-
[1]
Porosoff, M. D.; Yan, B.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 2016, 9, 62-73.
doi: 10.1039/C5EE02657A
-
[2]
Jiang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.
doi: 10.1016/j.enchem.2021.100064
-
[3]
Bhatia, S. K.; Bhatia, R. K.; Jeon, J. M.; Kumar, G.; Yang, Y. H. Carbon dioxide capture and bioenergy production using biological system – a review. Renew. Sust. Energy Rev. 2019, 110, 143-158.
doi: 10.1016/j.rser.2019.04.070
-
[4]
Hussain, I.; Jalil, A. A.; Hassan, N. S.; Hamid, M. Y. S. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): perspective and challenges. J. Energy Chem. 2021, 62, 377-407.
doi: 10.1016/j.jechem.2021.03.040
-
[5]
Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89-99.
doi: 10.1039/B804323J
-
[6]
Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631-675.
doi: 10.1039/C3CS60323G
-
[7]
Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275(1-24).
-
[8]
Zhang, M. D.; Dong, Y. J.; Huang, Y. B.; Cao, R. Covalent triazine frameworks-derived N, P dual-doped porous carbons for highly efficient electrochemical reduction of CO2. Chin. J. Struct. Chem. 2021, 40, 1213-1222.
-
[9]
Paul, S.; Kao, Y. L.; Ni, L. M.; Ehnert, R.; Geppert, I. H.; Krol, R.; Stark, R. W.; Jaegermann, W.; Kramm, U. I.; Bogdanoff, P. Influence of the metal center in M-N-C catalysts on the CO2 reduction reaction on gas diffusion electrodes. ACS Catal. 2021, 11, 5850-5864.
doi: 10.1021/acscatal.0c05596
-
[10]
Wang, F. Y.; Liu, Y.; Song, Z. L.; Miao, Z. C.; Zhao, J. P. Ni-N-doped carbon-modified reduced graphene oxide catalysts for electrochemical CO2 reduction reaction. Catal. 2021, 11, 561.
doi: 10.3390/catal11050561
-
[11]
Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 2019, 9, 7270-7284.
doi: 10.1021/acscatal.9b01405
-
[12]
Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan, C. B.; Kaaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944-952.
doi: 10.1038/s41467-017-01035-z
-
[13]
Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367-369.
doi: 10.1126/science.aax4608
-
[14]
Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem. Int. Ed. 2021, 60, 25485-25492.
doi: 10.1002/anie.202111136
-
[15]
Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H.; Zhang, S. Y.; Wang, H. M.; Cao, R. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384-395.
doi: 10.31635/ccschem.019.20190011
-
[16]
Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 2017, 56, 6468-6472.
doi: 10.1002/anie.201701104
-
[17]
Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076-8079.
doi: 10.1021/jacs.6b04746
-
[18]
Yan, T. T.; Guo, J. H.; Liu, Z. Q.; Sun, W. Y. Metalloporphyrin encapsulation for enhanced conversion of CO2 to C2H4. ACS Appl. Mater. Interfaces 2021, 13, 25937-25945.
doi: 10.1021/acsami.1c03557
-
[19]
Watpathomsub, S.; Luangchaiyaporn, J.; Sariciftci, N. S.; Thamyongkit, P. Efficient heterogeneous catalysis by pendant metalloporphyrin-functionalized polythiophenes for the electrochemical reduction of carbon dioxide. New J. Chem. 2020, 44, 12486-12495.
doi: 10.1039/D0NJ01381A
-
[20]
Zhou, H. C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
doi: 10.1039/C4CS90059F
-
[21]
Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
doi: 10.1039/C5CS00837A
-
[22]
Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307-10310.
doi: 10.1002/anie.201204475
-
[23]
Feng, D. W.; Jiang, H. L.; Chen, Y. P.; Gu, Z. Y.; Wei, Z. W.; Zhou, H. C. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. Inorg. Chem. 2013, 52, 12661-12667.
doi: 10.1021/ic4018536
-
[24]
Feng, D. W.; Chung, W. C.; Wei, Z. W.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105-17110.
doi: 10.1021/ja408084j
-
[25]
Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466-4473.
doi: 10.1038/s41467-018-06938-z
-
[26]
Ahrenholtz, S. R.; Epley, C. C.; Morris, A. J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J. Am. Chem. Soc. 2014, 136, 2464-2472.
doi: 10.1021/ja410684q
-
[27]
Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302-6309.
doi: 10.1021/acscatal.5b01767
-
[28]
Xin, Z. F.; Wang, Y. R.; Chen, Y. F.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.
doi: 10.1016/j.nanoen.2019.104233
-
[29]
Dong, B. X.; Qian, S. L.; Bu, F. Y.; Wu, Y. C.; Feng, L. G.; Teng, Y. L.; Liu, W. L.; Li, Z. W. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Appl. Energy Mater. 2018, 1, 4662-4669.
doi: 10.1021/acsaem.8b00797
-
[30]
Liu, M. J.; Cao, S. M.; Feng, B. Q.; Dong, B. X.; Ding, Y. X.; Zheng, Q. H.; Teng, Y. L.; Li, Z. W.; Liu, W. L.; Feng, L. G. Revealing the structure-activity relationship of two Cu-porphyrin-based metal-organic frameworks for the electrochemical CO2-to-HCOOH transformation. Dalton Trans. 2020, 49, 14995-15001.
doi: 10.1039/D0DT02683B
-
[31]
Kung, C. W.; Goswami, S.; Hod, I.; Wang, T. C.; Duan, J. X.; Farha, O. K.; Hupp, J. T. Charge transport in zirconium-based metal-organic frameworks. Acc. Chem. Res. 2020, 53, 1187-1195.
doi: 10.1021/acs.accounts.0c00106
-
[32]
Maindan, K.; Li, X. L.; Yu, J. R.; Deria, P. Controlling charge-transport in metal-organic frameworks: contribution of topological and spin-state variation on the iron-porphyrin centered redox hopping rate. J. Phys. Chem. B 2019, 123, 8814-8822.
doi: 10.1021/acs.jpcb.9b07506
-
[33]
Wang, F. Y.; Liu, Y.; Song, Z. L.; Miao, Z. C.; Zhao, J. P. Ni-N-doped carbon-modified reduced graphene oxide catalysts for electrochemical CO2 reduction reaction. Catal. 2021, 11, 561.
doi: 10.3390/catal11050561
-
[34]
Matanovic, I.; Babanova, S.; Perry Ⅲ, A.; Serov, A.; Artyushkova, K.; Atanassov, P. Bio-inspired design of electrocatalyst for oxalate oxidation: a combined experimental and computational study of Mn-N-C catalysts. Phys. Chem. Chem. Phys. 2015, 17, 13235-13244.
doi: 10.1039/C5CP00676G
-
[35]
Wang, L. Z.; She, Y. B. Spectroscopic analysis of substituted tetraphenylporphyrin iron, manganese, cobalt, copper and zinc complexes. Spectrosc. Spect. Anal. 2008, 28, 2312-2317.
-
[36]
Soldatova, A. V.; Ibrahim, M.; Spiro, T. G. Electronic structure and ligand vibrations in FeNO, CoNO, and FeOO porphyrin adducts. Inorg. Chem. 2013, 52, 7478-7486.
doi: 10.1021/ic400364x
-
[37]
Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 2020, 59, 15014-15020.
doi: 10.1002/anie.202005577
-
[38]
Chen, E. X.; Yang, J.; Qiu, M.; Wang, X. Y.; Zhang, Y. F.; Guo, Y. J.; Huang, S. L.; Sun, Y. Y.; Zhang, J.; Hou, Y.; Lin, Q. P. Understanding the efficiency and selectivity of two-electron production of metalloporphyrin-embedded zirconium-pyrogallol scaffolds in electrochemical CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 52588-52594.
doi: 10.1021/acsami.0c14135
-
[39]
Jadhav, H. S.; Roy, A.; Thorat, G. M.; Chung, W. J.; Seo, J. G. Hierarchical free-standing networks of MnCo2S4 as efficient electrocatalyst for oxygen evolution reaction. J. Ind. Eng. Chem. 2019, 71, 452-459.
doi: 10.1016/j.jiec.2018.12.002
-
[40]
Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F.; Fan, J.; Zhong, J.; Wu, T. Q.; Miller, D. J.; Lu, J.; Lee, S. T.; Li, Y. G. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652-664.
doi: 10.1016/j.chempr.2017.08.002
-
[41]
Cheng, Q. Q.; Mao, K.; Ma, L. S.; Yang, L. J.; Zou, L. L.; Zou, Z. Q.; Hu, Z.; Yang, H. Encapsulation of iron nitride by Fe-N-C shell enabling highly efficient electroreduction of CO2 to CO. ACS Energy Lett. 2018, 3, 1205-1211.
doi: 10.1021/acsenergylett.8b00474
-
[42]
Arriagada, D. C.; Rojas, S. M.; Mora, F. C.; Labbé, A. T. First-principles study of hybrid nanostructures formed by deposited phthalocyanine/porphyrin metal complexes on phosphorene. J. Mol. Liq. 2021, 333, 115948-11557.
doi: 10.1016/j.molliq.2021.115948
-
[43]
Wang, C.; Zhu, C. Y.; Zhang, M.; Geng, Y.; Li, Y. G.; Su, Z. M. An intriguing window opened by a metallic two-dimensional lindqvist-cobaltporphyrin organic framework as an electrochemical catalyst for the CO2 reduction reaction. J. Mater. Chem. A 2020, 8, 14807-14814.
doi: 10.1039/D0TA04993J
-
[44]
Wu, Y. S.; Jiang, J. B.; Weng, Z.; Wang, M. Y.; Broere, D. L. J.; Zhong, Y. R.; Brudvig, G. W.; Feng, Z. X.; Wang, H. L. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 2017, 3, 847-852.
doi: 10.1021/acscentsci.7b00160
-
[45]
Cao, M. J.; Yu, Y. M.; Fu, H. Y.; She, Y. B. Effect of substituents and central metal ions on electronic structure and catalytic activity of porphyrins. CIESC J. 2013, 64, 88-97.
-
[46]
Wu, H.; Fan, S. H.; Zhang, H.; Li, H. Q.; Yang, M. Q.; Zhang, C. Y. Porphyrins with different electron groups: spectral and DFT study. Spectrosc. Spect. Anal. 2014, 34, 1060-1063.
-
[47]
Yan, T. T.; Wang, P.; Xu, Z. H.; Sun, W. Y. Copper(Ⅱ) frameworks with varied active site distribution for modulating selectivity of carbon dioxide electroreduction. ACS Appl. Matter. Interfaces 2022, 14, 13645-13652.
doi: 10.1021/acsami.2c00487