Citation: Yuan-Yuan Feng, Hua-Shuai Hu, Rui-Jie Liu, Gao Deng, Xiang-Yu Wang, Meng Zhu. FeNC Catalysts with High Catalytic Activity and Stability for Oxygen Reduction Reaction[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220908. doi: 10.14102/j.cnki.0254-5861.2022-0053 shu

FeNC Catalysts with High Catalytic Activity and Stability for Oxygen Reduction Reaction

  • Corresponding author: Yuan-Yuan Feng, fengyy@qfnu.edu.cn
  • Received Date: 12 January 2022
    Accepted Date: 20 August 2022
    Available Online: 24 August 2022

Figures(5)

  • Although Pt-based catalysts have been considered as the most effective electrocatalyst for the cathodic oxygen reduction reaction (ORR) of direct methanol fuel cells (DMFCs), they still suffer from the drawbacks of high cost, poor long-term stability and methanol/ CO poisoning effects. Thus, developing low-cost ORR catalysts with high efficiency, durability and antipoisoning ability is of paramount importance. Herein, a series of non-noble metal FeNC materials are prepared through a facile pyrolysis process and used as the electrocatalysts toward ORR in alkaline electrolyte. Results show that the Fe0.50NC-800-1h catalyst pyrolyzed at 800 ºC for 1 h with the mass ratio of Fe(NO3)3·6H2O to melamine being 0.50 exhibits the highest catalytic performance among the as-prepared FeNC catalysts. The half-wave potential of ORR is ca. 0.81 V, which is only 38 mV lower than that on the noble metal Pt/C catalyst. Besides, it also displays higher stability and methanol tolerance than Pt/C. There is almost no change in the current during the chronoamperometric test when methanol is added in the electrolyte whereas significant decrease is found on Pt/C catalyst. This study of FeNC catalysts provides new insights on understanding the ORR mechanism and suggests a promising strategy to develop low-cost and highly efficient non-noble metal electrocatalysts for ORR.
  • 加载中
    1. [1]

      Yang, L.; Zeng, X.; Wang, D.; Cao, D. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277-283.  doi: 10.1016/j.ensm.2018.02.011

    2. [2]

      Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.

    3. [3]

      Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027-11033.

    4. [4]

      Zadick, A.; Dubau, L.; Sergent, N.; Berthomé, G.; Chatenet, M. Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 2015, 5, 4819-4824.

    5. [5]

      Yuan, Y.; Wang, J.; Adimi, S.; Shen, H.; Thomas, T.; Ma, R.; Attfield, J. P.; Yang, M. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 2020, 19, 282-286.  doi: 10.1038/s41563-019-0535-9

    6. [6]

      Hu, T. H.; Yin, Z. S.; Guo, J. W.; Wang, C. Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction. J. Power Sources 2014, 272, 661-671.  doi: 10.1016/j.jpowsour.2014.08.124

    7. [7]

      Loukrakpam, R.; Wanjala, B. N.; Yin, J.; Fang, B.; Luo, J.; Shao, M.; Protsailo, L.; Kawamura, T.; Chen, Y.; Petkov, V.; Zhong, C. J. Structural and electrocatalytic properties of PtIrCo/C catalysts for oxygen reduction reaction. ACS Catal. 2011, 1, 562-572.

    8. [8]

      Wang, M. Q.; Yang, W. H.; Wang, H. H.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 2014, 4, 3928-3936.  doi: 10.1021/cs500673k

    9. [9]

      Varnell, J. A.; Sotiropoulos, J. S.; Brown, T. M.; Subedi, K.; Haasch, R. T.; Schulz, C. E.; Gewirth, A. A. Revealing the role of the metal in non-precious-metal catalysts for oxygen reduction via selective removal of Fe. ACS Eenrgy Lett. 2018, 3, 823-828.

    10. [10]

      Xiao, F.; Wang, Y. C.; Wu, Z. P.; Chen, G.; Yang, F.; Zhu, S.; Siddharth, K.; Kong, Z.; Lu, A.; Li, J. C.; Zhong, C. J.; Zhou, Z. Y.; Shao, M. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 2021, 33, e2006292.

    11. [11]

      Chen, P.; Xiao, T.; Qian, Y.; Li, S.; Yu, S. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192-3196.

    12. [12]

      Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. A.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205-211.

    13. [13]

      Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.

    14. [14]

      Wang, T.; Chen, Z. X.; Chen, Y. G.; Yang, L. J.; Yang, X. D.; Ye, J. Y.; Xia, H. P.; Zhou, Z. Y.; Sun, S. G. Identifying the active site of N-doped graphene for oxygen reduction by selective chemical modification. ACS Eenrgy Lett. 2018, 3, 986-991.

    15. [15]

      Cui, Y. Q.; Xu, J. X.; Wang, M. L.; Guan, L. H. Surface oxidation of single-walled-carbon-nanotubes with enhanced oxygen electroreduction activity and selectivity. Chin. J. Struct. Chem. 2021, 40, 533-539.

    16. [16]

      Xu, L.; Pan, G.; Liang, X. Nitrogen/sulfur Co-doped non-noble metal material as an efficient electrocatalyst for the oxygen reduction reaction in alkaline media. RSC Adv. 2014, 4, 19756-19765.

    17. [17]

      Chen, L.; Guo, X.; Zhang, G. N, S Co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction. J. Power Sources 2017, 360, 106-113.

    18. [18]

      Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater. 2009, 21, 1609-1612.

    19. [19]

      Qian, Y. S.; Tong, L.; Shao, Z. G.; Dun, R. M.; Li, W. M. Structure and performance of Fe-Nx-C catalyst for oxygen reduction reaction prepared by vacuum casting method and the second pyrolysis. Chin. J. Struct. Chem. 2018, 37, 937-947.

    20. [20]

      Du, C.; Liu, X.; Ye, G.; Gao, X.; Zhuang, Z.; Li, P.; Xiang, D.; Li, X.; Clayborne, A. Z.; Zhou, X.; Chen, W. Balancing the micro-mesoporosity for activity maximization of N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. ChemSusChem 2019, 12, 1017-1025.

    21. [21]

      Xiang, D.; Bo, X.; Gao, X.; Du, C.; Li, P.; Zhu, L.; Chen, W. Bimetal and nitrogen-codoped spherical porous carbon with efficient catalytic performance towards oxygen reduction reaction in alkaline media. J. Colloid Inter. Sci. 2019, 534, 655-664.

    22. [22]

      Xiang, D.; Bo, X.; Gao, X.; Zhang, C.; Du, C.; Zheng, F.; Zhuang, Z.; Li, P.; Zhu, L.; Chen, W. Novel one-step synthesis of core@shell iron-nickel alloy nanoparticles coated by carbon layers for efficient oxygen evolution reaction electrocatalysis. J. Power Sources 2019, 438, 226988.

    23. [23]

      Zheng, F.; Zhang, Z.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential. J. Colloid Inter. Sci. 2019, 555, 541-547.

    24. [24]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-764.

    25. [25]

      Sun, T.; Wu, Q.; Che, R.; Bu, Y.; Jiang, Y.; Li, Y.; Yang, L.; Wang, X.; Hu, Z. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 2015, 5, 1857-1862.

    26. [26]

      Niu, Y.; Huang, X.; Hu, W. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. J. Power Sources 2016, 332, 305-311.

    27. [27]

      Zhang, X.; Lin, J.; Chen, S.; Yang, J.; Song, L.; Wu, X.; Xu, H. Co nanoparticles encapsulated in N-doped carbon nanosheets: enhancing oxygen reduction catalysis without metal-nitrogen bonding. ACS Appl. Mater. Interfaces 2017, 9, 38499-38506.

    28. [28]

      Gautam, J.; Thanh, T. D.; Maiti, K.; Kim, N. H.; Lee, J. H. Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction. Carbon 2018, 137, 358-367.

    29. [29]

      Ma, Q. L.; Jin, H. H.; Zhu, J. W.; Li, Z. L.; Xu, H. W.; Liu, B. S.; Zhang, Z. W.; Ma, J. J.; Mu, S. C. Stabilizing Fe-N-C catalysts as model for oxygen reduction reaction. Adv. Sci. 2021, 8, 2102209.

    30. [30]

      Shen, H.; Thomas, T.; Rasaki, S. A.; Saad, A.; Hu, C.; Wang, J.; Yang, M. Oxygen reduction reactions of Fe-N-C catalysts: current status and the way forward. Electrochem. Energy Rev. 2019, 2, 252-276.

    31. [31]

      Yang, W. G.; Gong, Z. W.; Chen, Y. N.; Chen, R. R.; Meng, D. L.; Cao, M. N. Nitrogen doped carbon as efficient catalyst toward oxygen reduction reaction. Chin. J. Struct. Chem. 2020, 39, 287-293.

    32. [32]

      Chen, C.; Lai, Y.; Zhou, Z.; Zhang, X.; Sun, S. Thermo-stability and active site structure of Fe/N/C electrocatalyst for oxygen reduction reaction. J. Electrochem. 2017, 23, 400-408.

    33. [33]

      Mutyala, S.; Mathiyarasu, J. Noble metal-free Fe-N-CNFs as an efficient electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 2018, 43, 4746-4753.

    34. [34]

      Qiu, K.; Chai, G.; Jiang, C.; Ling, M.; Tang, J.; Guo, Z. Highly efficient oxygen reduction catalysts by rational synthesis of nanoconfined maghemite in a nitrogen-doped graphene framework. ACS Catal. 2016, 6, 3558-3568.

    35. [35]

      Liu, Y.; Li, Z.; Wang, L.; Zhang, L.; Niu, X. Tunable Fe/N Co-doped 3D porous graphene with high density Fe-Nx sites as the efficient bifunctional oxygen electrocatalyst for Zn-Air batteries. Int. J. Hydrogen Energy 2021, 46, 36811-36823.

    36. [36]

      Liu, X.; Liu, H.; Chen, C.; Zou, L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651-1657.

    37. [37]

      Wu, J.; Liu, Y.; Geng, D.; Liu, H.; Meng, X. Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dual purpose electrodes for lithium-ion batteries and oxygen evolution reaction. Int. J. Energy Res. 2018, 42, 853-862.

    38. [38]

      Zhao, B.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X.; Liu, M.; Shao, Z. Multifunctional iron oxide nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 14446-14455.

    39. [39]

      Gong, X.; Liu, S.; Ouyang, C.; Strasser, P.; Yang, R. Nitrogen- and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal. 2015, 5, 920-927.

    40. [40]

      Parvez, K.; Shubin, Y.; Hernandez, Y.; Winter, A.; Turchanin, A.; Xinliang, F.; Müllen, K. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. ACS Nano 2012, 6, 9541-9550.

    41. [41]

      Byon, H. R.; Suntivich, J.; Shao Horn, Y. Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 2011, 23, 3421-3428.

    42. [42]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 2014, 53, 7281-7285.

    43. [43]

      Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528-19531.

    44. [44]

      Wang, Y. C.; Huang, L.; Zhang, P.; Qiu, Y. T.; Sheng, T.; Zhou, Z. Y.; Wang, G.; Liu, J. G.; Rauf, M.; Gu, Z. Q.; Wu, W. T.; Sun, S. G. Constructing a triple-phase interface in micropores to boost performance of Fe/N/C catalysts for direct methanol fuel cells. ACS Eenrgy Lett. 2017, 2, 645-650.

    45. [45]

      Woo, J.; Yang, S. Y.; Sa, Y. J.; Choi, W. Y.; Lee, M. H.; Lee, H. W.; Shin, T. J.; Kim, T. Y.; Joo, S. H. Promoting oxygen reduction reaction activity of Fe-N/C electrocatalysts by silica-coating-mediated synthesis for anion-exchange membrane fuel cells. Chem. Mater. 2018, 30, 6684-6701.

    46. [46]

      Chen, L.; Li, Y.; Xu, N.; Zhang, G. Metal-organic framework derived coralline-like non-precious metal catalyst for highly efficient oxygen reduction reaction. Carbon 2018, 132, 172-180.

    47. [47]

      Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 21976-21979.

    48. [48]

      Zuo, Q.; Zhao, P.; Luo, W.; Cheng, G. Z. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 2016, 8, 14271-14277.

    49. [49]

      Wang, M. Q.; Yang, W. H.; Wang, H. H.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Pyrolyzed Fe-N-C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal. 2014, 4, 3928-3936.

    50. [50]

      Zhang, Q.; Lv, J. N.; Hu, X. Y.; He, Y. L.; Yang, H. F.; Kong, D. S.; Feng, Y. Y. Polyaniline decorated MoO3 nanorods: synthesis, characterization and promoting effect to Pt electrocatalyst. Int. J. Hydrogen Energy 2018, 43, 5603-5609.

    51. [51]

      Xia, D.; Liu, S.; Wang, Z.; Chen, G.; Zhang, L.; Zhang, L.; Hui, S.; Zhang, J. Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J. Power Sources 2008, 177, 296-302.

    52. [52]

      Hu, H. S.; Liu, R. J.; Si, S.; Kong, D. S.; Feng, Y. Y. Iron and nitrogen codoped carbon catalyst with excellent stability and methanol tolerance for oxygen reduction reaction. Int. J. Energy Res. 2019, 43, 7107-7119.

  • 加载中
    1. [1]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    2. [2]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    3. [3]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    4. [4]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    5. [5]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    6. [6]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    7. [7]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    8. [8]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    9. [9]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    10. [10]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    11. [11]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    14. [14]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    15. [15]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    16. [16]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    17. [17]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    18. [18]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    19. [19]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    20. [20]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

Metrics
  • PDF Downloads(7)
  • Abstract views(563)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return