Citation: Li-Jun ZHAI, Ru TONG, Ci-Bin WANG, Meng-Jie SHI, Ya-Nan MO, Wen-Kai CHE, Yu-Lan NIU, Tuo-Ping HU. Structural Diversity and Magnetic Properties of Two Coordination Polymers Based on 6-(3, 5-Dicarboxylphenyl)nicotinic Acid[J]. Chinese Journal of Structural Chemistry, ;2021, 40(12): 1687-1695. doi: 10.14102/j.cnki.0254-5861.2011-3354 shu

Structural Diversity and Magnetic Properties of Two Coordination Polymers Based on 6-(3, 5-Dicarboxylphenyl)nicotinic Acid

  • Corresponding author: Yu-Lan NIU, niuyl@tit.edu.cn Tuo-Ping HU, hutuoping@nuc.edu.cn
  • Received Date: 6 September 2021
    Accepted Date: 8 November 2021

    Fund Project: the NSF of China 21676258the Scientific and Technologial Innovation Project of Shanxi Province 2020L0647Innovation and Entrepreneurship Project of Taiyuan Institute of Technology S202114101015

Figures(5)

  • Two new coordination polymers (Co-CPs), namely {[Co8(DCPN)4(1, 2-bimb)4(μ3-OH)4]· (CH3CN)0.5(H2O)2}n (1) and {[Co2(DCPN)(1, 3-bimb)(μ3-OH)]·H2O}n (2), where H3DCPN = 6-(3, 5-dicarboxyl-phenyl)nicotinic acid, 1, 2-bimb = 1, 2-bis(imidazole-1-methyl)benzene and 1, 3-bimb = 1, 3-bis(imidazole-1-methyl)benzene, have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction analysis, elemental analysis (EA), infrared (IR) analysis, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The structural analysis indicated that 1 is a 2D structure based on two different [Co4(DCPN)2(μ3-OH)2]n SBUs, and 2 is a 3D framework based on [Co4(DCPN)2(μ3-OH)2] SBUs. In addition, the magnetic measurements showed that 1 and 2 have antiferromagnetic interactions between adjacent Co(II) ions. The slight difference of magnetic properties between 1 and 2 may be attributed to their different structures formed during the assembly process.
  • 加载中
    1. [1]

      Xue, D. X.; Wang, Q.; Bai, J. F. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 2019, 378, 2–16.  doi: 10.1016/j.ccr.2017.10.026

    2. [2]

      Sun, Y. J.; Tan, Q. H.; Liu, X. L.; Gao, Y. F.; Zhang, J. Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 3087–3093.  doi: 10.1021/acs.jpclett.9b00758

    3. [3]

      Zhang, Z. S.; Zhang, Y. X.; Luo, X. H.; Ma, S. C.; Zeng, H.; Yu, G.; Zheng, X. M.; Chen, C. C.; Hu, Y. F.; Xu, F.; Rehman, S. U.; Zhong, Z. C. Self-organized Bi-rich grain boundary precipitates for realizing steep magnetic-field-driven metamagnetic transition in Bi-doped Mn2Sb. Acta Mater. 2020, 200, 835–847.  doi: 10.1016/j.actamat.2020.09.050

    4. [4]

      Chen, H. T.; Zhuang, G. L.; Fan, L. M.; Zhang, X. T.; Gao, L. N.; Sun, D. A highly robust heterometallic TbIII/NiII-organic framework for C2 hydrocarbon separation and capture. Chem. Commun. 2020, 56, 2047–2050.  doi: 10.1039/C9CC09425C

    5. [5]

      Gao, W. Y.; Tsai, C. Y.; Wojtas, L.; Thiounn, T.; Lin, C. C.; Ma, S. Q. Interpenetrating metal-metalloporphyrin framework for selective CO2 uptake and chemical transformation of CO2. Inorg. Chem. 2016, 55, 7291–7294.  doi: 10.1021/acs.inorgchem.6b00937

    6. [6]

      Zhang, W.; Wang, X.; Li, P.; Zhang, W.; Wang, H.; Tang, B. Evaluating hyperthyroidism-induced liver injury based on in situ fluorescence imaging of glutathione and phosphate via nano-MOFs sensor. Anal. Chem. 2020, 92, 8952–8958.  doi: 10.1021/acs.analchem.0c00925

    7. [7]

      Wang, J. J.; Si, P. P.; Liu, M. J.; Chen, Y.; Yu, S. X.; Lu, M.; Wang, S. Y.; Li, B.; Li, P. P.; Zhang, R. C. Selective fluorescent sensing and photode-gradation properties of Tb(III)-based MOFs with different bulky backbone ligands. Polyhedron 2019, 157, 63–70.  doi: 10.1016/j.poly.2018.09.066

    8. [8]

      Chen, D. P.; Luo, R.; Li, M. Y.; Wen, M. Q.; Li, Y.; Chen, C.; Zhang, N. Salen(Co(III)) imprisoned within pores of a metal-organic framework by post-synthetic modification and its asymmetric catalysis for CO2 fixation at room temperature. Chem. Commun. 2017, 53, 10930–10933.  doi: 10.1039/C7CC06522A

    9. [9]

      Han, W. G.; Huang, X. S.; Lu, G. X.; Tang, Z. C. Research progresses in the preparation of Co-based catalyst derived from Co-MOFs and application in the catalytic oxidation reaction. Catal. Surv. Asia 2019, 23, 64–89.  doi: 10.1007/s10563-018-9258-1

    10. [10]

      Wu, C. M.; Tsai, J. E.; Lee, G. H.; Yang, E. C. Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(II) complex exclu sively ligated with phenanthroline ligands. Dalton. Trans. 2020, 49, 16813–16820.  doi: 10.1039/D0DT03481A

    11. [11]

      Ling, X. Y.; Wang, J.; Gong, C. H.; Lu, L.; Singh, A. K.; Kumar, A.; Sakiyama, H.; Yang, Q. Q.; Liu, J. Q. Modular construction, magnetism and photocatalytic properties of two new metal-organic frameworks based on a semi-rigid tetracarboxylate ligand. J. Solid State Chem. 2019, 277, 673–679.  doi: 10.1016/j.jssc.2019.07.029

    12. [12]

      Drahoš, B.; Šalitroš, I.; Císařová, I.; Herchel, R. A multifunctional magnetic material based on a solid solution of Fe(II)/Co(II) complexes with a macrocyclic cyclam-based ligand. Dalton Trans. 2021, 50, 11147–11157.  doi: 10.1039/D1DT01534F

    13. [13]

      Li, Y.; Wu, J.; Gu, J. Z.; Qiu, W. D.; Feng, A. S. Temperature-dependent syntheses of two manganese(II) coordination compounds based on an ether-bridged tetracarbolylic acid. Chin. J. Struct. Chem. 2020, 39, 727–736.

    14. [14]

      Pantazis, D. A.; Krewald, V.; Orio, M.; Neese, F. Theoretical magnetochemistry of dinuclear manganese complexes: broken symmetry density functional theory investigation on the influence of bridging motifs on structure and magnetism. Dalton Trans. 2010, 39, 4959–4967.  doi: 10.1039/c001286f

    15. [15]

      Han, B. L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R. K.; Aikens, C. M.; Tung, C. H.; Sun, D. Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral [Cu4]0 kernel. J. Am. Chem. Soc. 2020, 142, 5834–5841.  doi: 10.1021/jacs.0c01053

    16. [16]

      Wang, F.; Zhuo, H. Y.; Han, X. G.; Chen, W. M.; Sun, D. Foam-like CoO@N, S-codoped carbon composites derived from a well-designed N, S-rich Co-MOF for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 22964–22969.  doi: 10.1039/C7TA07971K

    17. [17]

      Zenno, H.; Kobayashi, F.; Nakamura, M.; Sekine, Y.; Lindoy, L. F.; Hayami, S. Hydrogen bond-induced abrupt spin crossover behaviour in 1-D cobalt(II) complexes-the key role of solvate water molecules. Dalton. Trans. 2021, 50, 7843–7853.  doi: 10.1039/D1DT01069G

    18. [18]

      Wang, Z.; Liu, J. W.; Su, H. F.; Zhao, Q. Q.; Kurmoo, M.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Chalcogens-induced Ag6Z4@Ag36 (Z=S or Se) core-shell nanoclusters: enlarged tetrahedral core and homochiral crystallization. J. Am. Chem. Soc. 2019, 141, 17884–17890.  doi: 10.1021/jacs.9b09460

    19. [19]

      Yang, Y.; Jia, T.; Han, Y. Z.; Nan, Z. A.; Yuan, S. F.; Yang, F. L.; Sun, D. An all-alkynyl protected 74-nuclei silver(I)-copper(I)-oxo nanocluster: oxo-induced hierarchical bimetal aggregation and anisotropic surface ligand orientation. Angew Chem. Int. Ed. 2019, 58, 12280–12285.  doi: 10.1002/anie.201906538

    20. [20]

      Mortazavi, B.; Shahrokhi, M.; Hussain, T.; Zhuang, X. Y. Theoretical realization of two-dimensional M3(C6X6)2 (M = Co, Cr, Cu, Fe, Mn, Ni, Pd, Rh and X = O, S, Se) metal-organic frameworks. Appl. Mater. Today 2019, 15, 405–415.  doi: 10.1016/j.apmt.2019.03.002

    21. [21]

      Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.  doi: 10.1021/jacs.7b12777

    22. [22]

      Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, K. H. OLEX 2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.  doi: 10.1107/S0021889808042726

    23. [23]

      The network topology was evaluated by the program"TOPOS-4.0" see: http://www.topos.ssu.samara.ru.

    24. [24]

      Blatow, V. A. Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct. Chem. 2012, 23, 955–963.  doi: 10.1007/s11224-012-0013-3

    25. [25]

      Ma, X. W.; Dong, J.; Zhang, J. X.; Wu, W. F.; Ran, H.; Zhang, P. Y. Two novel metal coordination polymers: anticancer activity in human angioneoplasm cells. Chin. J. Struct. Chem. 2019, 7, 1146–1151.

    26. [26]

      Wang, H.; Zhang, D.; Sun, D.; Chen, Y.; Zhang, L. F.; Tian, L.; Jiang, J.; Ni, Z. H. Co(II) metal-organic frameworks (MOFs) assembled from asymmetric semirigid multicarboxylate ligands: synthesis, crystal structures, and magnetic properties. Cryst. Growth. Des. 2009, 9, 5273–5282.

    27. [27]

      Chen, Z.; Li, Y.; Jiang, C.; Liang, F.; Song, Y. Metal complexes with N-(2-pyridylmethyl)iminodiacetate: from discrete polynuclear compounds to 1D coordination polymers. Dalton. Trans. 2009, 27, 5290–5299.

    28. [28]

      Liu, T.; Huang, Y. M.; Zou, H. H.; Wang, H. L.; Liang, F. P. Synthesis, structural characterization and magnetocaloric effect of a butterfly [Co2IIGd2III] cluster. Chin. J. Struct. Chem. 2019, 38, 1152–1158.

    29. [29]

      Hu, X. X.; Xu, J. Q.; Cheng, P.; Chen, X. Y.; Cui, X. B.; Song, J. F.; Yang, G. D.; Wang, T. G. A new route for preparing coordination polymers from hydrothermal reactions involving in situ ligand synthesis. Inorg. Chem. 2004, 43, 2261–2266.

    30. [30]

      Wang, C. C.; Tsai, J. H.; Ke, S. Y.; Lee, G. H.; Chuang, Y. C.; Yang, E. C. Structural characterization, water adsorption, and magnetic properties of two composite Mn(II)-squarate-dpe supramolecular architectures. Cryst. Growth Des. 2020, 20, 5395–5405.

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    3. [3]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    4. [4]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    5. [5]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    6. [6]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    9. [9]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    10. [10]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    11. [11]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    16. [16]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    17. [17]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    18. [18]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    19. [19]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(2)
  • Abstract views(144)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return