Citation: Yue Cao, Hongqian Gou, Pengfei Zhu, Zhiliang Jin. Ingenious Design of CoAl-LDH p-n Heterojunction Based on CuI as Holes Receptor for Photocatalytic Hydrogen Evolution[J]. Chinese Journal of Structural Chemistry, ;2022, 41(6): 220607. doi: 10.14102/j.cnki.0254-5861.2022-0042 shu

Ingenious Design of CoAl-LDH p-n Heterojunction Based on CuI as Holes Receptor for Photocatalytic Hydrogen Evolution

  • Corresponding author: Zhiliang Jin, zl-jin@nun.edu.cn
  • Received Date: 27 February 2022
    Accepted Date: 6 April 2022

Figures(8)

  • Reasonable design of heterojunction can greatly improve the photocatalytic hydrogen evolution activity of materials. Herein, p-n heterojunction of 2D/3D structure is constructed by the nanosheet of CoAl-LDH and rock-like CuI. The introduction of CuI can make CoAl-LDH disperse better, which brings more reaction sites for the hydrogen evolution reaction. Meanwhile, the 2D/3D structure is conducive to the construction of p-n heterojunction between the CoAl-LDH and CuI. The optical and electrochemical properties of the material indicate that the separation and transference of photon-generated carriers are promoted by the p-n heterojunction. The activity of composite catalyst (CI-10) reaches a maximum of 3.59 mmol g−1 h−1 which is 28.5 times higher than that of CuI. Furthermore, the influence of the amount of CuI and pH value on the hydrogen evolution reaction is explored. Based on the band structures of CoAl-LDH and CuI, the mechanism of photocatalytic reaction of CI-10 is proposed. The p-n heterojunction constructed with the CuI as hole receptor provides a new way to enhance the activity of photocatalytic H2 evolution.
  • 加载中
    1. [1]

      Yan, T.; Zhang, X, J.; Liu, H.; Jin, Z, L. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chin. J. Struct. Chem. 2022, 41, 2201047-2201053.

    2. [2]

      Zhang, J. W.; Cheng, C. C.; Xing, F. S.; Chen, C.; Huang, C. J. 0D β-Ni(OH)2 nanoparticles/1D Mn0.3Cd0.7S nanorods with rich S vacancies for improved photocatalytic H2 production. Chem. Eng. J. 2021, 414, 129157.  doi: 10.1016/j.cej.2021.129157

    3. [3]

      Meng, X. Y.; Yang, J. Y.; Xu, S. M.; Zhang, C. C.; Ma, B. C.; Ding, Y. Integrating Mo2Bx (x = 1, 4) with CdS for efficient photocatalytic hydrogen production. Chem. Eng. J. 2021, 410, 128339.  doi: 10.1016/j.cej.2020.128339

    4. [4]

      Yuan, L.; Jiang, S. M.; Li, Z. Z.; Zhu, Y.; Yu, J.; Li, L.; Li, M. Z.; Tang, S.; Sheng, R. R. Photocatalyzed cascade Meerwein addition/cyclization of N-benzylacrylamides toward azaspirocycles. Org. Biomol. Chem. 2018, 16, 2406-2410.  doi: 10.1039/C8OB00132D

    5. [5]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.  doi: 10.1002/adma.202107668

    6. [6]

      Tang, S. P.; Fu, Z. H.; Li, Y.; Li, Y. J. Study on boron and fluorine-doped C3N4 as a solid activator for cyclohexane oxidation with H2O2 catalyzed by 8-quinolinolato ironIII complexes under visible light irradiation. Appl. Catal. A: Gen. 2020, 590, 117342.  doi: 10.1016/j.apcata.2019.117342

    7. [7]

      Zhong, W.; Gao, D. D.; Yu, H. G.; Fan, J. J.; Yu, J. G. Novel amorphous NiCuSx H2-evolution cocatalyst: optimizing surface hydrogen desorption for efficient photocatalytic activity. Chem. Eng. J. 2021, 419, 129652.  doi: 10.1016/j.cej.2021.129652

    8. [8]

      Chen, P.; Liu, F.; Ding, H. Z.; Chen, S.; Chen, L.; Li, Y. J.; Au, C. T.; Yin, S. F. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B Environ. 2019, 252, 33-40.  doi: 10.1016/j.apcatb.2019.04.006

    9. [9]

      Tang, N. M.; Li, Y. J.; Chen, F. T.; Han, Z. Y. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. RSC Adv. 2018, 8, 42233-42245.  doi: 10.1039/C8RA08008A

    10. [10]

      Lin, X.; Du, S. W.; Li, C. H.; Li, G. J.; Li, Y. J.; Chen, F. T.; Fang, P. F. Consciously constructing the robust NiS/g-C3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal. Lett. 2020, 150, 1898-1908.  doi: 10.1007/s10562-020-03118-x

    11. [11]

      Wang, P.; Yang, M.; Tang, S. P.; Chen, F. T.; Li, Y. J. Preparation of cellular C3N4/CoSe2/GA composite photocatalyst and its CO2 reduction activity. Chem. J. Chin. U. 2021, 42, 1924-1932.

    12. [12]

      Jin, Z. L.; Li, Y. B.; Hao, X. Q. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 1912033.

    13. [13]

      Pan, J. W.; Guan, Z. J.; Yang, J. J.; Li, Q. Y. Facile fabrication of ZnIn2S4/SnS2 3D heterostructure for efficient visible-light photocatalytic reduction of Cr(VI). Chin. J. Catal. 2020, 41, 200-208.  doi: 10.1016/S1872-2067(19)63422-4

    14. [14]

      Wang, M.; Zhang, G. X.; Guan, Z. J.; Yang, J. J.; Li, Q. Y. Photocatalytic hydrogen evolution: spatially separating redox centers and photothermal effect synergistically boosting the photocatalytic hydrogen evolution of ZnIn2S4 nanosheets. Small 2021, 17, 2170074.  doi: 10.1002/smll.202170074

    15. [15]

      Liu, J. F.; Wang, P.; Fan, J. J.; Yu, H. G.; Yu, J. G. In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustainable Chem. Eng. 2021, 9, 3828-3837.  doi: 10.1021/acssuschemeng.0c08903

    16. [16]

      Zhang, J. Y.; Liao, H. G.; Sun, S. G. Construction of 1D/1D WO3 nanorod/TiO2 nanobelt hybrid heterostructure for photocatalytic application. Chin. J. Struct. Chem. 2020, 39, 1019-1028.

    17. [17]

      Geng, J. H.; Zhao, L. L.; Wang, M. M.; Dong, G. H.; Ho, W. K. The photocatalytic NO-removal activity of g-C3N4 significantly enhanced by the synergistic effect of Pd0 nanoparticles and N vacancies. Environ. Sci. : Nano. 2022, 9, 742-750.  doi: 10.1039/D1EN00937K

    18. [18]

      Liu, J. L.; Dong, G. H.; Jing, J.; Zhang, S. Y.; Huang, Y.; Ho, W. K. Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. Environ. Sci. : Nano. 2021, 8, 3846-3854.  doi: 10.1039/D1EN00832C

    19. [19]

      Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys. -Chim. Sin. 2021, 37, 2008030.

    20. [20]

      Li, X. B.; Liu, J. Y.; Huang, J. T.; He, C. Z.; Feng, Z. J.; Chen, Z.; Wan, L. Y.; Deng, F. All organic S-scheme heterojunction PDI-Ala/S-C3N4 photocatalyst with enhanced photocatalytic performance. Acta Phys. -Chim. Sin. 2021, 37, 2010030.

    21. [21]

      Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. -Chim. Sin. 2021, 37, 2010059.

    22. [22]

      Liu, C.; Mao, S.; Shi, M. X.; Wang, F. Y.; Xia, M. Z.; Chen, Q.; Ju, X. H. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 2021, 420, 126613.  doi: 10.1016/j.jhazmat.2021.126613

    23. [23]

      Xia, S. J.; Zhang, G. H.; Gao, Z. Y.; Meng, Y.; Xie, B.; Lu, H. F.; Ni, Z. M. 3D hollow Bi2O3@CoAl-LDHs direct Z-scheme heterostructure for visible-light-driven photocatalytic ammonia synthesis. J. Colloid Interface Sci. 2021, 604, 798-809.  doi: 10.1016/j.jcis.2021.07.063

    24. [24]

      Li, H. Y.; Hao, X. Q.; Liu, Y.; Li, Y. B.; Jin, Z. L. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 572, 62-73.  doi: 10.1016/j.jcis.2020.03.052

    25. [25]

      Zou, Z.; Wu, L.; Yang, F. Q.; Cao, C. L.; Meng, Q. G.; Luo, J. H.; Zhou, W. Z.; Tong, Z. K.; Chen, J. W.; Chen, S. X.; Zhou, S. D.; Wang, J.; Deng, S. G. Delicate tuning of the Ni/Co ratio in bimetal layered double hydroxides for efficient N2 electroreduction. ChemSusChem 2022, 15, e202200127.

    26. [26]

      Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 7, 4124-4155.

    27. [27]

      Sun, M. J.; Hu, J. Y.; Zhai, C. Y.; Zhu, M. S.; Pan, J. G. CuI as hole-transport channel for enhancing photoelectrocatalytic activity by constructing CuI/BiOI heterojunction. ACS Appl. Mater. Interfaces 2017, 9, 13223-13230.  doi: 10.1021/acsami.7b01840

    28. [28]

      Jin, Z. L.; Zhang, L. J.; Wang, G. R.; Li, Y. B.; Wang, Y. B. Graphdiyne formed S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution over rational design novel CuIGD/g-C3N4 composite. Sustain. Energy Fuels 2020, 4, 5088-5101.  doi: 10.1039/D0SE01011A

    29. [29]

      Fu, J. W.; Xu, Q. L.; Low, J. X.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556-565.  doi: 10.1016/j.apcatb.2018.11.011

    30. [30]

      Tao, J. N.; Yu, X. H.; Liu, Q. Q.; Liu, G. W.; Tang, H. Internal electric field induced S-scheme heterojunction MoS2/CoAl-LDH for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 585, 470-479.  doi: 10.1016/j.jcis.2020.10.028

    31. [31]

      Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410-12413.  doi: 10.1039/C7CC07515D

    32. [32]

      Wu, Y. L.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. NiAl-LDH in-situ derived Ni2P and ZnCdS nanoparticles ingeniously constructed S-scheme heterojunction for photocatalytic hydrogen evolution. ChemCatChem. 2022, 14, e202101656.

    33. [33]

      Han, Z. Y.; Li, Y. J.; Chen, F, T.; Tang, S. P.; Wang, P. Preparation of ZnO/Ag2O nanofibers by coaxial electrospinning and study of their photocatalytic properties. Chem. J. Chin. U. 2020, 2, 308-316.

    34. [34]

      Lalitha, K.; Sadanandam, G.; Kumari, V, D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N, Y. Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J. Phys. Chem. C 2010, 114, 22181-22189.  doi: 10.1021/jp107405u

    35. [35]

      Zhang, Y. H.; Li, Y. L.; Jiu, B. B.; Gong, F. L.; Chen, J. L.; Fang, S. M.; Zhang, H. L. Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles. Nanotechnology 2019, 30, 145401.  doi: 10.1088/1361-6528/aafccb

    36. [36]

      Sun, D. F.; Huang, C. C.; Yuan, Y.; Ma, Y. L.; Hao, H.; Li, R. X.; Xu, B. S. Synthesis and photocatalytic activity of BiOBr hierarchical structures constructed by porous nanosheets with exposed (110) facets. Catal. Today 2019, 335, 429-436.  doi: 10.1016/j.cattod.2019.01.035

    37. [37]

      Wang, Y. P.; Hao, X. Q.; Zhang, L. J.; Jin, Z. L.; Zhao, T. S. Amorphous Co3S4 nanoparticle-modified tubular g-C3N4 forms step-scheme heterojunctions for photocatalytic hydrogen production. Catal. Sci. Technol. 2021, 11, 943.  doi: 10.1039/D0CY02009E

    38. [38]

      Li, Y. B.; Wang, G. R.; Wang, Y. B.; Jin, Z. L. Phosphating 2D CoAl- LDH anchored on 3D self-assembled NiTiO3 hollow rod for efficient hydrogen evolution. Catal. Sci. Technol. 2020, 10, 2931-2947.  doi: 10.1039/D0CY00087F

    39. [39]

      Yan, T.; Liu, H.; Jin, Z. L. Graphdiyne based ternary GD-CuI-NiTiO3 S-scheme heterjunction photocatalyst for hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 24896-24906.  doi: 10.1021/acsami.1c04874

    40. [40]

      Dong, H. J.; Zuo, Y.; Song, N.; Hong, S. H.; Xiao, M. Y.; Zhu, D. Q.; Sun, J. X.; Chen, G.; Li, C. M. Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl. Catal. B Environ. 2021, 287, 119954.  doi: 10.1016/j.apcatb.2021.119954

    41. [41]

      Li, C. M.; Wu, H. H.; Zhu, D. Q.; Zhou, T. X.; Yan, M.; Chen, G.; Sun, J. X.; Dai, G.; Ge, F.; Dong, H. J. High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 297, 120433.  doi: 10.1016/j.apcatb.2021.120433

    42. [42]

      Liu, Z. P.; Wang, K. W.; Li, Y. J.; Yuan, S. S.; Huang, G. Q.; Li, X. T.; Li, N. Activation engineering on metallic 1T-MoS2 by constructing in-plane heterostructure for efficient hydrogen generation. Appl. Catal. B Environ. 2022, 300, 120696.  doi: 10.1016/j.apcatb.2021.120696

    43. [43]

      Wang, H. L.; Cai, Y.; Zhou, J.; Fang, J.; Yang, Y. Crystallization- mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance. Appl. Surf. Sci. 2017, 402, 31-40.  doi: 10.1016/j.apsusc.2017.01.069

    44. [44]

      Jin, Z. L.; Cao, Y. Cube Cu2O modified CoAL-LDH p-n heterojunction for photocatalytic hydrogen evolution. Int. J. Energy Res. 2021, 45, 19014-19027.  doi: 10.1002/er.7102

  • 加载中
    1. [1]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    2. [2]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    3. [3]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    9. [9]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    14. [14]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    15. [15]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    17. [17]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    18. [18]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    19. [19]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    20. [20]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

Metrics
  • PDF Downloads(11)
  • Abstract views(566)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return