Citation: Hui FENG, Jing-Pei CAO, Chang-Jun FENG. CoMFA Study on Anti-proliferative Activity of Fluoroquinolone Amide Derivatives[J]. Chinese Journal of Structural Chemistry, ;2022, 41(3): 220324. doi: 10.14102/j.cnki.0254-5861.2011-3343 shu

CoMFA Study on Anti-proliferative Activity of Fluoroquinolone Amide Derivatives

  • Corresponding author: Jing-Pei CAO, caojingpei@cumt.edu.cn Chang-Jun FENG, fengcj@xzit.edu.cn
  • Received Date: 30 August 2021
    Accepted Date: 18 November 2021

    Fund Project: the National Natural Science Foundation of China 21676292the National Natural Science Foundation of China 21075138special fund of State Key Laboratory of Structure Chemistry 2016028

Figures(4)

  • The in vitro anti-proliferative activity (pICi, i = hp, ca, hl) of fluoroquinolone (rhodanine α, β-unsaturated ketone) amide compounds, referred to as "fluoroquinolone amide derivatives (FQADs)" towards Hep-3B, Capan-1 and HL60 cells, was studied by the 3D-QSAR method of comparative molecular field analysis (CoMFA). Based on the training set of 14 compounds, the prediction model was established, which was further verified by the test set of 5 compounds with template molecule included. It is found that steric and electrostatic fields contribute 66.8% and 33.2% to pIChp, 61.4% and 38.6% to pICca, and 61.5% and 38.5% to pIChl, respectively. The Rcv2 (i.e, cross-validation coefficient) is 0.324, 0.381, and 0.421 for pIChp, pICca, and pIChl, respectively, while the corresponding R2 (i.e, non-cross-validation coefficient) all reach 0.999. Then, the models were employed to estimate the activities of the training and test compounds, and the results show that the stability and predictability of developed models are very satisfactory. According to the contour maps of steric and electronic fields, bulky groups linked to 2-, 3-, 4-positions of phenyl ring, and electropositive groups near the 4-position and electronegative groups far away may increase the anti-proliferative activity. Using the information provided by the 3D contour maps, four new FQADs owing higher antiproliferative activity were designed, but their effectiveness should be further tested by experiments.
  • 加载中
    1. [1]

      Gao, L. Z.; Xie, Y. S.; Li, T.; Huang, W. L.; Hu, G. Q. Synthesis, antiproliferative activity and SAR of C-3 oxadiazole sulfanyl-acetylhydrazone-substituted fluoroquinolone analogues. Acta Pharm. Sin. 2014, 49, 1694−1698.

    2. [2]

      Li, T.; Gao, L. Z.; Xie, Y. Y.; Feng, Y. F.; Yan, Q.; Wu, S. M.; Ni, L. L.; Zhao, H.; Huang, W. L.; Hu, G. Q. Synthesis and anti-proliferative activity of fluoroquinolone C-3 fused heterocyclic α, β-unsaturated ketones derived from ciprofloxacin. Acta Pharm. Sin. 2015, 50, 569−573.

    3. [3]

      Gao, L. Z.; Xie, Y. S.; Yan, Q.; Wu, S. M.; Ni, L. L.; Zhao, H.; Huang, W. L.; Hu, G. Q. Synthesis and anti-proliferative activity of fluoroquinolone(rhodanine unsaturated ketone) amide derivatives. Acta Pharm. Sin. 2015, 50, 1008−1012.

    4. [4]

      Abdulla, A. M.; Mei, Z.; Qiu, L.; Ju, X. H. Theoretical investigation on QSAR of (2-methyl-3-biphenylyl) methanol analogs as PD-L1 inhibitor. Chin. J. Chem. Phys. 2020, 33, 459–467.  doi: 10.1063/1674-0068/cjcp1909168

    5. [5]

      Zheng, S. S.; Li, T. T.; Wang, J.; Hu, Y. J.; Zhang, H. X.; Zhao, S. X.; Zhao, Y. H.; Li, C. QSAR models for predicting the aqueous reaction rate constants of aromatic compounds with hydrated electrons. Environ. Chem. 2019, 38, 1005–1013.

    6. [6]

      Ding, R.; Chen, J. W.; Yu, Y.; Lin, J.; Wang, Z. Y.; Tang, W. H.; Li, X. H. Using ensemble learning algorithms to develop QSAR models on bioconcentration factors of organic chemicals in multispecies fish. Environ. Chem. 2021, 40, 1295–1304.

    7. [7]

      Lei, B.; Zang, Y. L.; Xue, Z. W.; Ge, Y. Q.; Li, W.; Zhai, Q.; Jiao, L. Ensemble hologram quantitative structure activity relationship model of the chromatographic retention index of aldehydes and ketones. Chin. J. Chromatogr. 2021, 39, 331–337.  doi: 10.3724/SP.J.1123.2020.06011

    8. [8]

      Zheng, S. S.; Li, T. T.; Wang, J.; Hu, Y. J.; Zhang, H. X.; Zhao, S. X.; Zhao, Y. H.; Li, C. QSAR models for predicting the aqueous reaction rate constants of aromatic compounds with hydrated electrons. Environ. Chem. 2019, 38, 1005–1013.

    9. [9]

      Zeng, X. L.; Qu, R. J.; Feng, M. B.; Chen, J.; Wang, L. S.; Wang, Z. Y. Photodegradation of polyfluorinated dibenzo-p-dioxins (PFDDs) in organic solvents: experimental and theoretical studies. Environ. Sci. Tech. 2016, 50, 8128–8134.  doi: 10.1021/acs.est.6b02682

    10. [10]

      Qu, R. J.; Liu, J. Q.; Li, C. G.; Wang, L. S.; Wang, Z. Y.; Wu, J. C. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Res. 2016, 104, 34–43.  doi: 10.1016/j.watres.2016.07.071

    11. [11]

      Feng, C. J. CoMFA model of inhibitory activity for nitrobenzene derivatives to photobacteria. J. Xuzhou Inst. Tech. (Nat. Sci. Ed. ) 2020, 35, 28–31.

    12. [12]

      Tong, J. B.; Qin, S. S.; Lei, S.; Wang, Y. A 3D-QSAR study of HIV-1 integrase inhibitors using RASMS and topomer CoMFA. Chin. J. Struct. Chem. 2019, 38, 867–881.

    13. [13]

      Shu, M.; Wu, T.; Wang, B. W.; Li, J.; Xu, C. M.; Lin, Z. H. 3D-QSAR and surflex docking studies of a series of alkaline phosphatase inhibitors. Chin. J. Struct. Chem. 2019, 38, 7–16.

    14. [14]

      Tong, J. B.; Zhan, P.; Bai, M.; Yao, T. Molecular modeling studies of human immunodeficiency virus type 1 protease inhibitors using three-dimensional quantitative structure-activity relationship, virtual screening, and docking simulations. J. Chemometr. 2016, 30, 523–536.  doi: 10.1002/cem.2809

    15. [15]

      Feng, C. J. CoMFA model of herbicidal activity of phenyl-sulfonylured derivatives. J. Xuzhou Inst. Tech. (Nat. Sci. Ed. ) 2019, 34, 21–25.

    16. [16]

      Feng, H.; Feng, C. J. CoMFA model of anti-proliferative activity for fluoroquinolon-3-yl s-triazole sulfide-ketone derivatives and implications for molecular design. Chin. J. Struct. Chem. 2021, 40, 703–710.

    17. [17]

      Feng, H.; Feng, C. J. 3D-QSAR studies on the anti-tumor activity of N-aryl-salicylamide derivatives. Chin. J. Struct. Chem. 2019, 38, 1874–1880.

    18. [18]

      Guo, Z. R. Molecular Drug Design. Science Press, Beijing 2005, p20.

    19. [19]

      Hu, S. Q.; Mi, S. Q.; Jia, X. L.; Guo, A. L.; Chen, S. H.; Zhang, J.; Liu, X. Y. 3D-QSAR study and molecular design of benzimidazole derivatives as corrosion inhibitors. Chem. J. Chin. Univ. 2011, 32, 2402–2409.

    20. [20]

      Cramer, R. D.; Burce, J. D.; Patterson, D. E.; Frank, I. E. Cross-validation, boot strapping, and partial least squares compared with multiple regression in conventional QSAR study. Quant. Struct. -Act. Relat. 1988, 7, 18–25.  doi: 10.1002/qsar.19880070105

  • 加载中
    1. [1]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    2. [2]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    3. [3]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    4. [4]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    5. [5]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    6. [6]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    7. [7]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    8. [8]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    11. [11]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    12. [12]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    13. [13]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    14. [14]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    15. [15]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    16. [16]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    17. [17]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    18. [18]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    19. [19]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    20. [20]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

Metrics
  • PDF Downloads(2)
  • Abstract views(479)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return