Citation: Tao Yang, Pengke Deng, Lele Wang, Jie Hu, Qinqin Liu, Hua Tang. Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220602. doi: 10.14102/j.cnki.0254-5861.2022-0062 shu

Simultaneous Photocatalytic Oxygen Production and Hexavalent Chromium Reduction in Ag3PO4/C3N4 S-scheme Heterojunction

Figures(11)

  • The low separation/migration efficiency is a major obstacle that limits the practical application of semiconductor-photocatalysts. Constructing S-scheme heterojunction is an ideal strategy for providing high photocatalytic activity via accelerating charge separation. Herein, an Ag3PO4/C3N4 composite was synthesized by coupling Ag3PO4 particle with C3N4 hollow spheres in-situ via a precipitation method. The S-scheme heterojunction between Ag3PO4 and C3N4 could accelerate the charge separation and retain high photoredox ability, which synchronously realized high photocatalytic oxygen production and hexavalent chromium reduction. The optimized Ag3PO4/C3N4 composite shows a high oxygen production rate up to 803.31 µmol·g-1·h-1 and a high conversion (87.9%) of Cr(Ⅵ) to Cr(Ⅲ). In addition, C3N4 hollow spheres affords higher reaction efficiency than that of C3N4 tube, C3N4 bulk and C3N4 sheet, which indicates that the hollow sphere structure can provide more active sites and adsorption sites in the photocatalytic process. This work offers an effective way in developing a dual-function S-scheme heterojunction for clean energy production and environmental protection.
  • 加载中
    1. [1]

      Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L.; Li, H.; Li, J. Y.; Li, A.; Sun, Y. Y.; Zhang, S. B.; Yang, G.; Guo, Y. Z.; Yang, S. Z.; Zhou, T. H.; Dong, F.; Zheng, K.; Wang, L. H.; Huang, J.; Zhang, Z.; Han, X. D. Co and Pt dual single atoms with oxygen coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.  doi: 10.1002/adma.202003327

    2. [2]

      Wang, L. L.; Tang, G. G.; Liu, S.; Dong, H. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 428, 131338.  doi: 10.1016/j.cej.2021.131338

    3. [3]

      Bie, C. B.; Yu, H. G.; Cheng, B.; Ho, W. K.; Fan, J. J.; Yu, J. G. Design, fabrication, and mechanism of nitrogen doped graphene based photocatalyst. Adv. Mater. 2021, 33, 2003521.  doi: 10.1002/adma.202003521

    4. [4]

      Sun, J. L.; Hou, Y. P.; Yu, Z. B.; Tu, L. L.; Yan, Y. M.; Qin, S. M.; Chen, S.; Lan, D. Q.; Zhu, H. X.; Wang, H. F. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr(Ⅵ) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism. J. Hazard. Mater. 2021, 419, 126543.  doi: 10.1016/j.jhazmat.2021.126543

    5. [5]

      Chen, Z. L.; Luo, Y. Y.; Huang, C. X.; Shen, X. T. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: towards selective photoreduction of Cr(Ⅵ) via interfacial synergistic catalysis. Chem. Eng. J. 2021, 414, 128914.  doi: 10.1016/j.cej.2021.128914

    6. [6]

      Liu, H. D.; Cheng, M.; Liu, Y.; Zhang, G. X.; Li, L.; Du, L.; Li, B.; Xiao, S.; Wang, G. F.; Yang, X. F. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord. Chem. Rev. 2022, 458, 214428.  doi: 10.1016/j.ccr.2022.214428

    7. [7]

      Wang, Y. N.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Research progress of ferrite materials for photoelectrochemical water splitting. Chin. J. Struct. Chem. 2022, 41, 2201054-2201068.

    8. [8]

      Li, D. S.; Liu, Y.; Yang, Y. T.; Tang, G. G.; Tang, H. Rational construction of Ag3PO4/WO3 step-scheme heterojunction for enhanced solar-driven photocatalytic performance of O2 evolution and pollutant degradation. J. Colloid Interface Sci. 2022, 608, 2549-2559.  doi: 10.1016/j.jcis.2021.10.178

    9. [9]

      Meng, L.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019-2201024.

    10. [10]

      Dong, B. B.; Cui, J. Y.; Qi, Y.; Zhang, F. X. Nanostructure engineering and modulation of (oxy)nitrides for application in visible-light-driven water splitting. Adv. Mater. 2021, 33, 2004697.  doi: 10.1002/adma.202004697

    11. [11]

      Liu, Y. X.; Yang, D. Z.; Xu, T.; Shi, Y. Z.; Song, L. N.; Yu, Z. Z. Continuous photocatalytic removal of chromium (Ⅵ) with structurally stable and porous Ag/Ag3PO4/reduced graphene oxide microspheres. Chem. Eng. J. 2020, 379, 122200.  doi: 10.1016/j.cej.2019.122200

    12. [12]

      Megala, S.; Ravi, P.; Maadeswaran, P.; Navaneethan, M.; Ramesh, R. The construction of a dual direct Z-scheme NiAl LDH/g-C3N4/Ag3PO4 nanocomposite for enhanced photocatalytic oxygen and hydrogen evolution. Nanoscale Adv. 2021, 7, 2075-2088.

    13. [13]

      Liu, Q. Q.; He, X. D.; Tao, J. N.; Tang, H.; Liu, Z. Q. Oxygen vacancies induced plasmonic effect for realizing broad-spectrum-driven photocatalytic H2 evolution over an S-scheme CdS/W18O49 heterojunction. ChemNanoMat 2020, 7, 44-49.

    14. [14]

      Zulfiqar, S.; Liu, S.; Rahman, N.; Tang, H.; Shah, S.; Yu, X. H.; Liu, Q. Q. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2 production photocatalyst. Rare Metals 2021, 40, 2381-2391.  doi: 10.1007/s12598-020-01616-w

    15. [15]

      Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. Internal electric field induced S-scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 585, 470-479.  doi: 10.1016/j.jcis.2020.10.028

    16. [16]

      Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2021, 34, 2107668.

    17. [17]

      Jia, X. X.; Zhao, J. W.; Lv, Y. G.; Fu, X. L.; Jian, Y. J.; Zhang, W. Q.; Wang, Y. Y.; Sun, H. M.; Wang, X. X.; Long, J. L.; Yang, P.; Gu, Q.; Gao, Z. W. Low-crystalline PdCu alloy on large-area ultrathin 2D carbon nitride nanosheets for efficient photocatalytic suzuki coupling. Appl. Catal., B-Environ. 2022, 300, 120756.  doi: 10.1016/j.apcatb.2021.120756

    18. [18]

      Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Hot electron assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad spectrum photocatalytic H2 generation. Chin. J. Catal. 2021, 42, 1478-1487.  doi: 10.1016/S1872-2067(20)63753-6

    19. [19]

      Ren, M. L.; Ao, Y. H.; Wang, P. F.; Wang C. Construction of silver/graphitic-C3N4/bismuth tantalate Z-scheme photocatalyst with enhanced visible-light-driven performance for sulfamethoxazole degradation. Chem. Eng. J. 2019, 378, 122122.  doi: 10.1016/j.cej.2019.122122

    20. [20]

      Che, H. N.; Gao, X.; Chen, J.; Hou, J.; Ao, Y. H.; Wang, P. F. Iodide-induced fragmentation of polymerized hydrophilic carbon nitride for high-performance quasi-homogeneous photocatalytic H2O2 production. Angew. Chem. Int. Ed. 2021, 60, 25546-25550.  doi: 10.1002/anie.202111769

    21. [21]

      Wang, G. C.; Zhang, T.; Yu, W. W.; Si, R.; Liu, Y. F.; Zhao, Z. K. Modulating location of single copper atoms in polymeric carbon nitride for enhanced photoredox catalysis. ACS Catal. 2020, 10, 5715-5722.  doi: 10.1021/acscatal.0c01099

    22. [22]

      Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to single Cu-N3 sites inlaid porous hollow carbonitride spheres for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936-16940.  doi: 10.1021/jacs.8b10703

    23. [23]

      Hong, X. Y.; Yu, X. H.; Wang, L. L.; Liu, Q. Q.; Sun, J. F.; Tang, H. Lattice-matched CoP/CoS2 heterostructure cocatalyst to boost photocatalytic H2 generation. Inorg. Chem. 2021, 60, 12506-12516.  doi: 10.1021/acs.inorgchem.1c01716

    24. [24]

      Tang, H.; Xia, Z. H.; Chen, R.; Liu, Q. Q.; Zhou, T. H. Oxygen doped g-C3N4 with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chem. Asian J. 2020, 15, 3456-3461.  doi: 10.1002/asia.202000912

    25. [25]

      Wu, Y.; Chen, J.; Che, H.; Gao, X.; Ao, Y.; Wang, P. Boosting 2 e- oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2, 4-dichlorophenol. Appl. Catal., B-Environ. 2022, 307, 121185.  doi: 10.1016/j.apcatb.2022.121185

    26. [26]

      Wu, X. H.; Ma, H. Q.; Zhong, W.; Fan, J. J.; Yu, H. G. Porous crystalline g-C3N4: bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2-evolution rate. Appl. Catal. B-Environ. 2020, 271, 118899.  doi: 10.1016/j.apcatb.2020.118899

    27. [27]

      Lin, Y.; Yang, C. P.; Niu, Q. Y.; Luo, S. L. Interfacial charge transfer between silver phosphate and W2N3 induced by nitrogen vacancies enhances removal of β-lactam antibiotics. Adv. Funct. Mater. 2021, 32, 2108814.

    28. [28]

      Prasad, C.; Tang, H.; Liu, Q. Q.; Bahadur, I.; Karlapudi, S.; Jiang, Y. J. A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 337-379.  doi: 10.1016/j.ijhydene.2019.07.070

    29. [29]

      Yang, Z. F.; Xia, X. N.; Shao, L. H.; Wang, L. L.; Liu, Y. T. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation. Chem. Eng. J. 2021, 410, 128454.  doi: 10.1016/j.cej.2021.128454

    30. [30]

      Chang, H. B.; Liu, J. B.; Dong, Z.; Wang, D. D.; Xin, Y.; Jiang, Z. L.; Tang, S. S. Enhancement of photocatalytic degradation of polyvinyl chloride plastic with Fe2O3 modified AgNbO3 photocatalyst under visible-light irradiation. Chin. J. Struct. Chem. 2021, 40, 1595-1603.

    31. [31]

      Naciri, Y.; Hsini, A.; Bouziani, A.; Djellabi, R.; Ajmal, Z.; Laabd, M.; Navío, J. A.; Mills, A.; Bianchi, C. L.; Li, H.; Bakiz, B.; Albourine, A. Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: recent progress, new trends, and future perspectives. Crit. Rev. Environ. Sci. Technol. 2021, 2, 1-44.

    32. [32]

      Liu, Q. Q.; Huang, J. X.; Wang, L. L.; Yu, X. H.; Sun, J. F.; Tang, H. Unraveling the roles of hot electrons and cocatalyst toward broad spectrum photocatalytic H2 generation of g-C3N4 nanotube. Sol. RRL 2021, 5, 2000504.  doi: 10.1002/solr.202000504

    33. [33]

      Chen, G. H.; Wang, H. J.; Dong, W. Y.; Huang, Y. X.; Zhao, Z. L.; Zeng, Y. X. Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chem. Eng. J. 2021, 405, 126850.  doi: 10.1016/j.cej.2020.126850

    34. [34]

      Gao, D. D.; Zhong, W.; Liu, Y. P.; Yu, H. G.; Fan, J. J. Synergism of tellurium-rich structure and amorphization of NiTe1+x nanodots for efficient photocatalytic H2 evolution. Appl. Catal. B-Environ. 2021, 290, 120057.  doi: 10.1016/j.apcatb.2021.120057

    35. [35]

      Deng, C. L.; Sun, C. F.; Wang, Z.; Tao, Y. W.; Chen, Y. L.; Lin, J. Q.; Luo, G. G.; Lin, B. Z.; Sun, D.; Zheng L. S. A sodalite-type silver orthophosphate cluster in a globular silver nanocluster. Angew. Chem., Int. Ed. 2020, 59, 12659-12663.  doi: 10.1002/anie.202003143

    36. [36]

      Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Atomically dispersed main group magnesium on cadmium sulfide as the active site for promoting photocatalytic hydrogen evolution catalysis. Chin. J. Struct. Chem. 2022, 41, 2201014-2201018.

    37. [37]

      Xiong, Z.; Hou, Y. D.; Yuan, R. S.; Ding, Z. X.; Ong, W. J.; Wang, S. B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys. -Chim. Sin. 2022, 38, 2111021.

    38. [38]

      Li, B.; Wei, F.; Su, B.; Guo, Z.; Ding, Z.; Yang, M. Q.; Wang, S. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater. Today Energy 2022, 24, 100943.  doi: 10.1016/j.mtener.2022.100943

    39. [39]

      Lin, X. H.; Xie, Z. D.; Su, B.; Zheng, M.; Dai, W. X.; Hou, Y. D.; Ding, Z. X.; Lin, W.; Fang, Y. X.; Wang, S. B. Well-defined Co9S8 cages enable the separation of photoexcited charges to promote visible-light CO2 reduction. Nanoscale 2021, 13, 18070-18076.  doi: 10.1039/D1NR04812K

    40. [40]

      Wang, R.; Yang, P.; Wang, S.; Wang, X. Distorted carbon nitride nanosheets with activated n→π* transition and preferred textural properties for photocatalytic CO2 reduction. J. Catal. 2021, 402, 166-176.  doi: 10.1016/j.jcat.2021.08.025

    41. [41]

      Li, B. F.; Wang, W. J.; Zhao, J. W.; Wang, Z. Y.; Su, B.; Hou, Y. D.; Ding, Z. X.; Ong, W. J.; Wang, S. B. All-solid-state direct Z-scheme Ni TiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J. Mater. Chem. A 2021, 9, 10270-10276.  doi: 10.1039/D1TA01220G

    42. [42]

      Ma, X.; Cheng, H. F. Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites. Chem. Eng. J. 2022, 429, 132373.  doi: 10.1016/j.cej.2021.132373

    43. [43]

      Zhou, L.; Zhang, X.; Cai, M.; Cui, N. X.; Chen, G. F.; Zou, G. Y. New insights into the efficient charge transfer of the modified-TiO2/Ag3PO4 composite for enhanced photocatalytic destruction of algal cells under visible light. Appl. Catal., B-Environ. 2022, 302, 120868.  doi: 10.1016/j.apcatb.2021.120868

    44. [44]

      Liu, Q. Q.; Huang, J. X.; Tang, H.; Yu, X. H.; Shen, J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J. Mater. Sci. Technol. 2020, 56, 196-205.  doi: 10.1016/j.jmst.2020.04.026

    45. [45]

      Shi, W. L.; Guo, F.; Yuan, S. L. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal., B-Environ. 2017, 209, 720-728.  doi: 10.1016/j.apcatb.2017.03.048

    46. [46]

      Han, S. T.; Li, B. F.; Huang, L. J.; Xi, H. L.; Ding, Z. X.; Long, J. J. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light. Chin. J. Struct. Chem. 2022, 41, 2201007-2201013

    47. [47]

      Wang, R.; Shen, J.; Zhang, W. J.; Liu, Q. Q.; Zhang, M. Y.; Zulfiqar; Tang, H. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceram. Int. 2020, 46, 23-30.  doi: 10.1016/j.ceramint.2019.08.226

    48. [48]

      Xu, J.; Chen, J.; Ao, Y. H.; Wang, P. F. 0D/1D AgI/MoO3 Z-scheme heterojunction photocatalyst: highly efficient visible-light-driven photocatalyst for sulfamethoxazole degradation. Chin. Chem. Lett. 2021, 32, 3226-3230.  doi: 10.1016/j.cclet.2021.04.003

    49. [49]

      Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure. Acta Phys. -Chim. Sin. 2022, 38, 2111008.

    50. [50]

      Wang, W. C.; Tao, Y.; Du, L. L.; Zhen, W.; Yan, Z. P.; Chan, W. K.; Lian, Z. C.; Zhu, R. X.; Philps, D. L.; Li, G. S. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal., B-Environ. 2021, 282, 1195688.

    51. [51]

      Wei, Y.; Chen, L. J.; Chen, H.; Cai, L. R.; Tan, G. P.; Qiu, Y. F.; Xiang, Q. J.; Chen, G.; Lau, T. C.; Robert, M. Highly efficient photocatalytic reduction of CO2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride. Angew. Chem. Int. Ed. 2022, 61, e202116832.

    52. [52]

      Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87-96.  doi: 10.1016/S1872-2067(20)63595-1

    53. [53]

      Shen, R. C.; Lu, X. Y.; Zheng, Q. Q.; Chen, Q.; Ng, Y. H.; Zhang, P.; Li, X. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Sol. RRL. 2021, 5, 2100177.  doi: 10.1002/solr.202100177

    54. [54]

      Zhang, X.; Ma, P. J.; Wang, C.; Gan, L. Y.; Chen, X. J.; Zhang, P.; Wang, Y.; Li, H.; Wang, L. H.; Zhou, X. Y.; Zheng, K. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution. Energy Environ. Sci. 2022, 15, 830-842.  doi: 10.1039/D1EE02369A

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    10. [10]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    11. [11]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(9)
  • Abstract views(526)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return