Citation: Xuesheng Yan, Daijie Deng, Suqin Wu, Henan Li, Li Xu. Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts[J]. Chinese Journal of Structural Chemistry, ;2022, 41(7): 220700. doi: 10.14102/j.cnki.0254-5861.2022-0036 shu

Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts






  • Author Bio: Xuesheng Yan is a visiting scholar at Nanyang Technological University in Singapore. He is mainly engaged in the research about the energy efficient utilization, application and popularization of energy-saving technology, energy-saving technology of boiler combustion in power plant and numerical simulation of wind power generation equipment
    Daijie Deng received her master's degree from Jiangsu University in 2020. She is currently studying for her PhD degree at Jiangsu University. Her main research work is the design and construction of non-noble metal based electrocatalysts derived from waste agricultural biomass and the practical applications in metal-air batteries
    Suqin Wu received her bachelor's degree from Anhui University of Science and Technology in 2020. She is currently studying for her master's degree at Jiangsu University. Her main research work is the selective regulation of electron pathways of non-noble metal based electrocatalysts during oxygen reduction reactions
    Henan Li is a professor at Jiangsu University. He mainly engaged in the controlled synthesis of functional nanomaterials and the application in photo/electrochemical fields. (Ⅰ) Research on photoelectric analysis methods for environmental pollutants and pathogenic viruses, focusing on the construction of photoelectric sensing interfaces and the application of novel photoelectric nanomaterials in analytical chemistry. (Ⅱ) In view of the low activity and low stability of non-noble metal catalytic materials in the actual working state of batteries, hierarchical transition metal-based electrocatalysts were proposed to explore the effective strategies of constructing high-performance cathode catalysts and electrode structures in metal-air battery
    Li Xu is director of the Chemical Energy Research Institute at the Energy Research Institute of Jiangsu University. Her research focuses on the application of high-efficiency oxygen reduction electrocatalytic catalysts in clean energy: (Ⅰ) Preparation of different non-metallic atom doped carbon nitride materials. (Ⅱ) The study of the activity and selectivity of electrocatalytic materials during oxygen reduction reaction via electrochemical methods. (Ⅲ) The mechanism researches of oxygen reduction reaction and determination of the active position of electrocatalytic materials via numerous characterization technologies
  • Corresponding author: Li Xu, xulichem@ujs.edu.cn
  • Received Date: 20 February 2022
    Accepted Date: 28 March 2022
    Available Online: 7 April 2022

Figures(7)

  • With the increasing demand for energy, various emerging energy storage/conversion technologies have gradually penetrated human life, providing numerous conveniences. The practical application efficiency is often affected by the slow kinetics of hydrogen or oxygen electrocatalytic reactions (hydrogen evolution and oxidation reactions, oxygen evolution and reduction reactions) among the emerging devices. Therefore, the researchers devote to finding cost-effective electrocatalysts. Non-noble metal catalysts have low cost and good catalytic activity, but poor stability, agglomeration, dissolution, and other problems will occur after a long cycle, such as transition metal oxides and carbides. Transition metal nitrides (TMNs) stand out among all kinds of non-noble metal catalysts because of the intrinsic platinum-like electrocatalytic activities, relatively high conductivity, and wide range of tunability. In this review, the applications of TMNs in electrocatalytic fields are summarized based on the number of metals contained in TMNs. The practical application potentials of TMNs in fuel cell, water splitting, zinc-air battery and other electrochemical energy storage/conversion devices are also listed. Finally, the design strategies and viewpoints of TMNs-based electrocatalyst are summarized. The potential challenges of TMNs-based electrocatalyst in the development of electrocatalytic energy devices in the future are prospected.
  • 加载中
    1. [1]

      Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 2, 834-881.

    2. [2]

      Zhang, J. Q.; Shang, X.; Ren, H.; Chi, J. Q.; Dong, B.; Liu, C. G.; Chai, Y. M. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107.  doi: 10.1002/adma.201905107

    3. [3]

      Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D.; Zhang, S. Q. Engineering crystallinity and oxygen vacancies of Co(Ⅱ) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 2101239.

    4. [4]

      Dong, B.; Xie, J. Y.; Wang, N.; Gao, W. K.; Ma, Yu.; Chen, T. S.; Yan, X. T.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energ. 2020, 157, 415-423.  doi: 10.1016/j.renene.2020.05.057

    5. [5]

      Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.  doi: 10.1016/j.apcatb.2020.118959

    6. [6]

      Tian, Y. H.; Xu, L.; Li, M.; Yuan, D.; Liu, X. H.; Qian, J. C.; Dou, Y. H.; Qiu, J. X.; Zhang, S. Q. Heterostructure CoS/CoO double active centers supported on N-doped graphene: interface engineering for bifunctional oxygen catalysis in rechargeable Zn-air batteries. Nano-Micro. Lett. 2021, 13, 3.  doi: 10.1007/s40820-020-00526-x

    7. [7]

      Zhang, W.; Lai, W. Z.; Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717-3797.  doi: 10.1021/acs.chemrev.6b00299

    8. [8]

      Zhang, B. Q.; Wang, S. Y.; Fan, W. J.; Ma, W. G.; Liang, Z. X.; Shi, J. Y.; Liao, S. J.; Li, C. Photoassisted oxygen reduction reaction in H2-O2 fuel cells. Angew. Chem. Int. Ed. 2016, 55, 14748-14751.  doi: 10.1002/anie.201607118

    9. [9]

      Fan, R. Y.; Zhou, Y. N.; Li, M. X.; Xie, J. Y.; Yu, W. L.; Chi, J. Q.; Wang, L.; Yu, J. F.; Chai, Y. M.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943.  doi: 10.1016/j.cej.2021.131943

    10. [10]

      Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, L.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.  doi: 10.1016/j.cej.2021.134040

    11. [11]

      Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322-333.  doi: 10.1039/C8EE03276A

    12. [12]

      Puerto, A. P.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A. Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515-11529.  doi: 10.1021/acscatal.9b03359

    13. [13]

      Wang, Z. L.; Bao, J.; Liu, W. J.; Xu, L.; Hu, Y. M.; Guan, M. L.; Zhou, M.; Li, H. M. Strong electronic coupled FeNi3/Fe2(MoO4)3 nanohybrids for enhancing the electrocatalytic activity for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 2791-2798.  doi: 10.1039/D0QI00525H

    14. [14]

      Xu, L.; Wang, C.; Deng, D. J.; Tian, Y. H.; He, X. Y.; Lu, G. F.; Qian, J. C.; Yuan, S. Q.; Li, H. N. Cobalt oxide nanoparticles/nitrogen-doping graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 2019, 8, 343-350.

    15. [15]

      Deng, D. J.; Tian, Y. H.; Li, H. P.; Li, H. N.; Xu, L.; Qian, J. C.; Li, H. M.; Zhang, Q. Electrospun Fe, N co-doped porous carbon nanofibers with Fe4N species as a highly efficient oxygen reduction catalyst for rechargeable zinc-air batteries. Appl. Surf. Sci. 2019, 492, 417-425.  doi: 10.1016/j.apsusc.2019.06.237

    16. [16]

      Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Xu, L.; Guan, M. L.; Qiu, J. X.; Huang, Y. P.; Bao, J.; Li, H. M. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorg. Chem. Front. 2019, 6, 1890-1896.  doi: 10.1039/C9QI00404A

    17. [17]

      Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. C.; Shao, H. Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.  doi: 10.1002/adma.201806296

    18. [18]

      Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 1703614.

    19. [19]

      Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.  doi: 10.1021/acs.chemrev.7b00776

    20. [20]

      Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313-2339.  doi: 10.1021/acs.chemrev.7b00335

    21. [21]

      Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y.; Recent advances in materials and design of electrochemically recharge-able zinc-air batteries. Small 2018, 1801929.

    22. [22]

      Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.  doi: 10.1002/adma.201703691

    23. [23]

      Zheng, J. F.; Zhang, W. F.; Zhang, J. X.; Lv, M. Y.; Li, S. L.; Song, H. Y.; Cui, Z. M.; Du, L.; Liao, S. J. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 2020, 8, 20803-20818.  doi: 10.1039/D0TA06995G

    24. [24]

      Theerthagiria, J.; Jun Lee, S.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805.  doi: 10.1016/j.cossms.2020.100805

    25. [25]

      Peng, X.; Pi, C.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366-381.  doi: 10.1039/C8SE00525G

    26. [26]

      Han, N.; Liu, P. Y.; Jiang, J.; Ai, L. H.; Shao, Z. P.; Liu, S. M. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912-19933.  doi: 10.1039/C8TA06529B

    27. [27]

      Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354-1390.  doi: 10.1039/D0CS00415D

    28. [28]

      Dong, S. M.; Chen, X.; Zhang, X. Y.; Cui, G. L. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946-1956.  doi: 10.1016/j.ccr.2012.12.012

    29. [29]

      Dubal, D. P.; Chodankar, N. R.; Qiao, S. Z. Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor. Small 2018, 15, 1804104.

    30. [30]

      Chen, Y. K.; Yu, J. Y.; Jia, J.; Liu, F.; Zhang, Y. W.; Xiong, G. W.; Zhang, R. T.; Yang, R. Q.; Sun, D. H.; Liu, H.; Zhou, W. J. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting. Appl. Catal., B 2020, 272, 118956.  doi: 10.1016/j.apcatb.2020.118956

    31. [31]

      Yang, Z.; Hao, J. Progress in pulsed laser deposited two dimensional layered materials for device applications. J. Mater. Chem. C 2016, 4, 8859-8878.  doi: 10.1039/C6TC01602B

    32. [32]

      Ramesh, R.; Nandi, D. K.; Kim, T. H.; Cheon, T.; Oh, J.; Kim, S. H.; Atomic-layer-deposited MoNx thin films on three-dimensional Ni foam as efficient catalysts for the electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 17321-17332.  doi: 10.1021/acsami.8b20437

    33. [33]

      Bereznai, M.; Tóth, Z.; Caricato, A. P.; Fernández, M.; Luches, A.; Majni, G.; Mengucci, P.; Nagy, P. M.; Juhász, A.; Nánai, L. Reactive pulsed laser deposition of thin molybdenum- and tungsten-nitride films. Thin Solid Films 2005, 473, 16-23.  doi: 10.1016/j.tsf.2004.06.149

    34. [34]

      Shafiee, S. A.; Perry, S. C.; Hamzah, H. H.; Mahat, M. M.; Al-lolage, F. A.; Ramli, M. Z. Recent advances on metal nitride materials as emerging electrochemical sensors: a mini review. Electrochem. Commun. 2020, 120, 106828.  doi: 10.1016/j.elecom.2020.106828

    35. [35]

      Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu, S. C. Transition metal nitrides: activity origin, synthesis and electrocatalytic applications. Acta Phys. -Chim. Sin. 2021, 37, 2009099.

    36. [36]

      Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.  doi: 10.1002/advs.201500286

    37. [37]

      Han, L.; Feng, K.; Chen, Z. Self-supported cobalt nickel nitride nanowires electrode for overall electrochemical water splitting. Energy Technol. 2017, 5, 1908-1911.  doi: 10.1002/ente.201700108

    38. [38]

      Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343.  doi: 10.1038/ncomms8343

    39. [39]

      Tareen, A. K.; Priyanga, G. S.; Behara, S.; Thomas, T.; Yanga, M.; Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progr. Solid State Chem. 2019, 53, 1-26.  doi: 10.1016/j.progsolidstchem.2018.11.001

    40. [40]

      Chen, Q.; Wang, R.; Yu, M.; Zeng, Y.; Lu, F.; Kuang, X.; Lu, X.; Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 2017, 247, 666-673.  doi: 10.1016/j.electacta.2017.07.025

    41. [41]

      Sun, W. H.; Bartel, C. J.; Arca, E.; Bauers, S. R.; Matthews, B.; Orvañanos, B.; Chen, B. R.; Toney, M. F.; Schelhas, L. T.; Tumas, W.; Tate, J.; Zakutayev, A.; Lany, S.; Holder, A. M.; Ceder, G. A map of the inorganic ternary metal nitrides. Nat. Mater. 2019, 18, 732-739.  doi: 10.1038/s41563-019-0396-2

    42. [42]

      Hore, S.; Kaiser, G.; Hu, Y. S.; Schulz, A.; Konuma, M.; Gotz, G.; Sigle, W.; Verhoeven, A. Carbonization of polyethylene on gold oxide. J. Mater. Chem. 2008, 18, 5589.  doi: 10.1039/b812430b

    43. [43]

      Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2017, 1700603.

    44. [44]

      Luo, J. M.; Tian, X. L.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 9, 6165-6174.

    45. [45]

      Tang, H. B.; Luo, J. M.; Tian, X. L.; Dong, Y. Y.; Li, J.; Liu, M. R.; Liu, L. N.; Song, H. Y.; Liao, S. J. Template-free preparation of 3D porous Co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity. ACS Appl. Mater. Interfaces 2018, 10, 11604-11612.  doi: 10.1021/acsami.7b18504

    46. [46]

      Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical. J. Am. Chem. Soc. 2015, 137, 4119-4125.  doi: 10.1021/ja5119495

    47. [47]

      Zhao, D.; Cui, Z. T.; Wang, S. G.; Qin, J. W.; Cao, M. H. VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7914-7923.  doi: 10.1039/C6TA01707J

    48. [48]

      Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruna, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, 1584.  doi: 10.1126/sciadv.abj1584

    49. [49]

      Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.  doi: 10.1002/adma.202007508

    50. [50]

      Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S.; Zhang, W. J. Unconventional nickel nitride enriched with nitrogen vacancies as a high efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 2018, 5, 1800406.  doi: 10.1002/advs.201800406

    51. [51]

      Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 2016, 55, 1138-1142.  doi: 10.1002/anie.201509758

    52. [52]

      Luo, J. M.; Qiao, X. C.; Jin, J. T.; Tian, X. L.; Fana, H. B.; Yu, D. M.; Wang, W. L.; Liao, S. J.; Yu, N.; Deng, Y. J. A strategy to unlock the potential of CrN as highly active oxygen reduction reaction catalyst. J. Mater. Chem. A 2020, 8, 8575-8585.  doi: 10.1039/C9TA14085A

    53. [53]

      Xu, L.; Deng, D. J.; Tian, Y. H.; Li, H. P.; Qian, J. C.; Wu, J. C.; Li, H. N. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries. Chem. Eng. J. 2020, 127321.

    54. [54]

      Zhang, N.; Cao, L. Y.; Feng, L. L.; Huang, J. F.; Kajiyoshi, K.; Li, C. Y.; Liu, Q. Q.; Yang, D.; He, J. J.; Co, N-Codoped porous vanadium nitride nanoplates as superior bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale 2019, 11, 11542-11549.  doi: 10.1039/C9NR02637A

    55. [55]

      Tang, H. B.; Tian, X. L.; Luo, J. M.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Co-doped porous niobium nitride nanogrid as effective oxygen reduction catalyst. J. Mater. Chem. A 2017, 5, 14278-14285.  doi: 10.1039/C7TA03677A

    56. [56]

      Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water, and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electro-catalysis. Adv. Energy Mater. 2019, 9, 1902449.  doi: 10.1002/aenm.201902449

    57. [57]

      Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 2016, 128, 1-6.  doi: 10.1002/ange.201510990

    58. [58]

      Li, F.; Tian, Y. H.; Su, S. B.; Wang, C. S.; Li, D. S.; Cai, D. D.; Zhang, S. Q. Theoretical and experimental exploration of tri-metallic organic frame-works (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B 2021, 299, 120665.  doi: 10.1016/j.apcatb.2021.120665

    59. [59]

      Wang, C. S.; Chen, W. B.; Yuan, D.; Qian, S. S.; Cai, D. D.; Jiang, J. T.; Zhang, S. Q. Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 2020, 69, 104453.  doi: 10.1016/j.nanoen.2020.104453

    60. [60]

      Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F. J.; Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241-19245  doi: 10.1021/jacs.9b10809

    61. [61]

      Wu, A. Q.; Xie, Y.; Ma, H.; Tiana, C. G.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353-363.  doi: 10.1016/j.nanoen.2017.11.045

    62. [62]

      Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.  doi: 10.1002/adma.201901174

    63. [63]

      Sun, K. X.; Zhang, T.; Tan, L. M.; Zhou, D. X.; Qian, Y. Q.; Gao, X. X.; Song, F. H.; Bian, H. T.; Lu, Z.; Dang, J. S.; Gao, H.; Shaw, J.; Chen, S. T.; Ghen, G. G.; Rao, Y. Interface catalysts of Ni/Co2N for hydrogen electrochemistry. ACS Appl. Mater. Interfaces 2020, 12, 26, 29357-29364.

    64. [64]

      Li, J. L.; Kong, X. G.; Jiang, M. H.; Lei, X. D. Hierarchically structured CoN/Cu3N nanotube array supported on copper foam as efficient bifunctional electrocatalyst for overall water splitting. Inorg. Chem. Front. 2018, 5, 2906-2913.  doi: 10.1039/C8QI00860D

    65. [65]

      Dong, X.; Yan, H. J.; Jiao, Y. Q.; Guo, D. Z.; Wu, A. P.; Yang, G. C.; Shi, X.; Tian, C. G.; Fu, H. G. 3D hierarchical V-Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 15823-15830.  doi: 10.1039/C9TA04742E

    66. [66]

      Wang, C.; Lv, X. S.; Zhou, P.; Liang, X. Z.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Li, Y. J.; Whangbo, M. H.; Huang, B. B. Molybdenum nitride electrocatalysts for hydrogen evolution more efficient than platinum/carbon: Mo2N/CeO2@nickel foam. ACS Appl. Mater. Interfaces 2020, 12, 29153-29161.

    67. [67]

      Xu, L.; Sitinamaluwa, H.; Li, H. N.; Qiu, J. X.; Wang, Y. Z.; Yan, C.; Li, H. M.; Yuan, S. Q.; Zhang, S. Q. A low cost and green preparation process of α-Fe2O3 @gum arabic electrode for high performance sodium ion battery. J. Mater. Chem. A 2017, 5, 2102-2109.  doi: 10.1039/C6TA08918F

    68. [68]

      Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W.; Mai, L. Q.; Guo, S. J. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.  doi: 10.1002/adma.201803220

    69. [69]

      Cui, Z. M.; Fu, G. T.; Li, Y. T.; Goodenough, J. B. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem. Int. Ed. 2017, 56, 9901-9905.  doi: 10.1002/anie.201705778

    70. [70]

      Zhang, J.; Zhang, L.; Du, L.; Xin, H. L.; Goodenough, J. B.; Cui, Z. Composition-tunable antiperovskite CuxIn1-xNNi3 as superior electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2020, 59, 17488-17493.  doi: 10.1002/anie.202007883

    71. [71]

      Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Chen, Y. B.; Ma, N. N.; Zhou, W.; Shao, Z. P. A surface-modified antiperovskite as an electrocatalyst for water oxidation. Nat. Commun. 2018, 9, 2326.  doi: 10.1038/s41467-018-04682-y

    72. [72]

      Shein, I. R.; Ivanovskii, A. L. Electronic and elastic properties of non-oxide anti-perovskites from first principles: superconducting CdCNi3In comparison with magneticInCNi3. Phys. Rev. B 2008, 77, 104101.  doi: 10.1103/PhysRevB.77.104101

    73. [73]

      Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.  doi: 10.1063/1.2147726

    74. [74]

      Guo, H. P.; Gao, X. W.; Yu, N. F.; Zheng, Z.; Luo, W. B.; Wu, C.; Liu, H. K.; Wang, J. Z. Metallic state two-dimensional holey-structured Co3FeN nanosheets as stable and bifunctional electrocatalysts for zinc-air batteries. J. Mater. Chem. A 2019, 7, 26549-26556.  doi: 10.1039/C9TA10079B

    75. [75]

      He, X. Y.; Tian, Y. H.; Huang, Z. L.; Xu, L.; Wu, J. C.; Qian, J. C.; Zhang, J. M.; Li, H. N. Engineering the electronic states of Ni3FeN via zinc ion regulation for promoting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Mater. Chem. A 2021, 9, 2301-2307.  doi: 10.1039/D0TA10370E

    76. [76]

      Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.  doi: 10.1021/acsnano.7b05971

    77. [77]

      Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.  doi: 10.1021/acsenergylett.7b00679

    78. [78]

      Ge, H. Y.; Li, G. D.; Shen, J. X.; Ma, W. Q.; Meng, X. G.; Xu, L. Q. Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn-air battery and overall water splitting. Appl. Catal. B 2020, 275, 119104.  doi: 10.1016/j.apcatb.2020.119104

    79. [79]

      Liu, L. N.; Yan, F.; Li, K. Y.; Zhu, C. L.; Xie, Y.; Zhang, X. T.; Chen, Y. J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 1083-1091.  doi: 10.1039/C8TA10083G

    80. [80]

      Dong, Y. Y.; Deng, Y. J.; Zeng, J. H.; Song, H. Y.; Liao, S. J. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. J. Mater. Chem. A 2017, 5, 5829-5837.  doi: 10.1039/C6TA10496G

    81. [81]

      Yuan, W. Y.; Wang, S. Y.; Ma, Y. Y.; Qiu, Y.; An, Y. R.; Cheng, L. F. Interfacial engineering of cobalt nitrides and mesoporous nitrogen-doped carbon: toward efficient overall water-splitting activity with enhanced charge-transfer efficiency. ACS Energy Lett. 2020, 5, 692-700.  doi: 10.1021/acsenergylett.0c00116

    82. [82]

      Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 15, 10-17.

    83. [83]

      He, X. Y.; Tian, Y. H.; Deng, D. J.; Chen, F.; Wu, J. C.; Qian, J. C; Li, H. N.; Xu, L. Engineering anti-perovskite Ni4N/VN heterostructure with improved intrinsic interfacial charge transfer as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 2021, 9, 17007-17015.  doi: 10.1021/acssuschemeng.1c05907

    84. [84]

      Xu, L.; Wu, S. Q.; He, X. Y.; Wang, H.; Deng, D. J.; Wu, J. C.; Li, H. N. Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable Zn-air batteries. Chem. Eng. J. 2022, 437, 135291.  doi: 10.1016/j.cej.2022.135291

    85. [85]

      Zhang, J. X.; Zhao, X.; Du, L.; Li, Y. T.; Zhang, L. H.; Liao, S. J.; Goodenough, J. B.; Cui, Z. M. Antiperovskite nitrides CuNCo3-xVx: highly efficient and durable electrocatalysts for the oxygen-evolution reaction. Nano Lett. 2019, 19, 7457-7463.  doi: 10.1021/acs.nanolett.9b03168

    86. [86]

      Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.  doi: 10.1002/adma.201707512

    87. [87]

      Li, S. Q.; Sun, X.; Yao, Z. H.; Zhong, X.; Cao, Y. Y.; Liang, Y. L.; Wei, Z. Z.; Deng, S. W.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 2019, 29, 1904780.  doi: 10.1002/adfm.201904780

    88. [88]

      Kuttiyiel, K. A.; Sasaki, K.; Choi, Y. M.; Su, D.; Liu, P.; Adzic, R. R. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266-6271.  doi: 10.1021/nl303362s

    89. [89]

      Liu, F. F.; Yang, X.; Dang, D.; Tian, X. L. Engineering of hierarchical and three-dimensional architectures constructed by titanium nitride nanowire assemblies for efficient electrocatalysis. ChemElectroChem 2019, 6, 2208-2214.  doi: 10.1002/celc.201900252

    90. [90]

      Lai, S. J.; Xu, L.; Liu, H. L.; Chen, S.; Cai, R. S.; Zhang, L. J.; Theis, W.; Sun, J.; Yang, D. J.; Zhao, X. L. Controllable synthesis of CoN3 catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. J. Mater. Chem. A 2019, 7, 21884-21891.  doi: 10.1039/C9TA08134H

    91. [91]

      Kim, B. G.; Jo, C. S. Shin, J.; Mun, Y. D.; Lee, J.; Choi, J. W. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano 2017, 11, 2, 1736-1746.

    92. [92]

      Zou, H. Y.; Li, G.; Duan, L. L.; Kou, Z. K.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B 2019, 259, 118100.  doi: 10.1016/j.apcatb.2019.118100

    93. [93]

      Song, J. N.; Yu, D. H.; Wu, X. L.; Xie, D. Y.; Sun, Y.; Vishniakov, P.; Hu, F.; Li, L. L.; Li, C. S.; Maximov, M. Y.; Maximov, K. M.; Peng, S. J. Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn-air battery. Chem. Eng. J. 2022, 437, 1, 135281.

  • 加载中
    1. [1]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    2. [2]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    5. [5]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    6. [6]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    7. [7]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    8. [8]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    9. [9]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    10. [10]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    11. [11]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    12. [12]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    13. [13]

      Tao TangChen LiSipu LiZhong QiuTianqi YangBeirong YeShaojun ShiChunyang WuFeng CaoXinhui XiaMinghua ChenXinqi LiangXinping HeXin LiuYongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    16. [16]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    19. [19]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    20. [20]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

Metrics
  • PDF Downloads(6)
  • Abstract views(326)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return