-
[1]
Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L.; Li, H.; Li, J. Y.; Li, A.; Sun, Y. Y.; Zhang, S. B.; Yang, G.; Guo, Y. Z.; Yang, S. Z.; Zhou, T. H.; Dong, F.; Zheng, K.; Wang, L. H.; Huang, J.; Zhang, Z.; Han, X. D. Co and Pt dual single atoms with oxygen coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.
doi: 10.1002/adma.202003327
-
[2]
Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 131338.
doi: 10.1016/j.cej.2021.131338
-
[3]
Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen doped graphene based photocatalyst. Adv. Mater. 2021, 33, 2003521.
doi: 10.1002/adma.202003521
-
[4]
Sun, J. L.; Hou, Y. P.; Yu, Z. B.; Tu, L. L.; Yan, Y. M.; Qin, S. M.; Chen, S.; Lan, D. Q.; Zhu, H. X.; Wang, H. F. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr(Ⅵ) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism. J. Hazard. Mater. 2021, 419, 126543.
doi: 10.1016/j.jhazmat.2021.126543
-
[5]
Chen, Z. L.; Luo, Y. Y.; Huang, C. X.; Shen, X. T. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: towards selective photoreduction of Cr(Ⅵ) via interfacial synergistic catalysis. Chem. Eng. J. 2021, 414, 128914.
doi: 10.1016/j.cej.2021.128914
-
[6]
Liu, H. D.; Cheng, M.; Liu, Y.; Zhang, G. X.; Li, L.; Du, L.; Li, B.; Xiao, S.; Wang, G. F.; Yang, X. F. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord. Chem. Rev. 2022, 458, 214428.
doi: 10.1016/j.ccr.2022.214428
-
[7]
Wang, Y. N.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.
-
[8]
Li, D. S.; Liu, Y.; Yang, Y. T.; Tang, G. G.; Tang, H. Rational construction of Ag3PO4/WO3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O2 evolution and pollutant degradation. J. Colloid Interface Sci. 2022, 608, 2549-2559.
doi: 10.1016/j.jcis.2021.10.178
-
[9]
Meng, L.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.
-
[10]
Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.
doi: 10.1002/adma.202004697
-
[11]
Liu, Y. X.; Yang, D. Z.; Xu, T.; Shi, Y. Z.; Song, L. N.; Yu, Z. Z. Continuous photocatalytic removal of chromium (Ⅵ) with structurally stable and porous Ag/Ag3PO4/reduced graphene oxide microspheres. Chem. Eng. J. 2020, 379, 122200.
doi: 10.1016/j.cej.2019.122200
-
[12]
Megala, S.; Ravi, P.; Maadeswaran, P.; Navaneethan, M.; Ramesh, R. The construction of a dual direct Z-scheme NiAl LDH/g-C3N4/Ag3PO4 nanocomposite for enhanced photocatalytic oxygen and hydrogen evolution. Nanoscale Adv. 2021, 7, 2075-2088.
-
[13]
Liu, Q. Q.; He, X. D.; Tao, J. N.; Tang, H.; Liu, Z. Q. Oxygen vacancies induced plasmonic effect for realizing broad-spectrum-driven photocatalytic H2 evolution over an S-scheme CdS/W18O49 heterojunction. ChemNanoMat 2020, 7, 44-49.
-
[14]
Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2 production photocatalyst. Rare Metals 2021, 40, 2381-2391.
doi: 10.1007/s12598-020-01616-w
-
[15]
Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 585, 470-479.
doi: 10.1016/j.jcis.2020.10.028
-
[16]
Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2021, 34, 2107668.
-
[17]
Jia, X. X.; Zhao, J. W.; Lv, Y. G.; Fu, X. L.; Jian, Y. J.; Zhang, W. Q.; Wang, Y. Y.; Sun, H. M.; Wang, X. X.; Long, J. L.; Yang, P.; Gu, Q.; Gao, Z. W. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic suzuki coupling. Appl. Catal., B-Environ. 2022, 300, 120756.
doi: 10.1016/j.apcatb.2021.120756
-
[18]
Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Hot electron assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad spectrum photocatalytic H2 generation. Chin. J. Catal. 2021, 42, 1478-1487.
doi: 10.1016/S1872-2067(20)63753-6
-
[19]
Ren, M. L.; Ao, Y. H.; Wang, P. F.; Wang C. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem. Eng. J. 2019, 378, 122122.
doi: 10.1016/j.cej.2019.122122
-
[20]
Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2021, 60, 25546-25550.
doi: 10.1002/anie.202111769
-
[21]
Wang, G. C.; Zhang, T.; Yu, W. W.; Si, R.; Liu, Y. F.; Zhao, Z. K. Modulating location of single copper atoms in polymeric carbon nitride for enhanced photoredox catalysis. ACS Catal. 2020, 10, 5715-5722.
doi: 10.1021/acscatal.0c01099
-
[22]
Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to single Cu-N3 sites inlaid porous hollow carbonitride spheres for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936-16940.
doi: 10.1021/jacs.8b10703
-
[23]
Hong, X. Y.; Yu, X. H.; Wang, L. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Lattice-matched CoP/CoS2 heterostructure cocatalyst to boost photocatalytic H2 generation. Inorg. Chem. 2021, 60, 12506-12516.
doi: 10.1021/acs.inorgchem.1c01716
-
[24]
Tang, H.; Xia, Z. H.; Chen, R.; Liu, Q. Q.; Zhou, T. H. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem. Asian J. 2020, 15, 3456-3461.
doi: 10.1002/asia.202000912
-
[25]
Wu, Y.; Chen, J.; Che, H.; Gao, X.; Ao, Y.; Wang, P. Boosting 2 e- oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2, 4-dichlorophenol. Appl. Catal., B-Environ. 2022, 307, 121185.
doi: 10.1016/j.apcatb.2022.121185
-
[26]
Wu, X. H.; Ma, H. Q.; Zhong, W.; Fan, J. J.; Yu, H. G. Porous crystalline g-C3N4: bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl. Catal. B-Environ. 2020, 271, 118899.
doi: 10.1016/j.apcatb.2020.118899
-
[27]
Lin, Y.; Yang, C. P.; Niu, Q. Y.; Luo, S. L. Interfacial charge transfer between silver phosphate and W2N3 induced by nitrogen vacancies enhances removal of β-lactam antibiotics. Adv. Funct. Mater. 2021, 32, 2108814.
-
[28]
Prasad, C.; Tang, H.; Liu, Q. Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. J. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 337-379.
doi: 10.1016/j.ijhydene.2019.07.070
-
[29]
Yang, Z. F.; Xia, X. N.; Shao, L. H.; Wang, L. L.; Liu, Y. T. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation. Chem. Eng. J. 2021, 410, 128454.
doi: 10.1016/j.cej.2021.128454
-
[30]
Chang, H. B.; Liu, J. B.; Dong, Z.; Wang, D. D.; Xin, Y.; Jiang, Z. L.; Tang, S. S. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 modified AgNbO3 photocatalyst under visible-light irradiation. Chin. J. Struct. Chem. 2021, 40, 1595-1603.
-
[31]
Naciri, Y.; Hsini, A.; Bouziani, A.; Djellabi, R.; Ajmal, Z.; Laabd, M.; Navío, J. A.; Mills, A.; Bianchi, C. L.; Li, H.; Bakiz, B.; Albourine, A. Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives. Crit. Rev. Environ. Sci. Technol. 2021, 2, 1-44.
-
[32]
Liu, Q. Q.; Huang, J. X.; Wang, L. L.; Yu, X. H.; Sun, J. F.; Tang, H. Unraveling the roles of hot electrons and cocatalyst toward broad spectrum photocatalytic H2 generation of g-C3N4 nanotube. Sol. RRL 2021, 5, 2000504.
doi: 10.1002/solr.202000504
-
[33]
Chen, G. H.; Wang, H. J.; Dong, W. Y.; Huang, Y. X.; Zhao, Z. L.; Zeng, Y. X. Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chem. Eng. J. 2021, 405, 126850.
doi: 10.1016/j.cej.2020.126850
-
[34]
Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2 evolution. Appl. Catal. B-Environ. 2021, 290, 120057.
doi: 10.1016/j.apcatb.2021.120057
-
[35]
Deng, C. L.; Sun, C. F.; Wang, Z.; Tao, Y. W.; Chen, Y. L.; Lin, J. Q.; Luo, G. G.; Lin, B. Z.; Sun, D.; Zheng L. S. A sodalite-type silver orthophosphate cluster in a globular silver nanocluster. Angew. Chem., Int. Ed. 2020, 59, 12659-12663.
doi: 10.1002/anie.202003143
-
[36]
Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.
-
[37]
Xiong, Z.; Hou, Y. D.; Yuan, R. S.; Ding, Z. X.; Ong, W. J.; Wang, S. B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys. -Chim. Sin. 2022, 38, 2111021.
-
[38]
Li, B.; Wei, F.; Su, B.; Guo, Z.; Ding, Z.; Yang, M. Q.; Wang, S. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater. Today Energy 2022, 24, 100943.
doi: 10.1016/j.mtener.2022.100943
-
[39]
Lin, X. H.; Xie, Z. D.; Su, B.; Zheng, M.; Dai, W. X.; Hou, Y. D.; Ding, Z. X.; Lin, W.; Fang, Y. X.; Wang, S. B. Well-defined Co9S8 cages enable the separation of photoexcited charges to promote visible-light CO2 reduction. Nanoscale 2021, 13, 18070-18076.
doi: 10.1039/D1NR04812K
-
[40]
Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nanosheets with activated n→π* transition and preferred textural properties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166-176.
doi: 10.1016/j.jcat.2021.08.025
-
[41]
Li, B. F.; Wang, W. J.; Zhao, J. W.; Wang, Z. Y.; Su, B.; Hou, Y. D.; Ding, Z. X.; Ong, W. J.; Wang, S. B. All-solid-state direct Z-scheme Ni TiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270-10276.
doi: 10.1039/D1TA01220G
-
[42]
Ma, X.; Cheng, H. F. Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites. Chem. Eng. J. 2022, 429, 132373.
doi: 10.1016/j.cej.2021.132373
-
[43]
Zhou, L.; Zhang, X.; Cai, M.; Cui, N. X.; Chen, G. F.; Zou, G. Y. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light. Appl. Catal., B-Environ. 2022, 302, 120868.
doi: 10.1016/j.apcatb.2021.120868
-
[44]
Liu, Q. Q.; Huang, J. X.; Tang, H.; Yu, X. H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196-205.
doi: 10.1016/j.jmst.2020.04.026
-
[45]
Shi, W. L.; Guo, F.; Yuan, S. L. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal., B-Environ. 2017, 209, 720-728.
doi: 10.1016/j.apcatb.2017.03.048
-
[46]
Han, S. T.; Li, B. F.; Huang, L. J.; Xi, H. L.; Ding, Z. X.; Long, J. J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013
-
[47]
Wang, R.; Shen, J.; Zhang, W. J.; Liu, Q. Q.; Zhang, M. Y.; Zulfiqar; Tang, H. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceram. Int. 2020, 46, 23-30.
doi: 10.1016/j.ceramint.2019.08.226
-
[48]
Xu, J.; Chen, J.; Ao, Y. H.; Wang, P. F. 0D/1D AgI/MoO3 Z-scheme heterojunction photocatalyst: highly efficient visible-light-driven photocatalyst for sulfamethoxazole degradation. Chin. Chem. Lett. 2021, 32, 3226-3230.
doi: 10.1016/j.cclet.2021.04.003
-
[49]
Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure. Acta Phys. -Chim. Sin. 2022, 38, 2111008.
-
[50]
Wang, W. C.; Tao, Y.; Du, L. L.; Zhen, W.; Yan, Z. P.; Chan, W. K.; Lian, Z. C.; Zhu, R. X.; Philps, D. L.; Li, G. S. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal., B-Environ. 2021, 282, 1195688.
-
[51]
Wei, Y.; Chen, L. J.; Chen, H.; Cai, L. R.; Tan, G. P.; Qiu, Y. F.; Xiang, Q. J.; Chen, G.; Lau, T. C.; Robert, M. Highly efficient photocatalytic reduction of CO2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride. Angew. Chem. Int. Ed. 2022, 61, e202116832.
-
[52]
Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87-96.
doi: 10.1016/S1872-2067(20)63595-1
-
[53]
Shen, R. C.; Lu, X. Y.; Zheng, Q. Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Sol. RRL. 2021, 5, 2100177.
doi: 10.1002/solr.202100177
-
[54]
Zhang, X.; Ma, P. J.; Wang, C.; Gan, L. Y.; Chen, X. J.; Zhang, P.; Wang, Y.; Li, H.; Wang, L. H.; Zhou, X. Y.; Zheng, K. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830-842.
doi: 10.1039/D1EE02369A