Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts
- Corresponding author: Li Xu, xulichem@ujs.edu.cn
Citation:
Xuesheng Yan, Daijie Deng, Suqin Wu, Henan Li, Li Xu. Development of Transition Metal Nitrides as Oxygen and Hydrogen Electrocatalysts[J]. Chinese Journal of Structural Chemistry,
;2022, 41(7): 220700.
doi:
10.14102/j.cnki.0254-5861.2022-0036
Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 2, 834-881.
Zhang, J. Q.; Shang, X.; Ren, H.; Chi, J. Q.; Dong, B.; Liu, C. G.; Chai, Y. M. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, 1905107.
doi: 10.1002/adma.201905107
Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D.; Zhang, S. Q. Engineering crystallinity and oxygen vacancies of Co(Ⅱ) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 2101239.
Dong, B.; Xie, J. Y.; Wang, N.; Gao, W. K.; Ma, Yu.; Chen, T. S.; Yan, X. T.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Zinc ion induced three-dimensional Co9S8 nano-neuron network for efficient hydrogen evolution. Renew. Energ. 2020, 157, 415-423.
doi: 10.1016/j.renene.2020.05.057
Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.
doi: 10.1016/j.apcatb.2020.118959
Tian, Y. H.; Xu, L.; Li, M.; Yuan, D.; Liu, X. H.; Qian, J. C.; Dou, Y. H.; Qiu, J. X.; Zhang, S. Q. Heterostructure CoS/CoO double active centers supported on N-doped graphene: interface engineering for bifunctional oxygen catalysis in rechargeable Zn-air batteries. Nano-Micro. Lett. 2021, 13, 3.
doi: 10.1007/s40820-020-00526-x
Zhang, W.; Lai, W. Z.; Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
Zhang, B. Q.; Wang, S. Y.; Fan, W. J.; Ma, W. G.; Liang, Z. X.; Shi, J. Y.; Liao, S. J.; Li, C. Photoassisted oxygen reduction reaction in H2-O2 fuel cells. Angew. Chem. Int. Ed. 2016, 55, 14748-14751.
doi: 10.1002/anie.201607118
Fan, R. Y.; Zhou, Y. N.; Li, M. X.; Xie, J. Y.; Yu, W. L.; Chi, J. Q.; Wang, L.; Yu, J. F.; Chai, Y. M.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943.
doi: 10.1016/j.cej.2021.131943
Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, L.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.
doi: 10.1016/j.cej.2021.134040
Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322-333.
doi: 10.1039/C8EE03276A
Puerto, A. P.; Ng, K. L.; Fahy, K.; Goode, A. E.; Ryan, M. P.; Kucernak, A. Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515-11529.
doi: 10.1021/acscatal.9b03359
Wang, Z. L.; Bao, J.; Liu, W. J.; Xu, L.; Hu, Y. M.; Guan, M. L.; Zhou, M.; Li, H. M. Strong electronic coupled FeNi3/Fe2(MoO4)3 nanohybrids for enhancing the electrocatalytic activity for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 2791-2798.
doi: 10.1039/D0QI00525H
Xu, L.; Wang, C.; Deng, D. J.; Tian, Y. H.; He, X. Y.; Lu, G. F.; Qian, J. C.; Yuan, S. Q.; Li, H. N. Cobalt oxide nanoparticles/nitrogen-doping graphene as the highly efficient oxygen reduction electrocatalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 2019, 8, 343-350.
Deng, D. J.; Tian, Y. H.; Li, H. P.; Li, H. N.; Xu, L.; Qian, J. C.; Li, H. M.; Zhang, Q. Electrospun Fe, N co-doped porous carbon nanofibers with Fe4N species as a highly efficient oxygen reduction catalyst for rechargeable zinc-air batteries. Appl. Surf. Sci. 2019, 492, 417-425.
doi: 10.1016/j.apsusc.2019.06.237
Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Xu, L.; Guan, M. L.; Qiu, J. X.; Huang, Y. P.; Bao, J.; Li, H. M. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorg. Chem. Front. 2019, 6, 1890-1896.
doi: 10.1039/C9QI00404A
Wei, C.; Rao, R. R.; Peng, J. Y.; Huang, B. T.; Stephens, I. E. L.; Risch, M.; Xu, Z. C.; Shao, H. Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 2019, 31, 1806296.
doi: 10.1002/adma.201806296
Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 1703614.
Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
doi: 10.1021/acs.chemrev.7b00776
Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 2018, 118, 2313-2339.
doi: 10.1021/acs.chemrev.7b00335
Chen, X. C.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y.; Recent advances in materials and design of electrochemically recharge-able zinc-air batteries. Small 2018, 1801929.
Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.
doi: 10.1002/adma.201703691
Zheng, J. F.; Zhang, W. F.; Zhang, J. X.; Lv, M. Y.; Li, S. L.; Song, H. Y.; Cui, Z. M.; Du, L.; Liao, S. J. Recent advances in nanostructured transition metal nitrides for fuel cells. J. Mater. Chem. A 2020, 8, 20803-20818.
doi: 10.1039/D0TA06995G
Theerthagiria, J.; Jun Lee, S.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805.
doi: 10.1016/j.cossms.2020.100805
Peng, X.; Pi, C.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366-381.
doi: 10.1039/C8SE00525G
Han, N.; Liu, P. Y.; Jiang, J.; Ai, L. H.; Shao, Z. P.; Liu, S. M. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912-19933.
doi: 10.1039/C8TA06529B
Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354-1390.
doi: 10.1039/D0CS00415D
Dong, S. M.; Chen, X.; Zhang, X. Y.; Cui, G. L. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946-1956.
doi: 10.1016/j.ccr.2012.12.012
Dubal, D. P.; Chodankar, N. R.; Qiao, S. Z. Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor. Small 2018, 15, 1804104.
Chen, Y. K.; Yu, J. Y.; Jia, J.; Liu, F.; Zhang, Y. W.; Xiong, G. W.; Zhang, R. T.; Yang, R. Q.; Sun, D. H.; Liu, H.; Zhou, W. J. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting. Appl. Catal., B 2020, 272, 118956.
doi: 10.1016/j.apcatb.2020.118956
Yang, Z.; Hao, J. Progress in pulsed laser deposited two dimensional layered materials for device applications. J. Mater. Chem. C 2016, 4, 8859-8878.
doi: 10.1039/C6TC01602B
Ramesh, R.; Nandi, D. K.; Kim, T. H.; Cheon, T.; Oh, J.; Kim, S. H.; Atomic-layer-deposited MoNx thin films on three-dimensional Ni foam as efficient catalysts for the electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 17321-17332.
doi: 10.1021/acsami.8b20437
Bereznai, M.; Tóth, Z.; Caricato, A. P.; Fernández, M.; Luches, A.; Majni, G.; Mengucci, P.; Nagy, P. M.; Juhász, A.; Nánai, L. Reactive pulsed laser deposition of thin molybdenum- and tungsten-nitride films. Thin Solid Films 2005, 473, 16-23.
doi: 10.1016/j.tsf.2004.06.149
Shafiee, S. A.; Perry, S. C.; Hamzah, H. H.; Mahat, M. M.; Al-lolage, F. A.; Ramli, M. Z. Recent advances on metal nitride materials as emerging electrochemical sensors: a mini review. Electrochem. Commun. 2020, 120, 106828.
doi: 10.1016/j.elecom.2020.106828
Qin, R.; Wang, P. Y.; Lin, C.; Cao, F.; Zhang, J. Y.; Chen, L.; Mu, S. C. Transition metal nitrides: activity origin, synthesis and electrocatalytic applications. Acta Phys. -Chim. Sin. 2021, 37, 2009099.
Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.
doi: 10.1002/advs.201500286
Han, L.; Feng, K.; Chen, Z. Self-supported cobalt nickel nitride nanowires electrode for overall electrochemical water splitting. Energy Technol. 2017, 5, 1908-1911.
doi: 10.1002/ente.201700108
Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343.
doi: 10.1038/ncomms8343
Tareen, A. K.; Priyanga, G. S.; Behara, S.; Thomas, T.; Yanga, M.; Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progr. Solid State Chem. 2019, 53, 1-26.
doi: 10.1016/j.progsolidstchem.2018.11.001
Chen, Q.; Wang, R.; Yu, M.; Zeng, Y.; Lu, F.; Kuang, X.; Lu, X.; Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 2017, 247, 666-673.
doi: 10.1016/j.electacta.2017.07.025
Sun, W. H.; Bartel, C. J.; Arca, E.; Bauers, S. R.; Matthews, B.; Orvañanos, B.; Chen, B. R.; Toney, M. F.; Schelhas, L. T.; Tumas, W.; Tate, J.; Zakutayev, A.; Lany, S.; Holder, A. M.; Ceder, G. A map of the inorganic ternary metal nitrides. Nat. Mater. 2019, 18, 732-739.
doi: 10.1038/s41563-019-0396-2
Hore, S.; Kaiser, G.; Hu, Y. S.; Schulz, A.; Konuma, M.; Gotz, G.; Sigle, W.; Verhoeven, A. Carbonization of polyethylene on gold oxide. J. Mater. Chem. 2008, 18, 5589.
doi: 10.1039/b812430b
Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2017, 1700603.
Luo, J. M.; Tian, X. L.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 9, 6165-6174.
Tang, H. B.; Luo, J. M.; Tian, X. L.; Dong, Y. Y.; Li, J.; Liu, M. R.; Liu, L. N.; Song, H. Y.; Liao, S. J. Template-free preparation of 3D porous Co-doped VN nanosheet-assembled microflowers with enhanced oxygen reduction activity. ACS Appl. Mater. Interfaces 2018, 10, 11604-11612.
doi: 10.1021/acsami.7b18504
Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical. J. Am. Chem. Soc. 2015, 137, 4119-4125.
doi: 10.1021/ja5119495
Zhao, D.; Cui, Z. T.; Wang, S. G.; Qin, J. W.; Cao, M. H. VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7914-7923.
doi: 10.1039/C6TA01707J
Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruna, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, 1584.
doi: 10.1126/sciadv.abj1584
Jin, H. Y.; Wang, X. S.; Tang, C.; Vasileff, A.; Li, L. Q.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.
doi: 10.1002/adma.202007508
Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S.; Zhang, W. J. Unconventional nickel nitride enriched with nitrogen vacancies as a high efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 2018, 5, 1800406.
doi: 10.1002/advs.201800406
Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 2016, 55, 1138-1142.
doi: 10.1002/anie.201509758
Luo, J. M.; Qiao, X. C.; Jin, J. T.; Tian, X. L.; Fana, H. B.; Yu, D. M.; Wang, W. L.; Liao, S. J.; Yu, N.; Deng, Y. J. A strategy to unlock the potential of CrN as highly active oxygen reduction reaction catalyst. J. Mater. Chem. A 2020, 8, 8575-8585.
doi: 10.1039/C9TA14085A
Xu, L.; Deng, D. J.; Tian, Y. H.; Li, H. P.; Qian, J. C.; Wu, J. C.; Li, H. N. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries. Chem. Eng. J. 2020, 127321.
Zhang, N.; Cao, L. Y.; Feng, L. L.; Huang, J. F.; Kajiyoshi, K.; Li, C. Y.; Liu, Q. Q.; Yang, D.; He, J. J.; Co, N-Codoped porous vanadium nitride nanoplates as superior bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Nanoscale 2019, 11, 11542-11549.
doi: 10.1039/C9NR02637A
Tang, H. B.; Tian, X. L.; Luo, J. M.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Co-doped porous niobium nitride nanogrid as effective oxygen reduction catalyst. J. Mater. Chem. A 2017, 5, 14278-14285.
doi: 10.1039/C7TA03677A
Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Synergistically tuning water, and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electro-catalysis. Adv. Energy Mater. 2019, 9, 1902449.
doi: 10.1002/aenm.201902449
Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem. Int. Ed. 2016, 128, 1-6.
doi: 10.1002/ange.201510990
Li, F.; Tian, Y. H.; Su, S. B.; Wang, C. S.; Li, D. S.; Cai, D. D.; Zhang, S. Q. Theoretical and experimental exploration of tri-metallic organic frame-works (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Appl. Catal. B 2021, 299, 120665.
doi: 10.1016/j.apcatb.2021.120665
Wang, C. S.; Chen, W. B.; Yuan, D.; Qian, S. S.; Cai, D. D.; Jiang, J. T.; Zhang, S. Q. Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy 2020, 69, 104453.
doi: 10.1016/j.nanoen.2020.104453
Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F. J.; Abruña, H. D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241-19245
doi: 10.1021/jacs.9b10809
Wu, A. Q.; Xie, Y.; Ma, H.; Tiana, C. G.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353-363.
doi: 10.1016/j.nanoen.2017.11.045
Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.
doi: 10.1002/adma.201901174
Sun, K. X.; Zhang, T.; Tan, L. M.; Zhou, D. X.; Qian, Y. Q.; Gao, X. X.; Song, F. H.; Bian, H. T.; Lu, Z.; Dang, J. S.; Gao, H.; Shaw, J.; Chen, S. T.; Ghen, G. G.; Rao, Y. Interface catalysts of Ni/Co2N for hydrogen electrochemistry. ACS Appl. Mater. Interfaces 2020, 12, 26, 29357-29364.
Li, J. L.; Kong, X. G.; Jiang, M. H.; Lei, X. D. Hierarchically structured CoN/Cu3N nanotube array supported on copper foam as efficient bifunctional electrocatalyst for overall water splitting. Inorg. Chem. Front. 2018, 5, 2906-2913.
doi: 10.1039/C8QI00860D
Dong, X.; Yan, H. J.; Jiao, Y. Q.; Guo, D. Z.; Wu, A. P.; Yang, G. C.; Shi, X.; Tian, C. G.; Fu, H. G. 3D hierarchical V-Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 15823-15830.
doi: 10.1039/C9TA04742E
Wang, C.; Lv, X. S.; Zhou, P.; Liang, X. Z.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Li, Y. J.; Whangbo, M. H.; Huang, B. B. Molybdenum nitride electrocatalysts for hydrogen evolution more efficient than platinum/carbon: Mo2N/CeO2@nickel foam. ACS Appl. Mater. Interfaces 2020, 12, 29153-29161.
Xu, L.; Sitinamaluwa, H.; Li, H. N.; Qiu, J. X.; Wang, Y. Z.; Yan, C.; Li, H. M.; Yuan, S. Q.; Zhang, S. Q. A low cost and green preparation process of α-Fe2O3 @gum arabic electrode for high performance sodium ion battery. J. Mater. Chem. A 2017, 5, 2102-2109.
doi: 10.1039/C6TA08918F
Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W.; Mai, L. Q.; Guo, S. J. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.
doi: 10.1002/adma.201803220
Cui, Z. M.; Fu, G. T.; Li, Y. T.; Goodenough, J. B. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries. Angew. Chem. Int. Ed. 2017, 56, 9901-9905.
doi: 10.1002/anie.201705778
Zhang, J.; Zhang, L.; Du, L.; Xin, H. L.; Goodenough, J. B.; Cui, Z. Composition-tunable antiperovskite CuxIn1-xNNi3 as superior electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2020, 59, 17488-17493.
doi: 10.1002/anie.202007883
Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Chen, Y. B.; Ma, N. N.; Zhou, W.; Shao, Z. P. A surface-modified antiperovskite as an electrocatalyst for water oxidation. Nat. Commun. 2018, 9, 2326.
doi: 10.1038/s41467-018-04682-y
Shein, I. R.; Ivanovskii, A. L. Electronic and elastic properties of non-oxide anti-perovskites from first principles: superconducting CdCNi3In comparison with magneticInCNi3. Phys. Rev. B 2008, 77, 104101.
doi: 10.1103/PhysRevB.77.104101
Takenaka, K.; Takagi, H. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 2005, 87, 261902.
doi: 10.1063/1.2147726
Guo, H. P.; Gao, X. W.; Yu, N. F.; Zheng, Z.; Luo, W. B.; Wu, C.; Liu, H. K.; Wang, J. Z. Metallic state two-dimensional holey-structured Co3FeN nanosheets as stable and bifunctional electrocatalysts for zinc-air batteries. J. Mater. Chem. A 2019, 7, 26549-26556.
doi: 10.1039/C9TA10079B
He, X. Y.; Tian, Y. H.; Huang, Z. L.; Xu, L.; Wu, J. C.; Qian, J. C.; Zhang, J. M.; Li, H. N. Engineering the electronic states of Ni3FeN via zinc ion regulation for promoting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Mater. Chem. A 2021, 9, 2301-2307.
doi: 10.1039/D0TA10370E
Gu, Y.; Chen, S.; Ren, J.; Jia, Y. A.; Chen, C. M.; Komarneni, S.; Yang, D. J.; Yao, X. D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting. ACS Nano 2018, 12, 245-253.
doi: 10.1021/acsnano.7b05971
Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.
doi: 10.1021/acsenergylett.7b00679
Ge, H. Y.; Li, G. D.; Shen, J. X.; Ma, W. Q.; Meng, X. G.; Xu, L. Q. Co4N nanoparticles encapsulated in N-doped carbon box as tri-functional catalyst for Zn-air battery and overall water splitting. Appl. Catal. B 2020, 275, 119104.
doi: 10.1016/j.apcatb.2020.119104
Liu, L. N.; Yan, F.; Li, K. Y.; Zhu, C. L.; Xie, Y.; Zhang, X. T.; Chen, Y. J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 1083-1091.
doi: 10.1039/C8TA10083G
Dong, Y. Y.; Deng, Y. J.; Zeng, J. H.; Song, H. Y.; Liao, S. J. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide. J. Mater. Chem. A 2017, 5, 5829-5837.
doi: 10.1039/C6TA10496G
Yuan, W. Y.; Wang, S. Y.; Ma, Y. Y.; Qiu, Y.; An, Y. R.; Cheng, L. F. Interfacial engineering of cobalt nitrides and mesoporous nitrogen-doped carbon: toward efficient overall water-splitting activity with enhanced charge-transfer efficiency. ACS Energy Lett. 2020, 5, 692-700.
doi: 10.1021/acsenergylett.0c00116
Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Bifunctional oxygen electrodes of homogeneous Co4N nanocrystals@N-doped carbon hybrids for rechargeable Zn-air batteries. Carbon 2019, 15, 10-17.
He, X. Y.; Tian, Y. H.; Deng, D. J.; Chen, F.; Wu, J. C.; Qian, J. C; Li, H. N.; Xu, L. Engineering anti-perovskite Ni4N/VN heterostructure with improved intrinsic interfacial charge transfer as a bifunctional catalyst for rechargeable zinc-air batteries. ACS Sustain. Chem. Eng. 2021, 9, 17007-17015.
doi: 10.1021/acssuschemeng.1c05907
Xu, L.; Wu, S. Q.; He, X. Y.; Wang, H.; Deng, D. J.; Wu, J. C.; Li, H. N. Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable Zn-air batteries. Chem. Eng. J. 2022, 437, 135291.
doi: 10.1016/j.cej.2022.135291
Zhang, J. X.; Zhao, X.; Du, L.; Li, Y. T.; Zhang, L. H.; Liao, S. J.; Goodenough, J. B.; Cui, Z. M. Antiperovskite nitrides CuNCo3-xVx: highly efficient and durable electrocatalysts for the oxygen-evolution reaction. Nano Lett. 2019, 19, 7457-7463.
doi: 10.1021/acs.nanolett.9b03168
Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.
doi: 10.1002/adma.201707512
Li, S. Q.; Sun, X.; Yao, Z. H.; Zhong, X.; Cao, Y. Y.; Liang, Y. L.; Wei, Z. Z.; Deng, S. W.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 2019, 29, 1904780.
doi: 10.1002/adfm.201904780
Kuttiyiel, K. A.; Sasaki, K.; Choi, Y. M.; Su, D.; Liu, P.; Adzic, R. R. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266-6271.
doi: 10.1021/nl303362s
Liu, F. F.; Yang, X.; Dang, D.; Tian, X. L. Engineering of hierarchical and three-dimensional architectures constructed by titanium nitride nanowire assemblies for efficient electrocatalysis. ChemElectroChem 2019, 6, 2208-2214.
doi: 10.1002/celc.201900252
Lai, S. J.; Xu, L.; Liu, H. L.; Chen, S.; Cai, R. S.; Zhang, L. J.; Theis, W.; Sun, J.; Yang, D. J.; Zhao, X. L. Controllable synthesis of CoN3 catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. J. Mater. Chem. A 2019, 7, 21884-21891.
doi: 10.1039/C9TA08134H
Kim, B. G.; Jo, C. S. Shin, J.; Mun, Y. D.; Lee, J.; Choi, J. W. Ordered mesoporous titanium nitride as a promising carbon-free cathode for aprotic lithium-oxygen batteries. ACS Nano 2017, 11, 2, 1736-1746.
Zou, H. Y.; Li, G.; Duan, L. L.; Kou, Z. K.; Wang, J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn-air battery deriven full water splitting. Appl. Catal. B 2019, 259, 118100.
doi: 10.1016/j.apcatb.2019.118100
Song, J. N.; Yu, D. H.; Wu, X. L.; Xie, D. Y.; Sun, Y.; Vishniakov, P.; Hu, F.; Li, L. L.; Li, C. S.; Maximov, M. Y.; Maximov, K. M.; Peng, S. J. Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn-air battery. Chem. Eng. J. 2022, 437, 1, 135281.
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
Hongrui Zhang , Miaoying Cui , Yongjie Lv , Yongfang Rao , Yu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tao Tang , Chen Li , Sipu Li , Zhong Qiu , Tianqi Yang , Beirong Ye , Shaojun Shi , Chunyang Wu , Feng Cao , Xinhui Xia , Minghua Chen , Xinqi Liang , Xinping He , Xin Liu , Yongqi Zhang . One-step constructing advanced N-doped carbon@metal nitride as ultra-stable electrocatalysts via urea plasma under room temperature. Chinese Chemical Letters, 2024, 35(11): 109887-. doi: 10.1016/j.cclet.2024.109887
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Ajay Piriya Vijaya Kumar Saroja , Yuhan Wu , Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166