Citation: Ruiyan Chen, Guanghui Chen, Yanping He, Jian Zhang. Coordination Assembly of Tetrahedral Ti4(embonate)6 Cages with Alkaline-Earth Metal Ions[J]. Chinese Journal of Structural Chemistry, ;2022, 41(1): 220100. doi: 10.14102/j.cnki.0254-5861.2021-0016 shu

Coordination Assembly of Tetrahedral Ti4(embonate)6 Cages with Alkaline-Earth Metal Ions

Figures(6)

  • Recently, the tetrahedral Ti4L6 cage (L = embonate) has been applied as the starting material to realize coordination assembly with transition and rare-earth ornoble metal ions through a two-step reaction. In this work, by employing the Ti4L6 cages to assemble with alkaline-earth metal ions (such as Mg2+, Ca2+ and Ba2+) under different solvothermal conditions, a series of Ti4L6-based structures from simple cages to 1D chain, 2D layer and 3D framework have been synthesized and structurally characterized. In addition, thermal stability, phase purity, UV-vis absorption spectrum, the fluorescent and third-order nonlinear-optical properties are also investigated.
  • 加载中
    1. [1]

      Zang, Y.; Li, L. K.; Zang, S. Q. Recent development on the alkaline earth MOFs (AEMOFs). Coord. Chem. Revs. 2021, 440, 213955–213983.  doi: 10.1016/j.ccr.2021.213955

    2. [2]

      Liu, K.; Xu, X.; Xu, J.; Fang, X.; Liu, L.; Wang, X. The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation. Journal of CO2 Utilization 2020, 38, 113–124.  doi: 10.1016/j.jcou.2020.01.016

    3. [3]

      Liu, C. H.; Fang, W. H.; Kang, Y.; Zhang, J. Synthetic strategies, diverse structures and properties of copper halide cluster-based materials. Chin. J. Struct. Chem. 2021, 39, 2091–2101.

    4. [4]

      Hu, J.; Liu, Y.; Liu, J.; Gu, C. Computational screening of alkali, alkaline earth, and transition metals alkoxide-functionalized metal-organic frameworks for CO2 capture. J. Phys. Chem. C 2018, 122, 19015–19024.  doi: 10.1021/acs.jpcc.8b05334

    5. [5]

      Yao, J.; Liu, Y. E.; Yang, L. B.; Dou, A. N.; Hou, C. F.; Xu, Q. Q.; Huang, B.; Zhu, A. X. Novel alkaline earth metal-organic frameworks with thiophene groups for selective detection of Fe3+. CrystEngComm. 2020, 22, 5970–5979.  doi: 10.1039/D0CE00990C

    6. [6]

      Guo, S. S.; Huang, L. L.; Ye, Y. X.; Liu, L. Z.; Yao, Z. Z.; Xiang, S. C.; Zhang, J. D.; Zhang, Z. J. Carbazole based anionic MOF for proton conductivity. Chin. J. Struct. Chem. 2021, 40, 55–60.

    7. [7]

      Asgharnejad, L.; Abbasi, A.; Najafi, M.; Janczak, J. Synthesis and structure of three new alkaline earth metal-organic frameworks with high thermal stability as catalysts for knoevenagel condensation. Cryst. Growth Des. 2019, 19, 2679–2686.  doi: 10.1021/acs.cgd.8b01810

    8. [8]

      Matlinska, M. A.; Ha, M.; Hughton, B.; Oliynyk, A. O.; Iyer, A. K.; Bernard, G. M.; Lambkin, G.; Lawrence, M. C.; Katz, M. J.; Mar, A.; Michaelis, V. K. Alkaline earth metal-organic frameworks with tailorable ion release: a path for supporting biomineralization. ACS Appl. Mater. Interfaces. 2019, 11, 32739–32745.  doi: 10.1021/acsami.9b11004

    9. [9]

      Hou, Y.; Liu, L.; Zhang, Z.; Sun, J.; Zhang, Y.; Jiang, J. Synthesis, crystal structures, and fluorescence properties of porphyrin alkaline earth MOFs. Inorg. Chem. Commun. 2018, 95, 36–39.  doi: 10.1016/j.inoche.2018.07.005

    10. [10]

      Hou, Y.; Sun, J.; Zhang, D.; Qi, D.; Jiang, J. Porphyrin-alkaline earth MOFs with the highest adsorption capacity for methylene blue. Chemistry 2016, 22, 6345–6352.  doi: 10.1002/chem.201600162

    11. [11]

      Krieck, S.; Schuler, P.; Gorls, H.; Westerhausen, M. Alkaline-earth metal bis[bis(trimethylsilyl)amide] complexes with weakly coordinating 2, 2, 5, 5-tetramethyltetrahydrofuran ligands. Inorg. Chem. 2018, 57, 13937–13943.  doi: 10.1021/acs.inorgchem.8b02469

    12. [12]

      Zhou, X.; Chen, Q.; Li, L.; Yang, T.; Wang, J.; Huang, W. Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. Sci. Chin. Chem. 2016, 60, 115–121.

    13. [13]

      Douvali, A.; Papaefstathiou, G. S.; Gullo, M. P.; Barbieri, A.; Tsipis, A. C.; Malliakas, C. D.; Kanatzidis, M. G.; Papadas, I.; Armatas, G. S.; Hatzidimitriou, A. G. Alkaline earth metal ion/dihydroxy-terephthalate MOFs: structural diversity and unusual luminescent properties. Inorg. Chem. 2015, 54, 5813–5826.  doi: 10.1021/acs.inorgchem.5b00539

    14. [14]

      Wu, Z. F.; Tan, B.; Lustig, W. P.; Velasco, E.; Wang, H.; Huang, X. Y.; Li, J. Magnesium based coordination polymers: syntheses, structures, properties and applications. Coord. Chem. Revs. 2019, 399, 213025–213051.  doi: 10.1016/j.ccr.2019.213025

    15. [15]

      Salmeia, K. A.; Dolabella, S.; Parida, D.; Frankcombe, T. J.; Afaneh, A. T.; Cordova, K. E.; Al-Maythalony, B.; Zhao, S.; Civioc, R.; Marashdeh, A. Robust barium phosphonate metal-organic frameworks synthesized under aqueous conditions. ACS Mater. Lett. 2021, 3, 1010–1015.  doi: 10.1021/acsmaterialslett.1c00275

    16. [16]

      Li, K.; He, K.; Li, Q.; Xia, B.; Wang, Q.; Zhang, Y. Crystal structure and photoluminescence properties of two barium(Ⅱ) MOFs. Chem. Res. Chin. Univ. 2018, 34, 700–704.  doi: 10.1007/s40242-018-8054-9

    17. [17]

      Kojima, D.; Sanada, T.; Wada, N.; Kojima, K. Synthesis, structure and fluorescence properties of a calcium-based metal-organic framework. RSC Adv. 2018, 8, 31588–31593.  doi: 10.1039/C8RA06043F

    18. [18]

      Xu, N.; Zhang, Q.; Hou, B.; Cheng, Q.; Zhang, G. A novel magnesium metal-organic framework as a multiresponsive luminescent sensor for Fe(Ⅲ) Ions, pesticides, and antibiotics with high selectivity and sensitivity. Inorg. Chem. 2018, 57, 13330–13340.  doi: 10.1021/acs.inorgchem.8b01903

    19. [19]

      Pankajakshan, A.; Mandal, S. Water stable boronic acid grafted barium metal-organic framework for the selective adsorption of cis-diols. Inorg. Chem. 2020, 59, 5958–5965.  doi: 10.1021/acs.inorgchem.9b03732

    20. [20]

      Wang, X. T.; Wei, W.; Zhang, K.; Du, S. W. Detection of diethyl ether by a europium MOF through fluorescence enhancement. Chin. J. Struct. Chem. 2021, 40, 369–375.

    21. [21]

      Bazyakina, N. L.; Makarov, V. M.; Ketkov, S. Y.; Bogomyakov, A. S.; Rumyantcev, R. V.; Ovcharenko, V. I.; Fedushkin, I. L. Metal-organic frameworks derived from calcium and strontium complexes of a redox-active ligand. Inorg. Chem. 2021, 60, 3238–3248.  doi: 10.1021/acs.inorgchem.0c03647

    22. [22]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Lin, Q. P.; Wang, F.; Zhang, L.; Zhang, J. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J. Am. Chem. Soc. 2017, 139, 16845–16851.  doi: 10.1021/jacs.7b09463

    23. [23]

      He, Y. P.; Yuan, L. B.; Chen, G. H.; Zhang, L.; Zhang, J. Coordination assembly of the water-soluble Ti4(embonate)6 cages with Mn2+ ions. Isr. J. Chem. 2018, 59, 233–236.

    24. [24]

      He, Y. P.; Chen, G. H.; Yuan, L. B.; Zhang, L.; Zhang, J. Ti4(embonate)6 cage-ligand strategy on the construction of metal-organic frameworks with high stability and gas sorption properties. Inorg. Chem. 2020, 59, 964–967.  doi: 10.1021/acs.inorgchem.9b03075

    25. [25]

      He, Y. P.; Chen, G. H.; Li, D. J.; Li, Q. H.; Zhang, L.; Zhang, J. Combining a titanium-organic cage and a hydrogen-bonded organic cage for highly effective third-order nonlinear optics. Angew. Chem. Int. Ed. 2021, 60, 2920–2923.  doi: 10.1002/anie.202013977

    26. [26]

      Chen, G. H.; Li, D. J.; He, Y. P.; Zhang, S. H.; Liang, F. P.; Zhang, J. Self-assembly of a Ti4(embonate)6 cage toward silver. Inorg. Chem. 2020, 59, 14861–14865.  doi: 10.1021/acs.inorgchem.0c02308

    27. [27]

      Chen, G. H.; Li, H. Z.; He, Y. P.; Zhang, S. H.; Yi, X.; Liang, F. P.; Zhang, L.; Zhang, J. Ti4(embonate)6 based cage-cluster construction in a stable metal-organic framework for gas sorption and separation. Cryst. Growth Des. 2019, 20, 29–32.

    28. [28]

      Gan, D. E.; Zhang, Z.; Li, Q. H.; Li, W. M. Oligo(aromatic ether sulfone)-F as a nonlinear polarized polymeric material: an experiment and DFT study. Chin. J. Struct. Chem. 2021, 40, 383–393.

  • 加载中
    1. [1]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    2. [2]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    3. [3]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

    4. [4]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    5. [5]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    6. [6]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    7. [7]

      Xinyu TianJiaxiang GuoZeyi LiShihou ShengTianyu ZhangXianfei LiChuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174

    8. [8]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    9. [9]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    10. [10]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    11. [11]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    12. [12]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    15. [15]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    16. [16]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    19. [19]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    20. [20]

      Cheng-Shuang WangBing-Yu ZhouYi-Feng WangCheng YuanBo-Han KouWei-Wei ZhaoJing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080

Metrics
  • PDF Downloads(5)
  • Abstract views(340)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return