Citation: Shuwei Chai, Xiong Xiao, Yabei Li, Changhua An. Graphene-Coated 1D MoTe2 Nanorods as Anode for Enhancing Lithium-Ion Battery Performance[J]. Chinese Journal of Structural Chemistry, ;2022, 41(8): 220801. doi: 10.14102/j.cnki.0254-5861.2022-0050 shu

Graphene-Coated 1D MoTe2 Nanorods as Anode for Enhancing Lithium-Ion Battery Performance

  • Corresponding author: Changhua An, anchua@ustc.edu
  • Received Date: 6 March 2022
    Accepted Date: 14 May 2022
    Available Online: 27 May 2022

Figures(6)

  • One-dimensional nanostructures (1D) with short ion diffusion distance and fast ion transport path are excellent for lithium-ion batteries (LIBs). However, the nature of layered transition metal dichalcogenides makes it difficult to form 1D nanohybrids. Here, the MoTe2 nanorods with an average diameter of 100-200 nm and length of 1-3 μm encapsulated by reduced graphene oxide (MoTe2/rGO) have been fabricated via in-situ reaction of GO coated Mo3O10(C2H10N2) nanowires with Te under Ar/H2 atmosphere. When applied as anode of LIBs, the MoTe2/rGO delivers a high reversible capacity (637 mA h g-1 after 100 cycles at 0.2 A g-1), good rate capability (374 mA h g-1 at 2 A g-1) and excellent stability (360 mA h g-1 after 200 cycles at 0.5 A g-1), which surpasses bare MoTe2 nanorods and bulk MoTe2 crystallite. Furthermore, a lithium-ion full cell constructed by coupling MoTe2/rGO anode and LiCoO2 cathode shows a capacity of 105 mA h g-1 at 0.1 C. The enhanced performance mainly benefits from the advantages of 1D nanostructure, and meanwhile the rGO thin layers are able to improve the conductivity and maintain the structural stability. This work provides a simple pathway for the synthesis of 1D TMDs nanostructures for energy storage and conversion.
  • 加载中
    1. [1]

      Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2021, 1-6.

    2. [2]

      Wang, C. Y.; Yao, Q. Q.; Gan, Y. M.; Zhang, Q. X.; Guan, L. H.; Zhao, Y. Monodispersed SWNTs assembled coating layer as an alternative to graphene with enhanced alkali-ion storage performance. Chin. J. Struct. Chem. 2022, 41, 2201040-2201046.

    3. [3]

      Liu, J.; Cao, G. Z.; Yang, Z. G.; Wang, D. H.; Dubois, D.; Zhou, X. D.; Graff, G. L.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem. 2008, 1, 676-697.

    4. [4]

      Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemicalreaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654-2662.

    5. [5]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

    6. [6]

      Li, X.; Wang, J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat. 2020, 2, 3-32.  doi: 10.1002/inf2.12040

    7. [7]

      Hu, X. L.; Zhang, W.; Liu, X. X.; Mei, Y. N.; Huang, Y. Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 2015, 44, 2376-2404.  doi: 10.1039/C4CS00350K

    8. [8]

      Yu, Y. Y.; Zhang, H. Q. Reduced graphene oxide coupled magnetic CuFe2O4-TiO2 nanoparticles with enhanced photocatalytic activity for methylene blue degradation. Chin. J. Struct. Chem. 2016, 35, 472-480.

    9. [9]

      Li, Y. J.; Zhou, J. H.; Guo, S. J. Advanced carbon materials for non-aqueous potassium ion battery anodes. Chin. J. Struct. Chem. 2019, 12, 1993-1998.

    10. [10]

      Ren, J. G.; Wang, C. D.; Wu, Q. H.; Liu, X.; Yang, Y.; He, L. F.; Zhang, W. J. A silicon nanowire-reduced graphene oxide nanocomposite as a high-performance lithium ion battery anode material. Nanoscale 2014, 6, 3353-3360.

    11. [11]

      Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano. 2013, 7, 1437-1445.

    12. [12]

      Zhu, W. J.; Huang, H.; Gan, Y. P.; Tao, X. Y.; Xia, Y.; Zhang, W. K. Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance. Electrochim. Acta 2014, 138, 376-382.

    13. [13]

      Cho, S. H.; Jung, J. W.; Kim, C.; Kim, D, I. Design of 1-D Co3O4 nano-fibers@low content graphene nanocomposite anode for high performance Li-ion batteries. Sci. Rep. 2017, 7, 45105.

    14. [14]

      Zhang, G. D.; Shi, Y. H.; Wang, H. R.; Jiang, L. L.; Yu, X. D.; Jing, S. Y.; Xing, S. X.; Tsiakaras, P. A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. J. Power Sources 2019, 416, 118-124.

    15. [15]

      Zhao, B.; Liu, R. Z.; Cai, X. H.; Jiao, Z.; Wu, M. H.; Ling, X. T.; Lu, B.; Jiang, Y. Nanorod-like Fe2O3/graphene nanocomposite as a high-performance anode material for lithium ion batteries. J. Appl. Electrochem. 2013, 44, 53-60.

    16. [16]

      Radich, J. G.; Kamat, P. V. Origin of reduced graphene oxide enhancements in electrochemical energy storage. ACS Catal. 2012, 2, 807-816.

    17. [17]

      Liu, H. D.; Hu, Z. L.; Su, Y. Y.; Ruan, H. B.; Hu, R.; Zhang, L. MnO2 nanorods/3D-rGO nanocomposite as high performance anode materials for Li-ion batteries. Appl. Surf. Sci. 2017, 392, 777-784.

    18. [18]

      Chae, C.; Kim, K. W.; Yun, Y. J.; Lee, D.; Moon, J.; Choi, Y.; Lee, S. S.; Choi, S.; Jeong, S. Polyethylenimine-mediated electrostatic assembly of MnO2 nanorods on graphene oxides for use as anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 11499-506.

    19. [19]

      Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

    20. [20]

      Li, P. L.; Cui, J.; Zhou, J. D.; Guo, D.; Zhao, Z. Z.; Yi, J.; Fan, J.; Ji, Z. Q.; Jing, X. N.; Qu, F. M.; Yang, C. L.; Lu, L.; Lin, J. H.; Liu, Z.; Liu, G. T. Phase transition and superconductivity enhancement in Se-substituted MoTe2 thin films. Adv. Mater. 2019, 31, 1904641.

    21. [21]

      Wang, Q. S.; Li, J.; Besbas, J.; Hsu, C. H.; Cai, K. M.; Yang, L.; Cheng, S.; Wu, Y.; Zhang, W. F.; Wang, K. Y.; Chang, T. R.; Lin, H.; Chang, H. X.; Yang, H. Room-temperature nanoseconds spin relaxation in WTe2 and MoTe2 thin films. Adv. Sci. 2018, 5, 1700912.

    22. [22]

      Wu, B.; Luxa, J.; Kovalska, E.; Ivo, M.; Zhou, H. J.; Malek, R.; Marvan, P.; Wei, S. Y.; Liao, L. P.; Sofer, Z. Sub-millimetre scale Van der Waals single-crystal MoTe2 for potassium storage: electrochemical properties, and its failure and structure evolution mechanisms. Energy Storage Mater. 2021, 43, 284-292.

    23. [23]

      Zakhidov, D.; Rehn, D. A.; Reed, E. J.; Salleo, A. Reversible electrochemical phase change in monolayer to bulk-like MoTe2 by ionic liquid gating. ACS Nano 2020, 14, 2894-2903.

    24. [24]

      Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

    25. [25]

      Chen, J. C.; Zhou, Z.; Liu, H. T.; Cheng, Z. G.; Bao, L. H.; Gao, H. J. One-dimensional weak antilocalization effect in 1T′-MoTe2 nanowires grown by chemical vapor deposition. J. Phys. Condens. Matter. 2021, 33, 185701.

    26. [26]

      Galván, D.; Rangel, R.; Adem, E. Formation of MoTe2 nanotubes by electron irradiation. Fullerene Sci. Technol. 1999, 7, 421-426.

    27. [27]

      Qiu, L. H.; Pol, V. G.; Wei, Y.; Gedanken, A. A two-step process for the synthesis of MoTe2 nanotubes: combining a sonochemical technique with heat treatment. J. Mater. Chem. 2003, 13, 2985-2988.

    28. [28]

      Zheng, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305-9315.

    29. [29]

      Zhu, H.; Wang, Q. X.; Cheng, L. X.; Addou, R.; Kim, J. Y.; Kim, M. J.; Wallace, R. M. Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano. 2017, 11, 11005-11014.

    30. [30]

      Yao, K.; Xu, Z. W.; Huang, J. F.; Ma, M.; Fu, L. C.; Shen, X. T.; Li, J.; Fu, M. S. Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small 2019, 15, 1805405.

    31. [31]

      Wang, Y. Q.; Shen, Y. L.; Xiao, X.; Dai, L. X.; Yao, S.; An, C. H. Topology conversion of 1T MoS2 to S-doped 2H-MoTe2 nanosheets with Te vacancies for enhanced electrocatalytic hydrogen evolution. Sci. China Mater. 2021, 64, 2202-2211.

    32. [32]

      Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-plane 2H-1T' MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.

    33. [33]

      Yang, J.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater. 2009, 8, 683-689.

    34. [34]

      Zhao, W. Y.; Bai, M.; Li, S. W.; Tang, X. Y.; Wu, W. W.; Sun, C. C.; Yin, X. K.; Zhou, J.; Yuan, S.; Ma, Y. Integrated thin film battery design for flexible lithium ion storage: optimizing the compatibility of the current collector-free electrodes. Adv. Funct. Mater. 2019, 1903542.

    35. [35]

      Ma, N.; Jiang, X. Y.; Zhang, L.; Wang, X. S.; Cao, Y. L.; Zhang, X. Z. Novel 2D layered molybdenum ditelluride encapsulated in few-layer graphene as high-performance anode for lithium-ion batteries. Small 2018, 14, 1703680.

    36. [36]

      Panda, M. R.; Gangwar, R.; Muthuraj, D.; Sau, S.; Pandey, D.; Banerjee, A.; Chakrabarti, A.; Sagdeo, A.; Weyland, M.; Majumder, M.; Ban, Q. L.; Mitra, S. High performance lithium-ion batteries using layered 2H-MoTe2 as anode. Small 2020, 16, 2002669.

    37. [37]

      Panda, M. R.; Raj, K. A.; Ghosh, A.; Kumar, A.; Muthuraj, D.; Sau, S.; Yu, W. Z.; Zhang, Y. P.; Sinha, A. K.; Weyland, M.; Bao, Q. L.; Mitra, S. Blocks of molybdenum ditelluride: a high rate anode for sodium-ion battery and full cell prototype study. Nano Energy 2019, 64, 103951.

    38. [38]

      Xing, L. L.; Owusu, K. A.; Liu, X. Y.; Meng, J. S.; Wang, K.; An, Q. Y.; Mai, L. Q. Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 2021, 79, 105384.

    39. [39]

      Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.

    40. [40]

      Hu, X.; Li, Y.; Zeng, G.; Jia, J. C.; Zhan, H. B.; Wen, Z. H. Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 2018, 12, 1592-1602.

    41. [41]

      Gao, Q. S.; Wang, S. N.; Fang, H. C.; Weng, J. W.; Zhang, Y. H.; Mao, J. J.; Tang, Y. One-dimensional growth of MoOx-based organic-inorganic hybrid nanowires with tunable photochromic properties. J. Mater. Chem. 2012, 22, 4709-4715.

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    4. [4]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    5. [5]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    6. [6]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    9. [9]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    11. [11]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    20. [20]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

Metrics
  • PDF Downloads(4)
  • Abstract views(177)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return