA08601C

    34. [34]

      Wei, T.; Zhang, Z. H.; Wang, Z. M.; Zhang, Q.; Ye, Y. S.; Lu, J. H.; Zhang, Z. W. Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 2020, 3, 9428-9435.  doi: 10.1021/acsaem.0c01872

    35. [35]

      Xu, F. L.; Deng, S. G.; Guo, Q. Y.; Zhou, D.; Yao, X. Y. Quasi-ionic liquid enabling single-phase poly (vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2| | Li batteries with rigid-flexible coupling interphase. Small Methods 2021, 5, 2100262.  doi: 10.1002/smtd.202100262

    36. [36]

      Chen, H.; Zhou, C. J.; Dong, X. R.; Yan, M.; Liang, J. Y.; Xin, S.; Zeng, X. X. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 22978-22986.  doi: 10.1021/acsami.1c04115

    37. [37]

      Zha, W.; Li, W.; Ruan, Y.; Wang, J.; Wen, Z. In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 2021, 36, 171-178.  doi: 10.1016/j.ensm.2020.12.028

    38. [38]

      Frisch, G. W.; Trucks, H. B.; Schlegel, G. E.; Scuseria, M. A.; Robb, J. R.; Cheeseman, G.; Scalmani, V.; Barone, G. A.; Petersson, H.; Nakatsuji, X.; Li, M.; Caricato, A.; Marenich, J.; Bloino, B. G.; Janesko, R.; Gomperts, B.; Mennucci, H. P.; Hratchian, J. V.; Ortiz, A. F.; Izmaylov, J. L.; Sonnenberg, D.; Williams-Young, F.; Ding, F.; Lipparini, F.; Egidi, J.; Goings, B.; Peng, A.; Petrone, T.; Henderson, D.; Ranasinghe, V. G.; Zakrzewski, J.; Gao, N.; Rega, G.; Zheng, W.; Liang, M.; Hada, M.; Ehara, K.; Toyota, R.; Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, K.; Throssell, J. A.; Montgomery, Jr. J. E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V. N.; Staroverov, T.; Keith, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S. S.; Iyengar, J.; Tomasi, M.; Cossi, J. M.; Millam, M.; Klene, C.; Adamo, R.; Cammi, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, O.; Farkas, J. B.; Foresman, D. J. Fox, Gaussian 09, Revision A. 02, M. J. Gaussian, Inc., Wallingford CT 2016.

    39. [39]

      Becke, A. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1998, 98, 5648-5652.

    40. [40]

      Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy into a function of the electron density. Phys. Rev. 1998, 37, 785-788.

    41. [41]

      Zhao, M.; Slaughter, W. S.; Li, M.; Mao, S. X. Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 2003, 51, 4461-4469.  doi: 10.1016/S1359-6454(03)00281-7

    42. [42]

      Liu, Y.; Sun, Y.; Zeng, F.; Liu, J.; Ge, J. Effect of POSS nanofiller on structure, thermal and mechanical properties of PVDF matrix. J. Nanopart. Res. 2013, 15, 1-10.

    43. [43]

      Yang, L. Y.; Wang, Z. J.; Feng, Y.; Tan, R.; Zuo, Y.; Gao, R.; Pan, F. Flexible composite solid electrolyte facilitating highly stable "soft contacting" Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701437.  doi: 10.1002/aenm.201701437

    44. [44]

      Eshetu, G. G.; Judez, X.; Li, C.; Bondarchuk, O.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem. Int. Ed. 2017, 56, 15368-15372.  doi: 10.1002/anie.201709305

    45. [45]

      Wang, C.; Sun, X.; Yang, L.; Song, D.; Wu, Y.; Ohsaka, T.; Wu, J. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries. Adv. Mater. Interfaces 2021, 8, 2001698.  doi: 10.1002/admi.202001698

    46. [46]

      Choi, J.; Zabihi, O.; Varley, R. J.; Fox, B.; Naebe, M. Enhancement of ionic conduction and mechanical properties for all-solid-state polymer electrolyte systems through ionic and physical bonding. Mater. Today Chem. 2022, 23, 100663.  doi: 10.1016/j.mtchem.2021.100663

    47. [47]

      Chen, T.; Kong, W.; Zhang, Z.; Wang, L.; Hu, Y.; Zhu, G.; Jin, Z. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17-25.  doi: 10.1016/j.nanoen.2018.09.059

    48. [48]

      Zhang, Q.; Liu, K.; Ding, F.; Li, W.; Liu, X.; Zhang, J. Enhancing the high voltage interface compatibility of LiNi0.5Co0.2Mn0.3O2 in the succinonitrile-based electrolyte. Electrochim. Acta 2019, 298, 818-826.  doi: 10.1016/j.electacta.2018.12.104

  • 加载中
    1. [1]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    2. [2]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    3. [3]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    4. [4]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    5. [5]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    6. [6]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    7. [7]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    8. [8]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    9. [9]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    12. [12]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    13. [13]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    14. [14]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    15. [15]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    16. [16]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    17. [17]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    18. [18]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    19. [19]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(7)
  • Abstract views(408)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return