Citation: Rui Zhai, Yindi Zhu, Limei Chang, Zhigang Gu, Jian Zhang. Layer-by-Layer Grafting Dye on Chiral MOF Thin Films for Circularly Polarized Luminescence[J]. Chinese Journal of Structural Chemistry, ;2022, 41(9): 220907. doi: 10.14102/j.cnki.0254-5861.2022-0023 shu

Layer-by-Layer Grafting Dye on Chiral MOF Thin Films for Circularly Polarized Luminescence

  • Corresponding author: Zhigang Gu, zggu@fjirsm.ac.cn Jian Zhang, zhj@fjirsm.ac.cn
  • Received Date: 5 February 2022
    Accepted Date: 4 April 2022
    Available Online: 15 April 2022

Figures(4)

  • Metal-organic frameworks with chiral feature (chirMOFs) are attracting great attention on circularly polarized luminescence (CPL). However, developing new efficient strategy to achieve or improve CPL properties is an urgent task. Herein, new chiral MOF thin films prepared by liquid-phase epitaxial layer by layer (lbl) growth method (SURchirMOF) are composed of D- or L-camphorate (D/Lcam) and aminopyrazine (Pr-NH2) by using liquid phase epitaxial layer by layer (lbl) method. The resulted Zn2(D/Lcam)2Pr-NH2 SURchirMOF shows strong chirality and luminescence but weak CPL emission at 390 nm. After lbl modifying a dye molecule FluoresceinIsothiocyanate (FITC), the chiroptical Zn2(D/Lcam)2Pr-NH-FITC SURchirMOFs with ~7 times CPL signal improvement and ~3 times glum value amplification are obtained. This work provides a new strategy to develop chiral MOF thin films for CPL improvement using lbl grafting approach.
  • 加载中
    1. [1]

      Wang, S. Z.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A. Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.  doi: 10.1002/adma.201800202

    2. [2]

      Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P.; Wang, Q.; Zou, L. F.; Zhang, Y. M.; Zhang, L. L.; Fang, Y.; Li, J. L.; Zhou, H. C. Stable metal-organic frameworks: design, synthesis and applications. Adv. Mater. 2018, 30, 1704303.

    3. [3]

      Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.

    4. [4]

      Chae, H. K.; Eddaoudi, M.; Kim, J.; Hauck, S. I.; Hartwig, J. F.; O'Keeffe, M.; Yaghi, O. M. Tertiary building units: synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J. Am. Chem. Soc. 2001, 123, 11482-11483.  doi: 10.1021/ja011692+

    5. [5]

      Witters, D.; Vergauwe, N.; Ameloot, R.; Vermeir, S.; De Vos, D.; Puers, R.; Sels, B.; Lammertyn, J. Digital microfluidic high-throughput printing of single metal-organic framework crystals. Adv. Mater. 2012, 24, 1316-1320.

    6. [6]

      Zou, M. L.; Dai, W. L.; Mao, P.; Li, B.; Mao, J.; Zhang, S. Q.; Yang, L. X.; Luo, S. L.; Luo, X. B.; Zou, J. P. Integration of multifunctionalities on ionic liquid-anchored MIL-101(Cr): a robust and efficient heterogeneous catalyst for conversion of CO2 into cyclic carbonates. Micropor. Mesopor. Mat. 2021, 312, 110750.  doi: 10.1016/j.micromeso.2020.110750

    7. [7]

      Teufel, J.; Oh, H.; Hirscher, M.; Wahiduzzaman, M.; Zhechkov, L.; Kuc, A.; Heine, T.; Denysenko, D.; Volkmer, D. MFU-4-A metal-organic framework for highly effective H2/D2 separation. Adv. Mater. 2013, 25, 635-639.

    8. [8]

      Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500-9502.  doi: 10.1039/c3cc44342f

    9. [9]

      Li, G. P.; Li, Z. Z.; Xie, H. F.; Fu, Y. L.; Wang, Y. Y. Efficient C2 hydrocarbons and CO2 adsorption and separation in a multi-site functionalized MOF. Chin. J. Struct. Chem. 2021, 40, 1047-1054.

    10. [10]

      Yu, H. Y.; Liu, J. C.; Bao, S.; Gao, G. Y.; Zhu, H. Y.; Zhu, P. F.; Wang, G. F. Luminescent lanthanide single atom composite materials: tunable full-color single phosphor and applications in white LEDs. Chem. Eng. J. 2022, 430, 132782.

    11. [11]

      Qin, L.; Guan, X. G.; Yang, C.; Huang, J. S.; Che, C. M. Near-infrared phosphorescent supramolecular alkyl/aryl-iridium porphyrin assemblies by axial coordination. Chem. Eur. J. 2018, 24, 14400-14408.

    12. [12]

      Wu, D. F.; Guo, Z. Y.; Yin, X. B.; Pang, Q. Q.; Tu, B. B.; Zhang, L. J.; Wang, Y. G.; Li, Q. W. Metal-organic frameworks as cathode materials for Li-O-2 batteries. Adv. Mater. 2014, 26, 3258-3262.

    13. [13]

      Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.

    14. [14]

      Wu, C. D.; Lin, W. B. A chiral porous 3D metal-organic framework with an unprecedented 4-connected network topology. Chem. Commun. 2005, 3673-3675.

    15. [15]

      Han, Z. S.; Shi, W.; Cheng, P. Synthetic strategies for chiral metal-organic frameworks. Chin. Chem. Lett. 2018, 29, 819-822.

    16. [16]

      Song, F. J.; Wang, C.; Lin, W. B. A chiral metal-organic framework for sequential asymmetric catalysis. Chem. Commun. 2011, 47, 8256-8258.

    17. [17]

      Zhang, H.; Lou, L. L.; Yu, K.; Liu, S. X. Advances in chiral metal-organic and covalent organic frameworks for asymmetric catalysis. Small 2021, 17, 20055686.

    18. [18]

      Das, S.; Xu, S. X.; Ben, T.; Qiu, S. L. Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew. Chem. Int. Ed. 2018, 57, 8629-8633.

    19. [19]

      He, Y. P.; Tan, Y. X.; Zhang, J. Gas sorption, second-order nonlinear optics, and luminescence properties of a multifunctional srs-type metal-organic framework built by tris(4-carboxylphenylduryl)amine. Inorg. Chem. 2015, 54, 6653-6656.

    20. [20]

      Qu, M.; Liu, M. M.; Liu, J.; Zhang, X. M. Tunable nonlinear optical property and photocatalytic activity on luminescent chiral lanthanide chains. Chin. J. Chem. 2014, 32, 1259-1266.

    21. [21]

      Sun, C. Y.; Qin, C.; Wang, C. G.; Su, Z. M.; Wang, S.; Wang, X. L.; Yang, G. S.; Shao, K. Z.; Lan, Y. Q.; Wang, E. B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629-5632.

    22. [22]

      Qu, X. L.; Yan, B. Zn(Ⅱ)/Cd(Ⅱ)-based metal-organic frameworks: crystal structures, Ln(Ⅲ)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. J. Mater. Chem. C 2020, 8, 9427-9439.

    23. [23]

      Kuang, X.; Ye, S. J.; Li, X. Y.; Ma, Y.; Zhang, C. Y.; Tang, B. A new type of surface-enhanced raman scattering sensor for the enantioselective recognition of D/L-cysteine and D/L-asparagine based on a helically arranged Ag NPs@homochiral MOF. Chem. Commun. 2016, 52, 5432-5435.

    24. [24]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 2000, 404, 982-986.

    25. [25]

      Li, D.; Liu, X. T.; Wu, W. T.; Peng, Y.; Zhao, S. G.; Li, L. N.; Hong, M. C.; Luo, J. H. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angew. Chem. Int. Ed. 2021, 133, 8496-8499.

    26. [26]

      Chen, M.; Qin, A. J.; Lam, J. W. Y.; Tang, B. Z. Multifaceted functionalities constructed from pyrazine-based AIEgen system. Coord. Chem. Rev. 2020, 422, 213472.

    27. [27]

      Mandemaker, L. D. B.; Rivera-Torrente, M.; Geitner, D. R.; Vis, C. M.; Weckhuysen, B. M. In situ spectroscopy of calcium fluoride anchored metal-organic framework thin films during gas sorption. Angew. Chem. Int. Ed. 2020, 59, 19545-19552.

    28. [28]

      Kang, Z. X.; Fan, L. L.; Sun, D. F. Recent advances and challenges of metal-organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073-10091.

    29. [29]

      Xiao, Y. H.; Gu, Z. G.; Zhang, J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale 2020, 12, 12712-12730.

    30. [30]

      Semrau, A. L.; Zhou, Z. Y.; Mukherjee, S.; Tu, M.; Li, W. J.; Fischer, R. A. Surface-mounted metal-organic frameworks: past, present and future perspectives. Langmuir 2021, 37, 6847-6863.

    31. [31]

      Zong, Z. H.; Zhang, P.; Qiao, H. W.; Hao, A. Y.; Xing, P. Y. Chiral toroids and tendril superstructures from integrated ternary species with consecutively tunable supramolecular chirality and circularly polarized luminescence. J. Mater. Chem. C 2020, 8, 16224-16233.

    32. [32]

      Zou, C.; Qu, D.; Jiang, H. J.; Lu, D.; Ma, X. T.; Zhao, Z. Y.; Xu, Y. Bacterial cellulose: a versatile chiral host for circularly polarized luminescence. Molecules 2019, 24, 1008.

    33. [33]

      Sang, Y.; Han, J.; Zhao, T.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: generation, amplification and application. Adv. Mater. 2020, 32, 1900110.

    34. [34]

      Albano, G.; Pescitelli, G.; Di Bari, L. Chiroptical properties in thin films of pi-conjugated systems. Chem. Rev. 2020, 120, 10145-10243.

    35. [35]

      Hirahara, T.; Yoshizawa-Fujita, M.; Takeoka, Y.; Rikukawa, M. Highly efficient circularly polarized light emission in the green region from chiral polyfluorene-thiophene thin films. Chem. Lett. 2012, 41, 905-907.

    36. [36]

      Pan, M.; Zhao, R.; Zhao, B.; Deng, J. P. Two chirality transfer channels assist handedness inversion and amplification of circularly polarized luminescence in chiral helical polyacetylene thin films. Macromolecules 2021, 54, 5043-5052.

    37. [37]

      Zheng, S.; Han, J.; Jin, X.; Ye, Q.; Zhou, J.; Duan, P.; Liu, M.; Halogen bonded chiral emitters: generation of chiral fractal architecture with amplified circularly polarized luminescence. Angew. Chem. Int. Ed. 2021, 60, 22711-22716.

    38. [38]

      Yang, X. F.; Han, J. L.; Wang, Y. F.; Duan, P. F. Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence. Chem. Sci. 2019, 10, 172-178.

    39. [39]

      Chen, Y.; Lu, P.; Gui, Q.; Li, Z.; Yuan, Y.; Zhang, H. Preparation of chiral luminescent liquid crystal and manipulation of phase structures on circularly polarized luminescence property. J. Mater. Chem. C 2021, 9, 1279-1286.

    40. [40]

      Zhang, H. W.; Han, J. L.; Jin, X.; Duan, P. F. Improving the overall properties of circularly polarized luminescent materials through areneperfluoroarene interactions. Angew. Chem. Int. Ed. 2021, 60, 4575-4580.

    41. [41]

      Yang, Y.; da Costa, R. C.; Smilgies, D. M.; Campbell, A. J.; Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small molecule dopant. Adv. Mater. 2013, 25, 2624-2628.

    42. [42]

      Shi, N.; Tan, J. Y.; Wan, X. H.; Guan, Y.; Zhang, J. Induced saltresponsive circularly polarized luminescence of hybrid assemblies based on achiral Eu-containing polyoxometalates. Chem. Commun. 2017, 53, 4390-4393.

    43. [43]

      Chen, S. M.; Chang, L. M.; Yang, X. K.; Luo, T.; Xu, H.; Gu, Z. G.; Zhang, J. Liquid-phase epitaxial growth of azapyrene-based chiral metal-organic framework thin films for circularly polarized luminescence. ACS Appl. Mater. Interfaces 2019, 11, 31421-31426.

    44. [44]

      Rood, J. A.; Noll, B. C.; Henderson, K. W. A homochiral metal-organic framework with amino-functionalized pores. Main Group Chem. 2009, 8, 237-250.

    45. [45]

      Zhai, R.; Xiao, Y. H.; Gu, Z. G.; Zhang, J. Tunable chiroptical application by encapsulating achiral lanthanide complexes into chiral MOF thin films. Nano Res. 2022, 15, 1102-1108.

    46. [46]

      Li, C.; Heinke, L. Thin films of homochiral metal-organic frameworks for chiroptical spectroscopy and enantiomer separation. Symmetry-Basel 2020, 12, 686.

    47. [47]

      Chen, S. M.; Liu, M.; Gu, Z. G.; Fu, W. Q.; Zhang, J. Chiral chemistry of homochiral porous thin film with different growth orientations. ACS Appl. Mater. Interfaces 2016, 8, 27332-27338.

    48. [48]

      Zhao, J. S.; Li, H. W.; Han, Y. Z.; Li, R.; Ding, X. S.; Feng, X.; Wang, B. Chirality from substitution: enantiomer separation via a modified metal-organic framework. J. Mater. Chem. A 2015, 3, 12145-12148.

    49. [49]

      Lu, Y. Z. H.; Zhang, H. C.; Chan, J. Y.; Ou, R. W.; Zhu, H. J.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Holl, M. M. B.; Wang, H. T. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules. Angew. Chem. Int. Ed. 2019, 58, 16928-16935.

    50. [50]

      Albano, G.; Salerno, F.; Portus, L.; Porzio, W.; Aronica, L. A.; DiBari, L. Outstanding chiroptical features of thin films of chiral oligothiophenes. ChemNanoMat 2018, 4, 1059-1070.

    51. [51]

      Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32, 2002914.

    52. [52]

      Zhao, T.; Han, J.; Jin, X.; Zhou, M.; Liu, Y.; Duan, P. F.; Liu, M. H. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research 2020, 2020, 1-12.

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    3. [3]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    4. [4]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

    5. [5]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    6. [6]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    9. [9]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    10. [10]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    11. [11]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    16. [16]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    17. [17]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    18. [18]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(7)
  • Abstract views(413)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return