Citation: Rui-Xue ZHUGE, Peng-Chao SHI, Teng ZHANG. MOF-Conductive Polymer Composite Film as Electrocatalyst for Oxygen Reduction in Acidic Media[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220306. doi: 10.14102/j.cnki.0254-5861.2011-3350 shu

MOF-Conductive Polymer Composite Film as Electrocatalyst for Oxygen Reduction in Acidic Media

  • Corresponding author: Teng ZHANG, zhangteng@fjirsm.ac.cn
  • Received Date: 1 September 2021
    Accepted Date: 18 November 2021

    Fund Project:

Figures(4)

  • A metal-organic framework (MOF)-conductive polymer composite film was constructed from PCN-222(Fe) nanoparticles and PEDOT: PSS solution by simple drop-casting approach. The composite film was tested as an electrocatalytic device for oxygen reduction reaction (ORR). The combination of PCN-222(Fe) MOF particles and conductive PEDOT matrix facilitates electron transfer in the composite material and improves the ORR performance of PCN-222(Fe). Levich plot and H2O2 quantification experiment show that PCN-222(Fe)/PEDOT: PSS film mainly catalyzes two-electron oxygen reduction and produces H2O2.
  • 加载中
    1. [1]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444−12.  doi: 10.1126/science.1230444

    2. [2]

      Wang, Z.; Cohen, S. M. Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1315−1329.  doi: 10.1039/b802258p

    3. [3]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105−1125.  doi: 10.1021/cr200324t

    4. [4]

      Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933−969.  doi: 10.1021/cr200304e

    5. [5]

      Jiao, L.; Wang, Y.; Jiang, H. L.; Qiang, X. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663−23.  doi: 10.1002/adma.201703663

    6. [6]

      Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P. Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303−35.  doi: 10.1002/adma.201704303

    7. [7]

      Wu, Z.; Guo, S.; Kong, L. H. Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chin. J. Catal. 2021, 42, 1790−1797.  doi: 10.1016/S1872-2067(21)63820-2

    8. [8]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477−1504.  doi: 10.1039/b802426j

    9. [9]

      Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Martin, W. S.; Kaskel, S. Adsorption and detection of hazardous trace gases by metal-organic frameworks. Adv. Mater. 2018, 30, 1704679.  doi: 10.1002/adma.201704679

    10. [10]

      Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. Microporous metal-organic framework materials for gas separation. Chem. 2020, 6, 337−363.  doi: 10.1016/j.chempr.2019.10.012

    11. [11]

      Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H. K. Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind. Eng. Chem. Res. 2012, 51, 2179−2199.  doi: 10.1021/ie202038m

    12. [12]

      Kang, Z. X.; Fan, L. L.; Sun, D. F. Recent advances and challenges of metal-organic framework membranes for gas separation. J. Mater. Chem. A 2017, 5, 10073−10091.  doi: 10.1039/C7TA01142C

    13. [13]

      Hu, Z.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815−5840.  doi: 10.1039/C4CS00010B

    14. [14]

      Yao, M. S.; Li, W. H.; Xu, G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021, 426, 213479−34.  doi: 10.1016/j.ccr.2020.213479

    15. [15]

      Chen, L.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57−89.  doi: 10.1016/j.matt.2019.05.018

    16. [16]

      Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468−8535.  doi: 10.1021/acs.chemrev.9b00685

    17. [17]

      Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126−157.  doi: 10.1039/C6CS00250A

    18. [18]

      Zhuo, T. C.; Song, Y.; Zhuang, G. L.; Chang, L. P.; Zhang, Z. M. H-bond-mediated selectivity control of formate versus CO during CO2 photoreduction with two cooperative Cu/X sites. J. Am. Chem. Soc. 2021, 143, 6114−6122.  doi: 10.1021/jacs.0c13048

    19. [19]

      Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 2018, 6, 707−717.  doi: 10.1039/C7TB02970E

    20. [20]

      Wang, Y.; Yan, J.; Wen, N. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619−26.  doi: 10.1016/j.biomaterials.2019.119619

    21. [21]

      Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957−968.  doi: 10.1021/ar200028a

    22. [22]

      He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079−11108.  doi: 10.1021/acs.chemrev.5b00125

    23. [23]

      Yoon, M.; Suh, K.; Natarajan, S. Proton conduction in metal-organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 2013, 52, 2688−2700.  doi: 10.1002/anie.201206410

    24. [24]

      Li, A. L.; Gao, Q.; Xu, J. Proton-conductive metal-organic frameworks: recent advances and perspectives. Coord. Chem. Rev. 2017, 344, 54−82.  doi: 10.1016/j.ccr.2017.03.027

    25. [25]

      Li, J. H.; Wang, Y. S.; Chen, Y. C.; Kun, C. W. Metal-organic frameworks toward electrocatalytic applications. Appl. Sci. 2019, 9, 2427−19.  doi: 10.3390/app9122427

    26. [26]

      Lu, X. F.; Xia, B. Y.; Zang, S. Q. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 4634−4650.  doi: 10.1002/anie.201910309

    27. [27]

      Liao, P. Q.; Shen, J. Q.; Zhang, J. P. Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22−48.  doi: 10.1016/j.ccr.2017.09.001

    28. [28]

      Ko, M.; Mendecki, L.; Eagleton, A. M.; Durbin, C. G.; Mirica, K. A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717−11733.  doi: 10.1021/jacs.9b13402

    29. [29]

      Liu, L. T.; Zhou, Y. L.; Liu, S.; Mao, T. The applications of metal organic frameworks in electrochemical sensors. ChemElectroChem. 2018, 5, 6−19.  doi: 10.1002/celc.201700931

    30. [30]

      Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269−9290.  doi: 10.1039/c2ee22989g

    31. [31]

      Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414−1448.  doi: 10.1039/C9CS00906J

    32. [32]

      Xia, W.; Mahmood, A.; Zou, R. Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837−1866.  doi: 10.1039/C5EE00762C

    33. [33]

      Zhao, S.; Wang, Y.; Dong, J.; He, C. T.; Tang, Z. Y. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 1−10.

    34. [34]

      Jia, G.; Gao, Y. F.; Zhang, W.; Cao, Z.; Li, C.; Liu, J. Metal-organic frameworks as heterogeneous catalysts for electrocatalytic oxidative carbonylation of methanol to dimethyl carbonate. Electrochem. Commun. 2013, 34, 211−214.  doi: 10.1016/j.elecom.2013.06.013

    35. [35]

      Lions, M.; Tommasino, J. B.; Chattot, R.; Abeykoon, B.; Fateeva, A. Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chem. Commun. 2017, 53, 6496−6499.  doi: 10.1039/C7CC02113E

    36. [36]

      Zhang, C. Y.; Wang, M. Y.; Liu, L.; Xu, X. Electrochemical investigation of a new Cu-MOF and its electrocatalytic activity towards H2O2 oxidation in alkaline solution. Electrochem. Commun. 2013, 33, 131−134.  doi: 10.1016/j.elecom.2013.04.026

    37. [37]

      Sun, L.; Campbell, M. G.; Dinca, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. Engl. 2016, 55, 3566−3579.  doi: 10.1002/anie.201506219

    38. [38]

      Wang, T. C.; Hod, I.; Audu, C. O.; Vermeulen, N. A.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Rendering high surface area, mesoporous metal-organic frameworks electronically conductive. ACS Appl. Mater. Interfaces 2017, 9, 12584−12591.  doi: 10.1021/acsami.6b16834

    39. [39]

      Huang, T. Y.; Kung, C. W.; Liao, Y. T.; Wu, K. C. Enhanced charge collection in MOF-525-PEDOT nanotube composites enable highly sensitive biosensing. Adv. Sci. 2017, 4, 1700261−8.  doi: 10.1002/advs.201700261

    40. [40]

      Kung, C. W.; Li, Y. S.; Lee, M. H.; Wang, S. Y.; Chang, W. H. In situ growth of porphyrinic metal-organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J. Mater. Chem. A 2016, 4, 10673−10682.  doi: 10.1039/C6TA02563C

    41. [41]

      Wang, Y.; Wang, L.; Chen, H.; Ma, S. Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal-metalloporphyrin framework modified electrode. ACS Appl. Mater. Interfaces 2016, 8, 18173−18181.  doi: 10.1021/acsami.6b04819

    42. [42]

      Chen, J.; Xu, Q.; Shu, Y.; Hu, X. Y. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum. Talanta 2018, 184, 136−142.  doi: 10.1016/j.talanta.2018.02.057

    43. [43]

      Ma, S.; Goenaga, G. A.; Call, A. V.; Liu, D. J. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J. 2011, 17, 2063−2067.  doi: 10.1002/chem.201003080

    44. [44]

      Jahan, M.; Bao, Q.; Loh, K. P. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 6707−6713.  doi: 10.1021/ja211433h

    45. [45]

      Zhang, Y.; Bo, X.; Luhana, C.; Wang, H.; Li, M.; Guo, L. Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Chem. Commun. 2013, 49, 6885−6887.  doi: 10.1039/c3cc43292k

    46. [46]

      Hu, X. Y.; Wang, Y.; Ge, H.; Ye, G.; Chen, H. H. Carbon functionalized metal organic framework/nafion composites as novel electrode materials for ultrasensitive determination of dopamine. J. Mater. Chem. B 2015, 3, 3747−3753.  doi: 10.1039/C4TB01869A

    47. [47]

      Xu, G. D.; Zuo, Y. X.; Huang, B. Metal-organic framework-74-Ni/carbon nanotube composite as sulfur host for high performance lithium-sulfur batteries. J. Electroanal. Chem. 2018, 830, 43−49.

    48. [48]

      Xiong, W.; Li, H.; You, H.; Cao, M. N.; Cao, R. Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. Natl. Sci. Rev. 2020, 7, 609−619.  doi: 10.1093/nsr/nwz166

    49. [49]

      Xu, Z.; Yang, L.; Xu, C. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438−3444.  doi: 10.1021/ac5047278

    50. [50]

      Chen, Y.; Sun, X.; Biswas, S.; Xie, Y.; Wang, Y.; Hu, X. Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens. Bioelectron. 2019, 141, 111470−8.  doi: 10.1016/j.bios.2019.111470

    51. [51]

      Wang, Y.; Wang, L.; Huang, W. A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385−8393.  doi: 10.1039/C7TA01066D

    52. [52]

      Liang, X. Q.; Zhang, F.; Feng, W.; Zou, X. Q.; Zhao, C. J.; Na, H.; Liu, C.; Sun, F. X.; Zhu, G. S. From metal-organic framework (MOF) to MOF-polymer composite membrane: enhancement of low-humidity proton conductivity. Chem. Sci. 2013, 4, 983−992.  doi: 10.1039/C2SC21927A

    53. [53]

      Jiang, H.; Liu, X. C.; Wu, Y. Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem. Int. Ed. 2018, 57, 3916−3921.  doi: 10.1002/anie.201712872

    54. [54]

      Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436−2440.  doi: 10.1002/adma.201104795

    55. [55]

      Kim, N.; Kee, S.; Lee, S. H. Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 2014, 26, 2268−2272.  doi: 10.1002/adma.201304611

    56. [56]

      Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 2012, 51, 10307−10310.  doi: 10.1002/anie.201204475

    57. [57]

      He, T.; Xu, X.; Ni, B.; Wang, H.; Yong, L.; Hu, W.; Xun, W. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals. Nanoscale 2017, 9, 19209−19215.  doi: 10.1039/C7NR06274E

    58. [58]

      Sohrabi, S.; Dehghanpour, S.; Ghalkhani, M. Three-dimensional metal-organic framework graphene nanocomposite as a highly efficient and stable electrocatalyst for the oxygen reduction reaction in acidic media. ChemCatChem. 2016, 8, 2356−2366.  doi: 10.1002/cctc.201600298

    59. [59]

      Shi, L.; Yang, L. Q.; Zhang, H. B.; Chang, K.; Zhao, G.; Kako, T.; Ye, J. Implantation of iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl. Catal. B 2018, 224, 60−68.  doi: 10.1016/j.apcatb.2017.10.033

    60. [60]

      Usov, P. M.; Huffman, B.; Epley, C. C.; Matthew, C. Study of electrocatalytic properties of metal-organic framework PCN-223 for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 33539−33543.  doi: 10.1021/acsami.7b01547

    61. [61]

      Kadish, K. M.; Morrison, M. M.; Constant, L. A.; Dickens, L.; Davis, D. G. A study of solvent and substituent effects on the redox potentials and electron-transfer rate constants of substituted iron meso-tetraphenylporphyrins. J. Am. Chem. Soc. 1976, 98, 8387−8390.  doi: 10.1021/ja00442a013

    62. [62]

      Hod, I.; Sampson, M. D.; Deria, P. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015, 5, 6302−6309.  doi: 10.1021/acscatal.5b01767

  • 加载中
    1. [1]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    2. [2]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    3. [3]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    10. [10]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    13. [13]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    14. [14]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    17. [17]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    18. [18]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    19. [19]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(26)
  • Abstract views(738)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return