Citation: Jiajia Song, Wei Duan, Yun Chen, Xiangyang Liu. Versatile Inorganic Oligomer-based Photochromic Spiropyrane Gels[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220503. doi: 10.14102/j.cnki.0254-5861.2022-0061 shu

Versatile Inorganic Oligomer-based Photochromic Spiropyrane Gels

Figures(17)

  • Here we report an example of a general strategy for the immobilization of various different photochromic spiropyran molecules on eco-friendly cheap nanomatrix. The spiropyrans are encapsulated in calcium salt oligomers-based gels by centrifugation, forming an inorganic oligomer-based gelatinous photoswitchable hybrid material. Ca2+ is also used to regulate the optical properties of spiropyrans through chelation. The oligomer-based gel can not only provide the space required for photoisomerization, but also reduce the interference of the surrounding environment on the photochromic properties. Moreover, a practical paper-based and colloidal flexible substrate platform is constructed for the removal and naked-eye detection of liquid and gaseous hydrazine at room temperature based on the reactivity of the formyl group on spiropyrans loaded in Ca3(PO4)2 oligomers. This general strategy can be used for other inorganic oligomer-based molecular switches and sensing systems.
  • 加载中
    1. [1]

      Zhang, X.; Zhang, J.; Ying, Y. L.; Tian, H.; Long, Y. T. Single molecule analysis of light-regulated RNA: spiropyran interactions. Chem. Sci. 2014, 5, 2642-2646.  doi: 10.1039/c4sc00134f

    2. [2]

      Wang, J. X.; Li, C.; Tian, H. Energy manipulation and metal-assisted photochromism in photochromic metal complex. Coord. Chem. Rev. 2021, 427, 213579.  doi: 10.1016/j.ccr.2020.213579

    3. [3]

      Julià-López, A.; Hernando, J.; Ruiz-Molina, D.; González-Monje, P.; Sedó, J.; Roscini, C. Temperature-controlled switchable photochromism in solid materials. Angew. Chem. Int. Ed. 2016, 55, 15044-15048.  doi: 10.1002/anie.201608408

    4. [4]

      Euchler, D.; Ehgartner, C. R.; Hüsing, N.; Feinle, A. Monolithic spiropyran-based porous polysilsesquioxanes with stimulus-responsive properties. ACS Appl. Mater. Interfaces 2020, 12, 47754-47762.  doi: 10.1021/acsami.0c14987

    5. [5]

      Yang, R.; Ren, X.; Mei, L.; Pan, G.; Li, X.; Wu, Z.; Zhang, S.; Ma, W.; Yu, W.; Fang, H. Reversible three-color fluorescence switching of an organic molecule in the solid state via "pump-trigger" optical manipulation. Angew. Chem. Int. Ed. 2022.

    6. [6]

      Julià-López, A.; Ruiz-Molina, D.; Hernando, J.; Roscini, C. Solid materials with tunable reverse photochromism. ACS Appl. Mater. Interfaces 2019, 11, 11884-11892.

    7. [7]

      Gao, Y.; Yin, Q.; Geng, X.; Zhang, X.; Li, W.; Gao, Y.; Geng, X.; Zhang, X.; Li, W. Synthesis and photochromic behavior of comb-like acrylate polymer nanoparticle containing spiropyran. Dyes Pigments 2021, 189, 109237.  doi: 10.1016/j.dyepig.2021.109237

    8. [8]

      Abdollahi, A.; Sahandi-Zangabad, K.; Roghani-Mamaqani, H. Rewritable anticounterfeiting polymer inks based on functionalized stimuliresponsive latex particles containing spiropyran photoswitches: reversible photopatterning and security marking. ACS Appl. Mater. Interfaces 2018, 10, 39279-39292.

    9. [9]

      Qiu, W.; Gurr, P. A.; Qiao, G. G. Color-switchable polar polymeric materials. ACS Appl. Mater. Interfaces 2019, 11, 29268-29275.  doi: 10.1021/acsami.9b09023

    10. [10]

      Williams, D. E.; Martin, C. R.; Dolgopolova, E. A.; Swifton, A.; Godfrey, D. C.; Ejegbavwo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 2018, 140, 7611-7622.  doi: 10.1021/jacs.8b02994

    11. [11]

      Kremer, S.; Ober, I.; Greussing, V.; Kopacka, H.; Gallmetzer, H. G.; Trubenbacher, B.; Demmel, D.; Olthof, S.; Huppertz, H.; Schwartz, H. A. Modulating the optical characteristics of spiropyran@metal-organic framework composites as a function of spiropyran substitution. Langmuir 2021, 37, 7834-7842.  doi: 10.1021/acs.langmuir.1c01187

    12. [12]

      Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics modulation in photoswitchable metalorganic frameworks. Chem. Rev. 2020, 120, 8790-8813.  doi: 10.1021/acs.chemrev.9b00350

    13. [13]

      Liang, H. Q.; Guo, Y.; Shi, Y.; Peng, X.; Liang, B.; Chen, B. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem. Int. Ed. 2020, 59, 7732-7737.  doi: 10.1002/anie.202002389

    14. [14]

      Garg, S.; Schwartz, H.; Kozlowska, M.; Kanj, A. B.; Müller, K.; Wenzel, W.; Ruschewitz, U.; Heinke, L. Lichtinduziertes Schalten der Leitfähigkeit von MOFs mit eingelagertem Spiropyran. Angew. Chem. 2019, 131, 1205-1210.  doi: 10.1002/ange.201811458

    15. [15]

      Kundu, P. K.; Olsen, G. L.; Kiss, V.; Klajn, R. Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nat. Commun. 2014, 5, 1-9.

    16. [16]

      Martin, C. R.; Park, K. C.; Corkill, R. E.; Kittikhunnatham, P.; Leith, G. A.; Mathur, A.; Abiodun, S. L.; Greytak, A. B.; Shustova, N. B. Photo-responsive frameworks: energy transfer in the spotlight. Faraday Discuss. 2021, 231, 266-280.

    17. [17]

      Mohan Raj, A.; Raymo, F. M.; Ramamurthy, V. Reversible disassembly-assembly of octa acid-guest capsule in water triggered by a photochromic process. Org. Lett. 2016, 18, 1566-1569.  doi: 10.1021/acs.orglett.6b00405

    18. [18]

      Zhang, X. F.; Ma, X.; Hou, T.; Guo, K.; Yin, J.; Wang, Z.; Shu, L.; He, M.; Yao, J. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew. Chem. Int. Ed. 2019, 58, 7366-7370.  doi: 10.1002/anie.201902578

    19. [19]

      Zhang, H.; Dasbiswas, K.; Ludwig, N. B.; Han, G.; Lee, B.; Vaikuntanathan, S.; Talapin, D. V. Stable colloids in molten inorganic salts. Nature 2017, 542, 328-331.

    20. [20]

      El Sayed, S.; Pascual, L. S.; Licchelli, M.; Martínez-Máñez, R.; Gil, S.; Costero, A. M.; Sancenón, F. l. Chromogenic detection of aqueous formaldehyde using functionalized silica nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 14318-14322.

    21. [21]

      Wang, Z.; Wang, W.; Sun, G.; Yu, D. Designed ionic microchannels for ultrasensitive detection and efficient removal of formaldehyde in an aqueous solution. ACS Appl. Mater. Interfaces 2019, 12, 1806-1816.

    22. [22]

      Bruemmer, K. J.; Green, O.; Su, T. A.; Shabat, D.; Chang, C. J. Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice. Angew. Chem. Int. Ed. 2018, 57, 7508-7512.

    23. [23]

      Ma, X.; Tang, K. l.; Lu, K.; Zhang, C.; Shi, W.; Zhao, W. Structural engineering of hollow microflower-like CuS@C hybrids as versatile electrochemical sensing platform for highly sensitive hydrogen peroxide and hydrazine detection. ACS Appl. Mater. Interfaces 2021, 13, 40942-40952.

    24. [24]

      Vernot, E. H.; MacEwen, J. D.; Bruner, R. H.; Haun, C. C.; Kinkead, E. R.; Prentice, D. E.; Hall Iii, A.; Schmidt, R. E.; Eason, R. L.; Hubbard, G. B. Long-term inhalation toxicity of hydrazine. Fundam. Appl. Toxicol. 1985, 5, 1050-1064.
       

    25. [25]

      Liu, Z.; Shao, C.; Jin, B.; Zhang, Z.; Zhao, Y.; Xu, X.; Tang, R. Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 2019, 574, 394-398.

    26. [26]

      Keyvan Rad, J.; Ghomi, A. R.; Karimipour, K.; Mahdavian, A. R. Progressive readout platform based on photoswitchable polyacrylic nanofibers containing spiropyran in photopatterning with instant responsivity to acid-base vapors. Macromolecules 2020, 53, 1613-1622.

    27. [27]

      Qiu, X.; Ivasyshyn, V.; Qiu, L.; Enache, M.; Dong, J.; Rousseva, S.; Portale, G.; Stöhr, M.; Hummelen, J. C.; Chiechi, R. C. Thiol-free selfassembled oligoethylene glycols enable robust air-stable molecular electronics. Nat. Mater. 2020, 19, 330-337.

    28. [28]

      Grissa, R.; Abramova, A.; Tambio, S. J.; Lecuyer, M.; Deschamps, M.; Fernandez, V.; Greneche, J. M.; Guyomard, D.; Lestriez, B.; Moreau, P. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-ion batteries: an XPS and XPS imaging study. ACS Appl. Mater. Interfaces 2019, 11, 18368-18376.

    29. [29]

      Lu, Y.; Cai, Y.; Zhang, Q.; Ni, Y.; Zhang, K.; Chen, J. Rechargeable K-CO2 batteries with a KSn anode and a carboxyl-containing carbon nanotube cathode catalyst. Angew. Chem. Int. Ed. 2021, 60, 9540-9545.

    30. [30]

      Eckhardt, H.; Bose, A.; Krongauz, V. A. Formation of molecular H- and J-stacks by the spiropyran-merocyanine transformation in a polymer matrix. Polymer 1987, 28, 1959-1964.
       

    31. [31]

      Nakamura, M.; Fujioka, T.; Sakamoto, H.; Kimura, K. High stability constants for multivalent metal ion complexes of crown ether derivatives incorporating two spirobenzopyran moieties. New J. Chem. 2002, 26, 554-559.
       

    32. [32]

      Tanaka, M.; Ikeda, T.; Xu, Q.; Ando, H.; Shibutani, Y.; Nakamura, M.; Sakamoto, H.; Yajima, S.; Kimura, K. Synthesis and photochromism of spirobenzopyrans and spirobenzothiapyran derivatives bearing monoazathiacrown ethers and noncyclic analogues in the presence of metal ions. J. Org. Chem. 2002, 67, 2223-2227.

    33. [33]

      Lin, S.; Ruan, Y. Z.; Shen, Y.; Luo, J. R. Crystalline phase and decomposition dynamics of aluminum titanate at different temperature. Chin. J. Struct. Chem. 2012, 31, 79-84.

    34. [34]

      Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano 2020, 14, 14417-14492.

    35. [35]

      Li, X.; Xu, S.; Liu, F.; Qu, J.; Shao, H.; Wang, Z.; Cui, Y.; Ban, D.; Wang, C. Bi and Sb codoped Cs2Ag0.1Na0.9InCl6 double perovskite with excitation-wavelength-dependent dual-emission for anti-counterfeiting application. ACS Appl. Mater. Interfaces 2021, 13, 31031-31037.

    36. [36]

      Wang, F.; Gerken, J. B.; Bates, D. M.; Kim, Y. J.; Stahl, S. S. Electrochemical strategy for hydrazine synthesis: development and overpotential analysis of methods for oxidative N-N coupling of an ammonia surrogate. J. Am. Chem. Soc. 2020, 142, 12349-12356.

    37. [37]

      Jia, Y.; Shang, N.; He, X.; Nsabimana, A.; Gao, Y.; Ju, J.; Yang, X.; Zhang, Y. Electrocatalytically active cuprous oxide nanocubes anchored onto macroporous carbon composite for hydrazine detection. J. Colloid Interface Sci. 2022, 606, 1239-1248.
       

    38. [38]

      García-Aldea, D.; Alvarellos, J. E. Generalized nonlocal kinetic energy density functionals based on the von Weizsäcker functional. PCCP 2012, 14, 1756-1767.

    39. [39]

      Li, J.; Yim, D.; Jang, W. D.; Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev. 2017, 46, 2437-2458.
       

    40. [40]

      Feller, D.; Bross, D. H.; Ruscic, B. Enthalpy of formation of N2H4 (hydrazine) revisited. J. Phys. Chem. A 2017, 121, 6187-6198.

    41. [41]

      Fabiano, B.; Reverberi, A. P.; Varbanov, P. S. Safety opportunities for the synthesis of metal nanoparticles and short-cut approach to workplace risk evaluation. J. Clean. Prod. 2019, 209, 297-308.
       

    42. [42]

      Liu, T.; Yang, L. J.; Feng, W.; Liu, K.; Ran, Q.; Wang, W.; Liu, Q.; Peng, H.; Ding, L.; Fang, Y. Dual-mode photonic sensor array for detecting and discriminating hydrazine and aliphatic amines. ACS Appl. Mater. Interfaces 2020, 12, 11084-11093.

    43. [43]

      Kong, X.; Li, M.; Zhang, Y.; Yin, Y.; Lin, W. Engineering an AIE N2H4 fluorescent probe based on α-cyanostilbene derivative with large Stokes shift and its versatile applications in solution, solid-state and biological systems. Sens. Actuators B Chem. 2021, 329, 129232.

    44. [44]

      Guo, T.; Wu, J.; Gao, H.; Chen, Y. Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. Inorg. Chem. Commun. 2017, 83, 31-35.
       

    45. [45]

      Ozhogin, I. V.; Chernyavina, V. V.; Lukyanov, B. S.; Malay, V. I.; Rostovtseva, I. A.; Makarova, N. I.; Tkachev, V. V.; Lukyanova, M. B.; Metelitsa, A. V.; Aldoshin, S. M. Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. J. Mol. Struct. 2019, 1196, 409-416.

    46. [46]

      Goswami, S.; Aich, K.; Das, S.; Das, A. K.; Sarkar, D.; Panja, S.; Mondal, T. K.; Mukhopadhyay, S. A red fluorescence 'off-on' molecular switch for selective detection of Al3+, Fe3+ and Cr3+: experimental and theoretical studies along with living cell imaging. Chem. Commun. 2013, 49, 10739-10741.
       

  • 加载中
    1. [1]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    2. [2]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    3. [3]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    4. [4]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    5. [5]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    6. [6]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    7. [7]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    8. [8]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    9. [9]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    10. [10]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    11. [11]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    12. [12]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    13. [13]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    14. [14]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    15. [15]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    16. [16]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    17. [17]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    18. [18]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    19. [19]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    20. [20]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

Metrics
  • PDF Downloads(7)
  • Abstract views(457)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return