Citation: Shi-Hao SUN, Qian-Chong ZHANG, Xiao-Liang YE, Chivanje evulu KASHI, Wen-Hua LI, Guan-E WANG, Gang XU. High-humidity Sensor of a New Trinuclear Ti3-Oxo Cluster[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220307. doi: 10.14102/j.cnki.0254-5861.2011-3351 shu

High-humidity Sensor of a New Trinuclear Ti3-Oxo Cluster

  • Corresponding author: Guan-E WANG, gewang@fjirsm.ac.cn
  • Received Date: 2 September 2021
    Accepted Date: 8 August 2021

    Fund Project: the National Natural Science Foundation of China 21975254the National Natural Science Foundation of China 21905280the National Natural Science Foundation of China 21950410532the National Natural Science Foundation of China 2019M662254Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Open Research Fund ES202080085the Youth Innovation Promotion Association CAS 2018342

Figures(5)

  • Crystalline polyoxo-titanium clusters (PTCs), as a molecular model of TiO2 nanomaterials, have attracted unprecedented attention due to their designable structure, tunable band gap, catalysis, and photochromic properties. A new trinuclear Ti3-oxo cluster, [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2]·CH3CN·H2O (Ti3), was synthesized by solvothermal method with a yield of 60% by using 4-aminobenzoic acid as ligand. Single-crystal X-ray diffraction shows that it has a [Ti3(μ2-O)(μ3-O)(abz)6(OiPr)2] trinuclear cluster structure. Ti3 crystallizes in monoclinic space group P21/c with a = 11.091(1), b = 22.837(2), c = 22.754(1) Å, β = 90.580(6)°, V = 5763.0(6) Å3, Z = 4, Dc = 1.345 g·cm-3, F(000) = 2412, μ = 2.743 mm−1, R = 0.0796, and wR = 0.2260 (I > 2σ(I)). Ti3 shows typical semiconductive behavior determined by temperature-dependent conductivity test. The chemiresistive humidity sensor fabricated by Ti3 showed good performance, including high response (four orders of magnitude current change from 0 to 100% RH) and fast response time (160 s) and recovery time (26 s).
  • 加载中
    1. [1]

      Fang, W. H.; Zhang, L.; Zhang, J. Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chem. Soc. Rev. 2018, 47, 404–421.  doi: 10.1039/C7CS00511C

    2. [2]

      Fan, X.; Wang, J. H.; Wu, K. F.; Zhang, L.; Zhang, J. Isomerism in titanium-oxo clusters: molecular anatase model with atomic structure and improved photocatalytic activity. Angew. Chem. Int. Ed. 2019, 58, 1320–1323.  doi: 10.1002/anie.201809961

    3. [3]

      Fan, X.; Fu, H.; Zhang, L.; Zhang, J. Pyrazole-thermal synthesis: a new approach towards N-rich titanium-oxo clusters with photochromic behaviors. Dalton Trans. 2019, 48, 8049–8052.  doi: 10.1039/C9DT01628G

    4. [4]

      Fang, W. H.; Zhang, L.; Zhang, J. A 3.6 nm Ti52-oxo nanocluster with precise atomic structure. J. Am. Chem. Soc. 2016, 138, 7480–7483.  doi: 10.1021/jacs.6b03489

    5. [5]

      Gao, M. Y.; Wang, F.; Gu, Z. G.; Zhang, D. X.; Zhang, L.; Zhang, J. Fullerene-like polyoxotitanium cage with high solution stability. J. Am. Chem. Soc. 2016, 138, 2556–2559.  doi: 10.1021/jacs.6b00613

    6. [6]

      Liu, J. X.; Gao, M. Y.; Fang, W. H.; Zhang, L.; Zhang, J. Bandgap engineering of titanium-oxo clusters: labile surface sites used for ligand substitution and metal incorporation. Angew. Chem. Int. Ed. 2016, 128, 5246–5251.  doi: 10.1002/ange.201510455

    7. [7]

      Chen, S.; Fang, W. H.; Zhang, L.; Zhang, J. Synthesis, structures, and photocurrent responses of polyoxo-titanium clusters with oxime ligands: from Ti4 to Ti18. Inorg. Chem. 2018, 57, 8850–8856.  doi: 10.1021/acs.inorgchem.8b00751

    8. [8]

      Gao, M. Y.; Fan, X.; Zhang, L.; Zhang, J. Dicarboxylate ligands oriented assembly of {Ti33-O)} units: from dimer to coordination triangles and rectangles. Inorg. Chem. 2018, 57, 5642–5647.  doi: 10.1021/acs.inorgchem.8b00586

    9. [9]

      Hong, Z. F.; Xu, S. H.; Yan, Z. H.; Lu, D. F.; Kong, X. J.; Long, L. S.; Zheng, L. S. A large titanium oxo cluster featuring a well-defined structural unit of rutile. Cryst. Growth Des. 2018, 18, 4864–4868.  doi: 10.1021/acs.cgd.8b00904

    10. [10]

      Yang, Y. M.; Lun, H. J.; Long, L. S.; Kong, X. J.; Zheng, L. S. Controlled synthesis of lanthanide-titanium oxo clusters EuTi6, EuTi7 and La2Ti14. Acta Phys. Chim. Sin. 2020, 36, 1912007–6.

    11. [11]

      Li, G. J.; Long, L. S.; Kong, X. J.; Zheng, L. S. Chem. J. Chin. Univ. Chin. 2020, 41, 2577–2586.

    12. [12]

      Farahani, H.; Wagiran, R.; Hamidon, M. N. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 2014, 14, 7781–7939.

    13. [13]

      Mogera, U.; Sagade, A. A.; George, S. J.; Kulkarni, G. U. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 2014, 4, 4103–9.  doi: 10.1038/srep04103

    14. [14]

      Sikarwar, S.; Yadav, B. C. Opto-electronic humidity sensor: a review. Sens. Actuator. A. Phys. 2015, 233, 54–70.  doi: 10.1016/j.sna.2015.05.007

    15. [15]

      Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076–7.  doi: 10.1002/adma.201702076

    16. [16]

      Duan, Z. H.; Jiang, Y. D.; Zhao, Q. N.; Wang, S.; Yuan, Z.; Zhang, Y. J.; Liu, B. H.; Tai, H. L. Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology 2020, 31, 355501–8.  doi: 10.1088/1361-6528/ab932c

    17. [17]

      Atalay, S.; Erdemoglu, S.; Kolat, V. S.; Izgi, T.; Akgeyik, E.; Yilmaz, H. C.; Kaya, H.; Atalay, F. E. J. Electro. Mater. 2020, 5, 3209–3215.

    18. [18]

      Zhang, Y. Y.; Fu, W. Y.; Yang, H. B.; Qi, Q.; Zeng, Y.; Zhang, T.; Ge, R. X.; Zou, G. G. Synthesis and characterization of TiO2 nanotubes for humidity sensing. Appl. Surf. Sci. 2008, 254, 5545–5547.  doi: 10.1016/j.apsusc.2008.02.106

    19. [19]

      Farzaneh, A.; Esrafili, M. D.; Mermer, O. Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Mater. Chem. Phys. 2020, 239, 121981–9.  doi: 10.1016/j.matchemphys.2019.121981

    20. [20]

      Jyothilal, H.; Shukla, G.; Walia, S.; Kundu, S.; Angappane, S. Humidity sensing and breath analyzing applications of TiO2 slanted nanorod arrays. Sens. Actuator A Phys. 2020, 301, 111758–10.  doi: 10.1016/j.sna.2019.111758

    21. [21]

      Hong, K.; Chun, H. Nonporous titanium-oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 2013, 52, 17, 9705–9707.

    22. [22]

      Cai, M. L.; Wang, G. E.; Yao, M. S.; Wu, G. D.; Li, Y.; Xu, G. Semiconductive 1D nanobelt iodoplumbate hybrid with high humidity response. Inorg. Chem. Commun. 2018, 93, 42–46.  doi: 10.1016/j.inoche.2018.05.002

    23. [23]

      Lv, X. J.; Yao, M. S.; Wang, G. E.; Li, Y. Z.; Xu, G. A new 3D cupric coordination polymer as chemiresistor humidity sensor: narrow hysteresis, high sensitivity, fast response and recovery. Sci. China Chem. 2017, 60, 1197–1204.

    24. [24]

      Huang, J. H.; He, Y. H.; Yao, M. S.; He, J.; Xu, G.; Zeller, M.; Xu, Z. T. A semiconducting gyroidal metal-sulfur framework for chemiresistive sensing. J. Mater. Chem. A 2017, 5, 16139–16143.  doi: 10.1039/C7TA02069D

    25. [25]

      Tian, M.; Fu, Z. H.; Nath, B.; Yao, M. S. Synthesis of large and uniform Cu3TCPP truncated quadrilateral nano-flake and its humidity sensing properties. Rsc. Adv. 2016, 6, 88991–88995.  doi: 10.1039/C6RA19403F

    26. [26]

      Xie, W. Y.; Liu, B.; Xiao, S. H.; Li, H.; Wang, Y. R.; Cai, D. P.; Wang, D. D.; Wang, L. L.; Liu, Y.; Li, Q. H.; Wang, T. H. High performance humidity sensors based on CeO2 nanoparticles. Sens. Actuators B Chem. 2015, 215, 125–132.  doi: 10.1016/j.snb.2015.03.051

    27. [27]

      Wang, L. J.; He, Y.; Hu, J. H.; Qi, Q.; Zhang, T. DC humidity sensing properties of BaTiO3 nanofiber sensors with different electrode materials. Sens. Actuators B. Chem. 2011, 153, 460–464.  doi: 10.1016/j.snb.2010.11.016

    28. [28]

      Jiang, K.; Fei, T.; Jiang, F.; Wang, G.; Zhang, T. A dew sensor based on modified carbon black and polyvinyl alcoholcomposites. Sens. Actuators B. Chem. 2014, 192, 658–663.  doi: 10.1016/j.snb.2013.11.004

  • 加载中
    1. [1]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    4. [4]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    5. [5]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    6. [6]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    7. [7]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    8. [8]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    9. [9]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    10. [10]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    11. [11]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    12. [12]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    13. [13]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    16. [16]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    17. [17]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    18. [18]

      Yijia JiaoYuzhu LiYuting ZhouPeipei CenYi DingYan GuoXiangyu Liu . Structural evolution and zero-field SMM behaviour in ferromagnetically-coupled disk-type Co7 clusters bearing exclusively end-on azido bridges. Chinese Chemical Letters, 2024, 35(8): 109082-. doi: 10.1016/j.cclet.2023.109082

    19. [19]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(7)
  • Abstract views(445)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return