Citation: Mengjie Liu, Mengting Peng, Baoxia Dong, Yunlei Teng, Ligang Feng, Qiang Xu. Explicating the Role of Metal Centers in Porphyrin-Based MOFs of PCN-222(M) for Electrochemical Reduction of CO2[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220704. doi: 10.14102/j.cnki.0254-5861.2022-0057 shu

Explicating the Role of Metal Centers in Porphyrin-Based MOFs of PCN-222(M) for Electrochemical Reduction of CO2

  • Corresponding author: Baoxia Dong, bxdong@yzu.edu.cn Qiang Xu, qxuchem@yzu.edu.cn
  • Mengjie Liu and Mengting Peng contributed equally to this work.
  • Received Date: 16 March 2022
    Accepted Date: 4 April 2022
    Available Online: 15 April 2022

Figures(7)

  • The porphyrin-based MOFs formed by combining Zr6 clusters and porphyrin carboxylic acids with clear M-N4 active centers show unique advantages in electrocatalytic reduction of CO2 (CO2RR). However, its conductivity is still the bottleneck that limits its catalytic activity due to the electrical insulation of the Zr cluster. Therefore, the porphyrin-based MOFs of PCN-222(M) (M = Mn, Co, Ni, Zn) with explicit M-N4 coordination were combined with the highly conductive material carbon nanotube (CNT) for discussing the influence of metal centers on the CO2RR performance based on theoretical calculations and experimental observations. The results show that the PCN-222(Mn)/CNT, PCN-222(Co)/CNT, and PCN-222(Zn)/CNT all exhibit high selectivity to CO (FECO > 80%) in the range of -0.60 to -0.70 V vs. RHE. The FECOmax of PCN-222(Mn)/CNT (-0.60 V vs. RHE), PCN-222(Co)/CNT (-0.65 V vs. RHE), and PCN-222(Zn)/CNT (-0.70 V vs. RHE) are 88.5%, 89.3% and 92.5%, respectively. The high catalytic activity of PCN-222(Mn)/CNT and PCN-222(Co)/CNT comes from the excellent electron mobility of their porphyrin rings and their low ΔG*COOH (0.87 and 0.58 eV). It reveals that the strength of backbonding π of the transition metal and its influence on the electron mobility in the porphyrin ring can affect its CO2RR activity.
  • 加载中
    1. [1]

      Porosoff, M. D.; Yan, B.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 2016, 9, 62-73.  doi: 10.1039/C5EE02657A

    2. [2]

      Jiang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.  doi: 10.1016/j.enchem.2021.100064

    3. [3]

      Bhatia, S. K.; Bhatia, R. K.; Jeon, J. M.; Kumar, G.; Yang, Y. H. Carbon dioxide capture and bioenergy production using biological system – a review. Renew. Sust. Energy Rev. 2019, 110, 143-158.  doi: 10.1016/j.rser.2019.04.070

    4. [4]

      Hussain, I.; Jalil, A. A.; Hassan, N. S.; Hamid, M. Y. S. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): perspective and challenges. J. Energy Chem. 2021, 62, 377-407.  doi: 10.1016/j.jechem.2021.03.040

    5. [5]

      Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89-99.  doi: 10.1039/B804323J

    6. [6]

      Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-675.  doi: 10.1039/C3CS60323G

    7. [7]

      Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275(1-24).

    8. [8]

      Zhang, M. D.; Dong, Y. J.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.

    9. [9]

      Paul, S.; Kao, Y. L.; Ni, L. M.; Ehnert, R.; Geppert, I. H.; Krol, R.; Stark, R. W.; Jaegermann, W.; Kramm, U. I.; Bogdanoff, P. Influence of the metal center in M-N-C catalysts on the CO2 reduction reaction on gas diffusion electrodes. ACS Catal. 2021, 11, 5850-5864.  doi: 10.1021/acscatal.0c05596

    10. [10]

      Wang, F. Y.; Liu, Y.; Song, Z. L.; Miao, Z. C.; Zhao, J. P. Ni-N-doped carbon-modified reduced graphene oxide catalysts for electrochemical CO2 reduction reaction. Catal. 2021, 11, 561.  doi: 10.3390/catal11050561

    11. [11]

      Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270-7284.  doi: 10.1021/acscatal.9b01405

    12. [12]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan, C. B.; Kaaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944-952.  doi: 10.1038/s41467-017-01035-z

    13. [13]

      Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367-369.  doi: 10.1126/science.aax4608

    14. [14]

      Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 2021, 60, 25485-25492.  doi: 10.1002/anie.202111136

    15. [15]

      Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H.; Zhang, S. Y.; Wang, H. M.; Cao, R. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384-395.  doi: 10.31635/ccschem.019.20190011

    16. [16]

      Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 2017, 56, 6468-6472.  doi: 10.1002/anie.201701104

    17. [17]

      Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076-8079.  doi: 10.1021/jacs.6b04746

    18. [18]

      Yan, T. T.; Guo, J. H.; Liu, Z. Q.; Sun, W. Y. Metalloporphyrin encapsulation for enhanced conversion of CO2 to C2H4. ACS Appl. Mater. Interfaces 2021, 13, 25937-25945.  doi: 10.1021/acsami.1c03557

    19. [19]

      Watpathomsub, S.; Luangchaiyaporn, J.; Sariciftci, N. S.; Thamyongkit, P. Efficient heterogeneous catalysis by pendant metalloporphyrin-functionalized polythiophenes for the electrochemical reduction of carbon dioxide. New J. Chem. 2020, 44, 12486-12495.  doi: 10.1039/D0NJ01381A

    20. [20]

      Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.  doi: 10.1039/C4CS90059F

    21. [21]

      Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.  doi: 10.1039/C5CS00837A

    22. [22]

      Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307-10310.  doi: 10.1002/anie.201204475

    23. [23]

      Feng, D. W.; Jiang, H. L.; Chen, Y. P.; Gu, Z. Y.; Wei, Z. W.; Zhou, H. C. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. Inorg. Chem. 2013, 52, 12661-12667.  doi: 10.1021/ic4018536

    24. [24]

      Feng, D. W.; Chung, W. C.; Wei, Z. W.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105-17110.  doi: 10.1021/ja408084j

    25. [25]

      Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466-4473.  doi: 10.1038/s41467-018-06938-z

    26. [26]

      Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc. 2014, 136, 2464-2472.  doi: 10.1021/ja410684q

    27. [27]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.  doi: 10.1021/acscatal.5b01767

    28. [28]

      Xin, Z. F.; Wang, Y. R.; Chen, Y. F.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.  doi: 10.1016/j.nanoen.2019.104233

    29. [29]

      Dong, B. X.; Qian, S. L.; Bu, F. Y.; Wu, Y. C.; Feng, L. G.; Teng, Y. L.; Liu, W. L.; Li, Z. W. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Appl. Energy Mater. 2018, 1, 4662-4669.  doi: 10.1021/acsaem.8b00797

    30. [30]

      Liu, M. J.; Cao, S. M.; Feng, B. Q.; Dong, B. X.; Ding, Y. X.; Zheng, Q. H.; Teng, Y. L.; Li, Z. W.; Liu, W. L.; Feng, L. G. Revealing the structure-activity relationship of two Cu-porphyrin-based metal-organic frameworks for the electrochemical CO2-to-HCOOH transformation. Dalton Trans. 2020, 49, 14995-15001.  doi: 10.1039/D0DT02683B

    31. [31]

      Kung, C. W.; Goswami, S.; Hod, I.; Wang, T. C.; Duan, J. X.; Farha, O. K.; Hupp, J. T. Charge transport in zirconium-based metal-organic frameworks. Acc. Chem. Res. 2020, 53, 1187-1195.  doi: 10.1021/acs.accounts.0c00106

    32. [32]

      Maindan, K.; Li, X. L.; Yu, J. R.; Deria, P. Controlling charge-transport in metal-organic frameworks: contribution of topological and spin-state variation on the iron-porphyrin centered redox hopping rate. J. Phys. Chem. B 2019, 123, 8814-8822.  doi: 10.1021/acs.jpcb.9b07506

    33. [33]

      Wang, F. Y.; Liu, Y.; Song, Z. L.; Miao, Z. C.; Zhao, J. P. Ni-N-doped carbon-modified reduced graphene oxide catalysts for electrochemical CO2 reduction reaction. Catal. 2021, 11, 561.  doi: 10.3390/catal11050561

    34. [34]

      Matanovic, I.; Babanova, S.; Perry Ⅲ, A.; Serov, A.; Artyushkova, K.; Atanassov, P. Bio-inspired design of electrocatalyst for oxalate oxidation: a combined experimental and computational study of Mn-N-C catalysts. Phys. Chem. Chem. Phys. 2015, 17, 13235-13244.  doi: 10.1039/C5CP00676G

    35. [35]

      Wang, L. Z.; She, Y. B. Spectroscopic analysis of substituted tetraphenylporphyrin iron, manganese, cobalt, copper and zinc complexes. Spectrosc. Spect. Anal. 2008, 28, 2312-2317.

    36. [36]

      Soldatova, A. V.; Ibrahim, M.; Spiro, T. G. Electronic structure and ligand vibrations in FeNO, CoNO, and FeOO porphyrin adducts. Inorg. Chem. 2013, 52, 7478-7486.  doi: 10.1021/ic400364x

    37. [37]

      Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 2020, 59, 15014-15020.  doi: 10.1002/anie.202005577

    38. [38]

      Chen, E. X.; Yang, J.; Qiu, M.; Wang, X. Y.; Zhang, Y. F.; Guo, Y. J.; Huang, S. L.; Sun, Y. Y.; Zhang, J.; Hou, Y.; Lin, Q. P. Understanding the efficiency and selectivity of two-electron production of metalloporphyrin-embedded zirconium-pyrogallol scaffolds in electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 52588-52594.  doi: 10.1021/acsami.0c14135

    39. [39]

      Jadhav, H. S.; Roy, A.; Thorat, G. M.; Chung, W. J.; Seo, J. G. Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J. Ind. Eng. Chem. 2019, 71, 452-459.  doi: 10.1016/j.jiec.2018.12.002

    40. [40]

      Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F.; Fan, J.; Zhong, J.; Wu, T. Q.; Miller, D. J.; Lu, J.; Lee, S. T.; Li, Y. G. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652-664.  doi: 10.1016/j.chempr.2017.08.002

    41. [41]

      Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe-N-C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205-1211.  doi: 10.1021/acsenergylett.8b00474

    42. [42]

      Arriagada, D. C.; Rojas, S. M.; Mora, F. C.; Labbé, A. T. First-principles study of hybrid nanostructures formed by deposited phthalocyanine/porphyrin metal complexes on phosphorene. J. Mol. Liq. 2021, 333, 115948-11557.  doi: 10.1016/j.molliq.2021.115948

    43. [43]

      Wang, C.; Zhu, C. Y.; Zhang, M.; Geng, Y.; Li, Y. G.; Su, Z. M. An intriguing window opened by a metallic two-dimensional lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction. J. Mater. Chem. A 2020, 8, 14807-14814.  doi: 10.1039/D0TA04993J

    44. [44]

      Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 2017, 3, 847-852.  doi: 10.1021/acscentsci.7b00160

    45. [45]

      Cao, M. J.; Yu, Y. M.; Fu, H. Y.; She, Y. B. Effect of substituents and central metal ions on electronic structure and catalytic activity of porphyrins. CIESC J. 2013, 64, 88-97.

    46. [46]

      Wu, H.; Fan, S. H.; Zhang, H.; Li, H. Q.; Yang, M. Q.; Zhang, C. Y. Porphyrins with different electron groups: spectral and DFT study. Spectrosc. Spect. Anal. 2014, 34, 1060-1063.

    47. [47]

      Yan, T. T.; Wang, P.; Xu, Z. H.; Sun, W. Y. Copper(Ⅱ) frameworks with varied active site distribution for modulating selectivity of carbon dioxide electroreduction. ACS Appl. Matter. Interfaces 2022, 14, 13645-13652.  doi: 10.1021/acsami.2c00487

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    3. [3]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    4. [4]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    5. [5]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    6. [6]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    7. [7]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    8. [8]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    9. [9]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    10. [10]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    11. [11]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    12. [12]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    13. [13]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    14. [14]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    15. [15]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    16. [16]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    17. [17]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    18. [18]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(4)
  • Abstract views(451)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return