Citation: Jun-Ling JIN, Yang-Lin SHEN, Li-Wei MI, Yun-Peng XIE, Xing LU. Anion-templated Self-assembly for the Preparation of Silver-t-butylthiolate Clusters[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220310. doi: 10.14102/j.cnki.0254-5861.2011-3357 shu

Anion-templated Self-assembly for the Preparation of Silver-t-butylthiolate Clusters

  • Corresponding author: Li-Wei MI, liwei_Mi@zut.edu.cn Yun-Peng XIE, xieyp@hust.edu.cn Xing LU, lux@hust.edu.cn
  • Received Date: 7 September 2021
    Accepted Date: 26 December 2021

    Fund Project: the National Natural Science Foundation of China 21771071the National Natural Science Foundation of China 22171094the National Natural Science Foundation of China 21925104the Key Scientific Research Projects of Universities in Henan Province 21A150060

Figures(5)

  • Silver thiolate polymers are intercepted to form different structural fragments when reacting with variant solubilizing reagents, which usually serve as the starting point for the preparation of clusters. However, such a process is still far from clear. Herein, we report the controlled synthesis of silver-t-butylthiolate clusters from reactions of polymeric [AgtBuS]n and suitable templates in the presence of solubilizing reagents to offer a detailed look at the mechanism of cluster's formation. As the provided solubilizing reagents have weak coordination ability, such as O- or N-donating ligands, the obtained polymeric compound retains the linear structure pattern that S and Ag atoms are arranged alternately. When extra templates NO3 and CO32– are applied, the disk-like clusters Ag19 and Ag20 are constructed with the same [AgtBuS]5 circles that may directly cyclize from the linear [AgtBuS]n fragments. In contrast, (EtO)2PS2 and (iPrO)2PS2 anions have large size and strong coordination ability rendering the structure of the polymer completely fragmented. Thus extremely short [AgtBuS]n pieces with silver ions and solubilizing ligands assemble around the templates V2O74– and W2O94–, leading to the formation of clusters Ag22 and Ag24.
  • 加载中
    1. [1]

      Sun, Q. Q.; Li, Q.; Li, H. Y.; Zhang, M. M.; Sun, M. E.; Li, S.; Quan, Z.; Zang, S. Q. Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. Chem. Commun. 2021, 57, 2372–2375.  doi: 10.1039/D0CC07085H

    2. [2]

      He, W. M.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L. F.; Zang, S. Q. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem. Int. Ed. 2021, 60, 8505–8509.  doi: 10.1002/anie.202100006

    3. [3]

      Das, A. K.; Maity, S.; Sengupta, T.; Bista, D.; Reber, A. C.; Patra, A.; Khanna, S. N.; Mandal, S. One-dimensional silver-thiolate cluster-assembly: effect of argentophilic interactions on excited-state dynamics. J. Phys. Chem. Lett. 2021, 12, 2154–2159.  doi: 10.1021/acs.jpclett.0c03728

    4. [4]

      Zhao, X.; Zang, S. Q.; Chen, X. Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chem. Soc. Rev. 2020, 49, 2481–2503.  doi: 10.1039/D0CS00093K

    5. [5]

      Yang, J. S.; Han, Z.; Dong, X. Y.; Luo, P.; Mo, H. L.; Zang, S. Q. Extra silver atom triggers room-temperature photoluminescence in atomically precise radarlike silver clusters. Angew. Chem. Int. Ed. 2020, 59, 11898–11902.  doi: 10.1002/anie.202004268

    6. [6]

      Xie, Y. P.; Shen, Y. L.; Duan, G.; Han, J.; Zhang, L. P.; Lu, X. Silver nanoclusters: controlled synthesis, structures and photoluminescence. Mater. Chem. Front. 2020, 4, 2205–2222.  doi: 10.1039/D0QM00117A

    7. [7]

      Shen, Y. L.; Jin, J. L.; Duan, G. X.; Xie. Y. P.; Lu, X. Formation of spindle-like Ag58 cluster induced by isomerization of [Ag14]. Acta Chim. Sinica 2020, 78, 1255–1259.  doi: 10.6023/A20070317

    8. [8]

      Feng, Y. H.; Gao, X. L.; Shi, J. F.; Zhou, K.; Ji, J. Y.; Bi, Y. F. A temperature-sensitive luminescent Ag42 nanocluster supported by tertbutyl thiol ligands. Chem. Asian J. 2019, 14, 3279–3282.  doi: 10.1002/asia.201901146

    9. [9]

      Alhilaly, M. J.; Huang, R. W.; Naphade, R.; Alamer, B.; Hedhili, M. N.; Emwas, A. H.; Maity, P.; Yin, J.; Shkurenko, A.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 2019, 141, 9585–9592.  doi: 10.1021/jacs.9b02486

    10. [10]

      Zheng, K.; Setyawati, M. I.; Lim, T. P.; Leong, D. T.; Xie, J. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 2016, 10, 7934–7942.  doi: 10.1021/acsnano.6b03862

    11. [11]

      Shen, D. F.; Wu, S. S.; Wang, R. R.; Zhang, Q.; Ren, Z. J.; Liu, H.; Guo, H. D.; Gao, G. G. A silver(I)-estrogen nanocluster: GSH sensitivity and targeting suppression on HepG2 cell. Small 2016, 12, 6153–6159.  doi: 10.1002/smll.201601936

    12. [12]

      Xie, Y. P.; Jin, J. L.; Lu, X.; Mak, T. C. W. High-nuclearity silver thiolate clusters constructed with phosphonates. Angew. Chem. Int. Ed. 2015, 54, 15176–15180.  doi: 10.1002/anie.201507512

    13. [13]

      Jin, J. L.; Xie, Y. P.; Cui, H.; Duan, G. X.; Lu, X.; Mak, T. C. W. Structure-directing role of phosphonate in the synthesis of high-nuclearity silver(I) sulfide-ethynide-thiolate clusters. Inorg. Chem. 2017, 56, 10412–10417.  doi: 10.1021/acs.inorgchem.7b01326

    14. [14]

      Najafabadi, B. K.; Corrigan, J. F. N-heterocyclic carbenes as effective ligands for the preparation of stabilized copper- and silver-t-butylthiolate clusters. Dalton Trans. 2014, 43, 2104–2111.  doi: 10.1039/C3DT52558A

    15. [15]

      Casuso, P.; Carrasco, P.; Loinaz, I.; Cabañero, G.; Grande, H. J.; Odriozola, I. Argentophilic hydrogels: elucidating the structure of neutral versus acidic systems. Soft Matter. 2011, 7, 3627–3633.  doi: 10.1039/c0sm01217c

    16. [16]

      Wang, Z.; Su, H. F.; Tan, Y. Z.; Schein, S.; Lin, S. C.; Liu, W.; Wang, S. A.; Wang, W. G.; Tung, C. H.; Sun, D.; Zheng, L. S. Assembly of silver trigons into a buckyball-like Ag180 nanocage. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 12132–12137.  doi: 10.1073/pnas.1711972114

    17. [17]

      Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.  doi: 10.1021/acs.accounts.5b00007

    18. [18]

      Wang, Z.; Gupta, R. K.; Luo, G. G.; Sun, D. Recent progress in inorganic anions templated silver nanoclusters: synthesis, structures and properties. Chem. Rec. 2020, 20, 389–402.  doi: 10.1002/tcr.201900049

    19. [19]

      Wang, Z.; Su, H. F.; Wang, X. P.; Zhao, Q. Q.; Tung, C. H.; Sun, D.; Zheng, L. S. Johnson solids: anion-templated silver thiolate clusters capped by sulfonate. Chem. Eur. J. 2018, 24, 1640–1650.  doi: 10.1002/chem.201704298

    20. [20]

      Wang, Z.; Su, H. F.; Tung, C. H.; Sun, D.; Zheng, L. S. Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50]. Nat. Commun. 2018, 9, 4407–4414.  doi: 10.1038/s41467-018-06755-4

    21. [21]

      Shen, Y. L.; Jin, J. L.; Xie, Y. P.; Lu, X. Tert-butyl thiol and pyridine ligand co-protected 50-nuclei clusters: the effect of pyridines on Ag–SR bonds. Dalton Trans. 2020, 49, 12574–12580.  doi: 10.1039/D0DT02003F

    22. [22]

      Sun, D.; Wang, H.; Lu, H. F.; Feng, S. Y.; Zhang, Z. W.; Sun, G. X.; Sun, D. F. Two birds with one stone: anion templated ball-shaped Ag56 and disc-like Ag20 clusters. Dalton Trans. 2013, 42, 6281–6284.  doi: 10.1039/c3dt50342a

    23. [23]

      Zhou, K.; Qin, C.; Li, H. B.; Yan, L. K.; Wang, X. L.; Shan, G. G.; Su, Z. M.; Xu, C.; Wang, X. L. Assembly of a luminescent core-shell nanocluster featuring a Ag34S26 shell and a W6O216– polyoxoanion core. Chem. Commun. 2012, 48, 5844–5846.  doi: 10.1039/c2cc32321d

    24. [24]

      Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag–S nanocluster Ag62S13(tBuS)32(BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.  doi: 10.1021/ja108684m

    25. [25]

      Anson, C. E.; Eichhöfer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(tBuS)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew. Chem. Int. Ed. 2008, 47, 1326–1331.  doi: 10.1002/anie.200704249

    26. [26]

      Tang, J.; Zhao, L. Polynuclear organometallic clusters: synthesis, structure, and reactivity studies. Chem. Commun. 2020, 56, 1915–1925.  doi: 10.1039/C9CC09354K

    27. [27]

      Chakrahari, K. K.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. [Cu13{S2CNnBu2}6(acetylide)4]+: a two-electron superatom. Angew. Chem. Int. Ed. 2016, 55, 14704–14708.  doi: 10.1002/anie.201608609

    28. [28]

      Gupta, A. K.; Kishore, P. V. V. N.; Cyue, J. Y.; Liao, J. H.; Duminy, W.; van Zyl, W. E.; Liu, C. W. [Cu{SC(O)OiPr}]96: a giant self-assembled copper(I) supramolecular wheel exhibiting photoluminescence tuning and correlations with dynamic solvation and solventless synthesis. Inorg. Chem. 2021, 60, 8973–8983.  doi: 10.1021/acs.inorgchem.1c00871

    29. [29]

      Lin, Y. R.; Kishore, P. V. V. N.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Synthesis, structural characterization and transformation of an eight-electron superatomic alloy, Au@Ag19{S2P(OPr)2}12. Nanoscale 2018, 10, 6855–6860.  doi: 10.1039/C8NR00172C

    30. [30]

      Nan, Z. A.; Wang, Y.; Chen, Z. X.; Yuan, S. F.; Tian, Z. Q.; Wang, Q. M. Catalyzed assembly of hollow silver-sulfide cluster through self-releasable anion template. Commun. Chem. 2018, 1, 99–104.  doi: 10.1038/s42004-018-0102-3

    31. [31]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8.

    32. [32]

      Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.  doi: 10.1021/ja0782448

    33. [33]

      Gupta, A. K.; Orthaber, A. The self-assembly of {Ag3(C≡CtBu)2}nn+ building units into a template-free cuboctahedron and anion-encapsulating silver cages. Inorg. Chem. 2019, 58, 16236–16240.  doi: 10.1021/acs.inorgchem.9b02770

    34. [34]

      Su, Y. M.; Su, H. F.; Wang, Z.; Li, Y. A.; Schein, S.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Three silver nests capped by thiolate/phenylphosphonate. Chem. Eur. J. 2018, 24, 15096–15103.  doi: 10.1002/chem.201803203

    35. [35]

      Zhou, K.; Wang, X. L.; Qin, C.; Wang, H. N.; Yang, G. S.; Jiao, Y. Q.; Huang, P.; Shao, K. Z.; Su, Z. M. Serendipitous anion-templated self-assembly of a sandwich-like Ag20S10 macrocycle-based high-nuclearity luminescent nanocluster. Dalton Trans. 2013, 42, 1352–1355.  doi: 10.1039/C2DT32145A

    36. [36]

      Li, J. Z.; Bigdeli, F.; Gao, X. M.; Wang, R.; Wei, X. W.; Yan, X. W.; Hu, M. L.; Liu, K. G.; Morsali, A. Trivalent tetrahedral anion template: a 26-nucleus silver alkynyl cluster encapsulating vanadate. Inorg. Chem. 2019, 58, 5397–5400.  doi: 10.1021/acs.inorgchem.9b00264

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    3. [3]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    4. [4]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    11. [11]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    12. [12]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    13. [13]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    14. [14]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    15. [15]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    16. [16]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    17. [17]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    18. [18]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

Metrics
  • PDF Downloads(7)
  • Abstract views(477)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return