Citation: Yanmei Gan, Jiajie Zhu, Qixin Zhang, Chaoying Wang, Lunhui Guan, Yi Zhao. Boosting Stable and Fast Potassium Storage of Iron Sulfide through Rational Yolk-Shell Design and Ni Doping[J]. Chinese Journal of Structural Chemistry, ;2022, 41(5): 220503. doi: 10.14102/j.cnki.0254-5861.2022-0044 shu

Boosting Stable and Fast Potassium Storage of Iron Sulfide through Rational Yolk-Shell Design and Ni Doping

  • Corresponding author: Yi Zhao, ifeyzhao@fjnu.edu.cn
  • Received Date: 28 February 2022
    Accepted Date: 4 April 2022

Figures(5)

  • Metal sulfides have been regarded as promising anodes for potassium-ion batteries (PIBs) due to their high theoretical capacities, while the performance is limited by their intrinsic poor conductivity and large volume fluctuation during the insertion/extraction of large potassium ion. Herein, the battery performance of iron sulfide anode is significantly enhanced through yolk-shell (Y-S) structure design and nickel doping, aiming to realize good structure stability and superior electron/ion transportation. For potassium storage, as-prepared Y-S Ni-FeS2@C shows excellent cyclic performance and sustains high capacities of 328 mA h g-1 after 100 cycles at 0.2 A g-1 and 226 mA h g-1 after 1000 cycles at 1 A g-1. Especially, it displays a superior rate capacity of 200 mA h g-1 at 20 A g-1, higher than that of Y-S FeS2@C and most as-reported metal sulfide anodes for PIBs. The experimental analysis and theoretical calculation illuminate the effect of Ni-doping on decreasing the particle size of iron sulfide and enhancing the ion/electron transport ability, thus accounting for the exceptional rate capability of Y-S Ni-FeS2@C composite.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.  doi: 10.1038/451652a

    2. [2]

      Zeng, X. Q.; Li, M.; Abd El-Hady, D.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

    3. [3]

      Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.  doi: 10.1002/adma.201800561

    4. [4]

      Chen, M.; Wang, E.; Liu, Q.; Guo, X.; Chen, W.; Chou, S. L.; Dou, S. X. Recent progress on iron- and manganese-based anodes for sodiumion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163-179.  doi: 10.1016/j.ensm.2019.03.030

    5. [5]

      Liu, Y.; Yang, C.; Zhang, Q.; Liu, M. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66-96.  doi: 10.1016/j.ensm.2019.01.001

    6. [6]

      Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358-6466.

    7. [7]

      Cao, J.; Xie, Y.; Yang, Y.; Wang, X.; Li, W.; Zhang, Q.; Ma, S.; Cheng, S.; Lu, B. Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-enriched SEI. Adv. Sci. 2022, 202104689.

    8. [8]

      Dhir, S.; Wheeler, S.; Capone, I.; Pasta, M. Outlook on K-ion batteries. Chem. 2020, 6, 2442-2460.  doi: 10.1016/j.chempr.2020.08.012

    9. [9]

      Zhang, W. C.; Yiu, L.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, 7412.  doi: 10.1126/sciadv.aav7412

    10. [10]

      Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for Kion batteries. Adv. Energy Mater. 2017, 8, 1702384.

    11. [11]

      Chen, M.; Zhao, J. M.; Sun, C. F. High-volumetric-capacity WSe2 anode for potassium-ion batteries. Chin. J. Struct. Chem. 2021, 40, 926-932.

    12. [12]

      Pan, Q.; Tong, Z.; Su, Y.; Qin, S.; Tang, Y. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv. Funct. Mater. 2021, 31, 2103912.  doi: 10.1002/adfm.202103912

    13. [13]

      Wu, Y. H.; Zhang, C. L.; Zhao, H. P.; Lei, Y. Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2021, 15, 9506-9534.

    14. [14]

      Chen, J. W.; Chua, D. H. C.; Lee, P. S. The advances of metal sulfides and in situ characterization methods beyond Li ion batteries: sodium, potassium, and aluminum ion batteries. Small Methods 2020, 4, 1900648.  doi: 10.1002/smtd.201900648

    15. [15]

      Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.  doi: 10.1002/aenm.201601424

    16. [16]

      Xie, Y.; Cao, J.; Wang, X.; Li, W.; Deng, L.; Ma, S.; Zhang, H.; Guan, C.; Huang, W. MOF-derived bifunctional Co0. 85Se nanoparticles embedded in N-doped carbon nanosheet arrays as efficient sulfur hosts for lithium-sulfur batteries. Nano Lett. 2021, 21, 8579-8586.  doi: 10.1021/acs.nanolett.1c02037

    17. [17]

      Geng, H. Y.; Peng, Y.; Qu, L. T.; Zhang, H. J.; Wu, M. H. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 2020, 10, 1903030.  doi: 10.1002/aenm.201903030

    18. [18]

      Yang, X.; Wang, Z. D.; Fu, Y. R.; Liu, Q.; Xiao, G. Ca2Nb2O7 as a novel open-framework anode material for potassium-ion batteries. Chin. J. Struct. Chem. 2021, 40, 233-238.

    19. [19]

      Wang, C. Y.; Yao, Q. Q.; Gan, Y. M.; Zhang, Q. X.; Guan, L. H.; Zhao, Y. Monodispersed SWNTs assembled coating layer as an alternative to graphene with enhanced alkali-ion storage performance. Chin. J. Struct. Chem. 2022, 41, 2201040-2201046.

    20. [20]

      Wu, C.; Tong, X.; Ai, Y. F.; Liu, D. S.; Yu, P.; Wu, J.; Wang, Z. M. M. A review: enhanced anodes of Li/Na-ion batteries based on yolk-shell structured nanomaterials. Nano-Micro Lett. 2018, 10, 40.
       

    21. [21]

      Shi, X. L.; Gan, Y. M.; Zhang, Q. X.; Wang, C. Y.; Zhao, Y.; Guan, L. H.; Huang, W. A partial sulfuration strategy derived multi-yolk-shell structure for ultra-stable K/Na/Li-ion storage. Adv. Mater. 2021, 33, 2100837.

    22. [22]

      Zhao, Y.; Shi, X. L.; Ong, S. J. H.; Yao, Q. Q.; Chen, B.; Hou, K.; Liu, C.; Xu, Z. J.; Guan, L. H. Enhancing the charge transportation ability of yolk-shell structure for high-rate sodium and potassium storage. ACS Nano 2020, 14, 4463-4474.

    23. [23]

      Liu, S.; Li, X. Z.; Huang, B.; Yang, J. W.; Chen, Q. Q.; Li, Y. W.; Xiao, S. H. Controllable construction of yolk-shell Sn-Co@void@C and its advantages in Na-ion storage. Rare Metals 2021, 40, 2392.

    24. [24]

      Lin, L. S.; Song, J.; Yang, H. H.; Chen, X. Yolk-shell nanostructures: design, synthesis, and biomedical applications. Adv. Mater. 2018, 30, 1704639.
       

    25. [25]

      Yao, Q. Q.; Zhang, J. S.; Li, J. X.; Huang, W. J.; Hou, K.; Zhao, Y.; Guan, L. H. Yolk-shell NiSx@C nanosheets as K-ion battery anodes with high rate capability and ultralong cycle life. J. Mater. Chem. A 2019, 32, 18932.

    26. [26]

      Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

    27. [27]

      Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

    28. [28]

      Chen, B.; Chao, D. L.; Liu, E. Z.; Jaroniec, M.; Zhao, N. Q.; Qiao, S. Z. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy Environ. Sci. 2020, 13, 1096-1131.

    29. [29]

      Tan, Z.; Sharma, L.; Kakkar, R.; Meng, T.; Jiang, Y.; Cao, M. H. Arousing the reactive Fe sites in pyrite (FeS2) via integration of electronic structure reconfiguration and in situ electrochemical topotactic transformation for highly efficient oxygen evolution reaction. Inorg. Chem. 2019, 58, 7615-7627.

    30. [30]

      Li, J.; Liu, Q.; Zhang, Y.; Jiang, J.; Wu, H. B.; Yu, X. Y. Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chem. Eng. J. 2021, 421, 127776.

    31. [31]

      Fang, Y.; Yu, X. Y.; Lou, X. W. D. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 21, 1706668.
       

    32. [32]

      Xuan, S. H.; Wang, F.; Wang, Y. X. J.; Yu, J. C.; Leung, K. C. F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J. Mater. Chem. 2010, 20, 5086-5094.

    33. [33]

      Yao, Q. Q.; Gan, Y. M.; Ma, Z. J.; Qian, X. Y.; Cai, S. Z.; Zhao, Y.; Guan, L. H.; Huang, W. Approaching superior potassium storage of carbonaceous anode through a combined strategy of carbon hybridization and sulfur doping. Energy Environ. Mater. 2021, DOI:10.1002/eem2.12217.  doi: 10.1002/eem2.12217

    34. [34]

      Han, K.; Zhao, W.; Yu, Q.; Liu, Z.; Li, P.; Wang, W.; Song, L.; An, F.; Cao, P.; Qu, X. Marcasite-FeS2@carbon nanodots anchored on 3D celllike graphenic matrix for high-rate and ultrastable potassium ion storage. J. Power Sources 2020, 469, 228429.

    35. [35]

      Luo, Y.; Tao, M.; Deng, J.; Zhan, R.; Guo, B.; Ma, Q.; Aslam, M. K.; Qi, Y.; Xu, M. Nanocubes composed of FeS2@C nanoparticles as advanced anode materials for K-ion storage. Inorg. Chem. Front. 2020, 7, 394-401.

    36. [36]

      Salvati, L.; Makovsky, L. E.; Stencel, J. M.; Brown, F. R.; Hercules, D. M. Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering, and Raman spectroscopies. J. Phys. Chem. 1982, 85, 3700-3707.

    37. [37]

      Wu, H. F.; Gan, Y. M.; Yao, Q. Q.; Wang, L. P.; Wang, C. Y.; Zhang, Q. X.; Hou, K.; Zhao, Y.; Guan, L. H. Boosting the lithium and sodium storage performance of graphene-based composite via pore engineering and surface protection. Nanotechnology 2021, 32, 105402.

    38. [38]

      Zhao, Y.; Zhu, J.; Ong, S. J. H.; Yao, Q.; Shi, X.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.
       

    39. [39]

      Yang, S. H.; Park, S. K.; Park, G. D.; Kim, J. H.; Kang, Y. C. Rational synthesis of uniform yolk-shell Ni-Fe bimetallic sulfide nanoflakes@porous carbon nanospheres as advanced anodes for high-performance potassium-/sodium-ion batteries. Chem. Eng. J. 2021, 417, 127963.

    40. [40]

      Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruna, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.

    41. [41]

      Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 2017, 16, 454.
       

    42. [42]

      Li, D.; Dai, L.; Ren, X.; Ji, F.; Sun, Q.; Zhang, Y.; Ci, L. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 2021, 14, 424-436.

    43. [43]

      Shen, Z.; Cao, L.; Rahn, C. D.; Wang, C. Y. Least squares galvanostatic intermittent titration technique (LS-GITT) for accurate solid phase diffusivity measurement. J. Electrochem. Soc. 2013, 160, A1842-A1846.

    44. [44]

      Li, W. D.; Wang, D. Z.; Gong, Z. J.; Yin, Z. M.; Guo, X. S.; Liu, J.; Mao, C. M.; Zhang, Z. H.; Li, G. C. A robust strategy for engineering Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2 nanosheets for superior potassium-ion storage. ACS Nano 2020, 14, 16046-16056.

  • 加载中
    1. [1]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    2. [2]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    5. [5]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    6. [6]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    7. [7]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    8. [8]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    9. [9]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    13. [13]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    14. [14]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    15. [15]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    16. [16]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    19. [19]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    20. [20]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

Metrics
  • PDF Downloads(2)
  • Abstract views(316)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return